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Abstract.

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Af) and neurofib-
rillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order
association areas to lower-order areas and then primary visual area (V1) with disease progression.

Objective: This study investigated the effect of AD severity on visual functional network.

Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook
a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC)
network and a face-evoked visual-processing network were identified for each group.

Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from
V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the
visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the
cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD
disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing
activation in the lower-order areas.

Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement
of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the
face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.

Keywords: Alzheimer’s disease, face-evoked visual-processing network, FAUPA, functional areas of unitary pooled activity,
resting-state visual functional connectivity network

INTRODUCTION AD, amyloid-beta (AB) plaques and neurofibrillary
tangles (NFT), it is only the development and spread
of the latter that are proximate in time to the devel-
opment of serious neuronal and cognitive loss [1-7].
Composed of aggregates of hyperphosphorylated tau

" - — protein [8, 9], intraneuronal NFT activate astrocytes
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Alzheimer’s disease (AD) progressively causes
impairment in many aspects of cognitive function.
Of the two primary neuropathological hallmarks of
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oxidative stress, neuronal damage, and cell death
[9-12]. Although A plaques may play a key role
in AD pathogenesis, the severity of cognitive impair-
ment correlates best with the burden of NFT [4].

The AD staging scheme of Braak & Braak focuses
only on examination of tau-related pathology, and
correlates closely with the stage of cognitive decline
[13]. In contrast, the spread of A largely occurs prior
to the onset of cognitive decline and correlates poorly
with NFT burden [14]. Early-stage AD pathology
(Braak stage 3) begins in higher-order heteromodal
association cortices such as Brodmann Area (BA) 20,
where both tangle and plaque burden are very high in
later stages of the disease [15]. Interestingly, although
NFT are initially absent from primary somatosensory
regions, by Braak stage 6, even these regions contain
NFT as demonstrated by postmortem examinations of
primary visual cortex pyramidal and non-pyramidal
cells (BA 17, also known as area V1) [16, 17]. NFT
levels increase 20-fold in adjacent visual associa-
tion cortex (BA 18) and from there double further
in BA 20, the higher-order visual cortex of the infe-
rior temporal gyrus [17]. NFT aggregations in these
visual areas may alter not only local neuronal activa-
tion but also visual neural network activity. Indeed,
neuropsychological and neuroimaging findings show
impaired visual cortical activation during the pro-
gression of AD [18-22]. Clinicopathological studies
demonstrate strong associations of Braak NFT stage
with severity of cognitive decline [1-5]. The NFT
progression initially appears in areas of the temporal
lobe, spreads into parietal and occipital higher-order
sensory association areas and prefrontal areas, then
into lower-order sensory association areas and pre-
motor areas, and in the last stage, into the primary
areas for the visual system [15, 23-25]. Accordingly,
the NFT stage may progressively disrupt sensory and
motor functional networks. We thus hypothesize that
the progression of AD alters the visual functional
network progressively.

Visual information reaches the primary visual
area V1 and is then processed along both dor-
sal and ventral visual pathways, forming the visual
information-processing network. Blood oxygenation
level dependent (BOLD) functional magnetic res-
onance imaging (fMRI) provides a non-invasive
neuroimaging tool to study cortical activation in the
human brain evoked by visual stimulation [26-28].
Cortical areas activated by visual stimulation are
characterized by a strong correlation between the
time courses of the BOLD signal in these co-activated
areas with the stimulation paradigm, which can be

utilized to identify the stimulus-processing network
using Pearson correlation coefficient analysis. We
recently developed a novel method to identify brain
functional areas of unitary pooled activity (FAU-
PAs) using fMRI that provided a novel method to
identify task-evoked functional networks [29, 30].
A FAUPA is defined as an area in which the tem-
poral variation of the activity is the same across
the entire area. FAUPA determination is objective
and automatic with no a priori knowledge. It is
based on the assumption that the temporal varia-
tion of the activity is the same across the entire
area of the FAUPA and involves an iterative aggrega-
tion of voxels dependent upon their intercorrelation.
This method enables us to identify FAUPAs that are
associated with specific tasks and examine dynamic
activity of task-specific networks [31]. In a recent
task-fMRI study of AD patients with the task of
viewing face photos, we applied this method to
investigate the effect of AD on the face-evoked
visual-processing network [32]. In that study, a task-
associated FAUPA was first identified in the primary
visual area (V1) for each individual subject, and
then, using that FAUPA’s signal time course as the
reference function, a correlation analysis yielded a
face-evoked visual-processing network for that sub-
ject. For healthy senior (HS) controls, the identified
group-mean visual-processing network in the ven-
tral pathway started from V1 and ended within the
fusiform gyrus, an essential extra-striate location
involved in face perception and recognition [33].
This face-evoked visual-processing network was
disrupted and reduced in the AD patients in a disease-
severity dependent manner: the network integrity of
mild/moderate AD (MAD) patients was significantly
impaired mainly in the higher-order visual associ-
ation areas. However, both higher and lower-order
visual association network functions were substan-
tially impaired or even totally lost in severe AD
(SAD) patients. These findings provide a functional
corollary to the canonical view of the temporally
sequential advancement of AD pathology through
visual cortical areas from heteromodal association
cortex (BA 20) to primary association regions (BA
18-19) and in SAD, even into primary visual cortex
(BA 17), suggesting the potential of using functional
network connectivity changes as a predictor of AD
severity. However, task-based studies, even passive
viewing tasks, can be challenging to accomplish in
patients with cognitive impairment, particularly in
advanced AD. Thus, in searching for neuroimag-
ing biomarkers of AD progression, ‘simpler’ fMRI
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paradigms may be more advantageous in this popu-
lation.

The operations of the brain are mainly intrinsic,
involving the acquisition and maintenance of infor-
mation for interpreting, responding to, and predicting
environmental demands [34]. The brain’s intrinsic
activity accounts for 20% of all the energy con-
sumed by the body and may reflect the essence of
brain function at rest [34]. This on-going intrinsic
activity, as measured with the resting-state fMRI
(rs-fMRI), exhibits a large spontaneous temporal
fluctuation with a high degree of spatial organization
across the whole brain [35, 36]. Functional connec-
tivity (FC) analyses demonstrate the existence of
large-scale brain FC networks, including a visual
FC network [37]. Our FAUPA method is similar to
the seed-based FC analysis of intrinsic activity mea-
sured with rs-fMRI [35], providing a novel approach
to decode both rs- and task-fMRI timeseries in a
consistent way for identifying their corresponding
functional networks. Though related to each other,
the intrinsic visual FC network is different from the
visual stimulation-evoked FC network [38]. Addi-
tionally, a resting-state paradigm, which does not
require active attentional engagement, represents a
‘simpler’ method for assessing functional network
integrity, thus potentially disease progression, in AD.

Here we approach this question by comparing our
prior task-based (face-evoked) visual paradigm to
that of rs-fMRI in the same group of HS controls
and AD patients of varying severities. The proposed
approach enabled us to compare the brain’s intrinsic
activity with the activity evoked by tasks at several
levels of analysis from a task-associated FAUPA in a
cortical area to the whole brain [39]. To investigate
and compare the effect of AD on both the intrinsic
visual FC network and the FC network evoked by face
pictures (called “face-evoked visual-processing net-
work” in this paper), subject-specific task-associated
FAUPAs in area V1 may serve as unbiased seeds
for conducting intrinsic (resting-state) FC analyses;
one may then compare resting and task-based net-
works and examine disease specific effects on them,
e.g., by AD. In this study, we applied this method
to investigate the effect of AD on the intrinsic visual
FC network and compare the result with that for the
face-evoked visual-processing network.

METHODS AND MATERIALS

This is a follow-up study of our previous two
studies [32, 40]. One of the studies examined

the associations of behavioral and autonomic pain
responses with resting-state connectivity in AD
patients compared to HS controls, using rs-fMRI
[40]. The other investigated the effect of AD on the
face-evoked visual-processing network in the same
participants, using a task-based approach via passive
viewing of faces [32]. Using the same approach, the
present study analyzed the same sets of fMRI data:
one from the rs-fMRI study and the other from the
task-fMRI study. Both data sets were acquired in the
same fMRI session for each participant.

FParticipants

Eight SAD patients [6 female, ages from 55 to
85 years old with mean (MN) = standard devia-
tion (SD)=71.3£13.2], 11 MAD (8 female, ages
from 67 to 86 with MN £ SD=77.6 +6.2), and 26
HS controls (18 female, ages from 55 to 89 with
MN =+ SD =74.0 & 6.2) participated in this study. HS
subjects had no subjective memory complaints. Diag-
nosis of probable AD was based on the criteria of
the fourth edition of the diagnostic and statistical
manual of mental disorders (DSM-IV) [41] and the
National Institute of Neurological and Communica-
tive Diseases and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA)
[42]. Each participant took two neuropsychological
tests of Mini-Mental State Examination (MMSE) and
Cornell Scale for Depression in Dementia (CSDD)
[43]. No subjects had a CSDD score indicative of
probable depression (> 12) [44]. We defined MAD as
MMSE 11-23 and SAD as MMSE < 10. The MMSE
test results: 29.1 £ 1.1 for HS; 20.2 + 3.8 for MAD;
and 5.6 & 3.9 for SAD. For further details please refer
to our previous papers describing our methods [45,
46]. Testing took place in accordance with the Decla-
ration of Helsinki and all protocols were approved
by the Michigan State University Internal Review
Board. Written informed consent was obtained per-
sonally or via named guardians or health care power
of attorney for all HS as well as AD subjects. Ver-
bal assent was obtained from participants before all
testing procedures.

JMRI sessions

Subjects underwent two 7 min rs-fMRI runs and
three 6 min task-fMRI runs. Prior to each resting-state
scan subjects were instructed to hold still as much
as possible, with their eyes open, and stay awake.
(One AD subject was unable to complete the sec-
ond resting-state scan.) The task paradigm consisted
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of a total of 9 trials divided into 3 different condi-
tions: viewing unfamiliar faces, familiar faces and
recent self-photos taken from different angles. Each
trial was comprised of a 25s task period followed
by a 15s rest period. During the task period, one
face photo was presented for 5s with a total of 5
photos presented, and participants passively viewed
each presented photo. The order of trial presentation
was pseudo-randomized for the three runs. During
the 15 s rest period, participants were asked to focus
their eyes on a fixation cross mark at the center of
the blank screen and were asked to try not to think of
anything in particular. (One HS control’s task-fMRI
images were disrupted and unanalyzable, and con-
sequently this HS subject’s data were removed from
further analysis.) A live-view eye camera was used
to ensure participants stayed awake during each of
these five runs, and those who started to drowse were
instructed to remain awake via the intercom micro-
phone on the scanner operator’s console. For more
details, please refer to our previous studies [32, 40].

Image acquisition

Functional brain images were acquired on a
GE 3T Signa® HDx MR scanner (GE Health-
care, Waukesha, WI) with an 8-channel head coil
using a gradient echo Echo-Planar-Imaging pulse
sequence with these parameters: 38 contiguous axial
slices, slice thickness=3mm, TE (time of echo)
/TR (time of repetition) =28/2500 ms, flip angle 80°,
FOV (field of view)=220mm, matrix size=64 x
64, and first 4 time points discarded. To identify
anatomical regions, 180 sagittal T{-weighted 1 mm?>
isotropic volumetric inversion recovery fast spoiled
gradient-recalled images (10-min scan time), with
cerebrospinal fluid (CSF) suppressed, were obtained
to cover the whole brain with the following parame-
ters: TE/TR =3.8/8.6 ms, time of inversion =831 ms,
TR of inversion=2332ms, flip angle=8°, FOV =
25.6cm x 25.6cm, matrix size =256 x 256, slice
thickness = 1 mm, receiver bandwidth = & 20.8 kHz).
For more details, please refer to our previous studies
[32, 40].

Image preprocessing

A standard image preprocessing stream was per-
formed using AFNI [29, 47]. It included removing
spikes, slice-timing correction, motion correction,
spatial filtering with a Gaussian kernel with a
full-width-half-maximum of 4.0 mm, computing the

mean volume image, band-passing the signal inten-
sity time course to the range of 0.009 Hz — 0.08 Hz,
and computing the relative signal change AS (%)
of the band-passed signal intensity time course for
each of the five runs of each subject. AS=[S(t)-
So] x 100/Sqg (%), where S(t) is the signal time course
and Sy is the mean of S(t). After these preprocess-
ing steps, the three signal time courses from the
three task-fMRI runs were sorted according to the
three face categories, and a concatenated signal time
course was reconstructed for each face category. Fur-
ther image analysis was carried out using in-house
developed Matlab-based software algorithms.

FAUPA identification

A statistical model and algorithms were devel-
oped and implemented in Matlab to identify FAUPA
[29]. The determination of a FAUPA is based on
the assumption that the signal time course is the
same across the entire area within a FAUPA, and
its determination involved an iterative aggregation of
voxels dependent upon the inter-correlation of their
signal time courses. The determination consisted of
two major procedures: (a) the algorithm, with an
initial statistical criterion, identified a stable region-
of-interest (ROI) in which the signal time courses of
all voxels showed a similar temporal behavior; and
(b) using a second statistical criterion the algorithm
then compared the temporal behavior of the signal
time course of the voxels within the ROI with those
bordering it, to determine whether this stable ROI sat-
isfied the condition of being a FAUPA. (For further
details, please refer to [29].)

Identification of task-associated FAUPAs in area
V1 and the task-evoked visual-processing
network

For each participant and each face category, a task-
associated FAUPA in the putative primary visual area
(V1) was identified first, and then its signal time
course was used as the reference function to com-
pute the Pearson correlation coefficient (R) map in
the original subject space (Fig. 1). (Please refer to our
previous study for details of how those FAUPAs were
identified [32].) Our previous study demonstrated a
similar face-evoked visual-processing network for all
three face categories for each subject group, and also
showed no effect of face differences on the network
for each of the three subject groups [32]. Accord-
ingly, for each individual participant, a mean R map
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Fig. 1. Illustration of the selected task-associated FAUPA for a representative SAD patient and using this FAUPA as seed to conduct a
seed-based visual functional connectivity analysis for the resting-state data. The red clusters in the three images represent the selected
task-associated FAUPASs in the putative V1, identified with the task-fMRI data for the unfamiliar face category [32]. The FAUPA’s signal
time course was the mean signal time course averaged over that of all voxels within the FAUPA (a). Task-induced, time-locked signal changes
are conspicuous for each of the nine task trials. The two plots in (b) and (c) show the seed-mean signal time courses for the two resting-state
time series, respectively. (d): Comparison of the group-mean signal time courses of the selected FAUPAs for the three participant groups.
HS, healthy senior; MAD, mild/moderate AD; SAD, severe AD. The error bar indicates the standard error of the means.

averaged over the three face categories was computed
and used to represent the face-evoked R map for that
participant. This resulted in 8 face-evoked R maps
for SAD, 11 R maps for MAD and 25 R maps for
HS, respectively, and each R map was an independent
measure. Then, for group analysis, this face-evoked
R map of each individual subject was converted to
a standard template space (icbm452) using AFNI’s
“@auto_tlrc” with that subject’s anatomic dataset as
the input, with “adwarp” applied to each R map
with the affine transform and resampling mode set to
“nearest neighbor”. We then computed group-mean
R maps (Fig. 2, top panel, right). In our previous
study we thresholded group mean R maps at R>0.7
to reflect the high co-activity within the task-evoked
FC network [32]. The strength of co-activity within
an intrinsic FC network, however, is relatively weak,
which necessitates a lower threshold R [38]. In this
study, to compare the effects of AD on both the
intrinsic and task-evoked FC networks, we thresh-
olded group-mean R maps at R > 0.6 (total time points

N=144,p<6.1 x 10_13) to yield face-evoked visual-
processing networks (Fig. 2, bottom panel, right).
This also enabled us to test whether the results depend
on the choice of threshold R; similar results from both
thresholds would be confirmatory.

Determination of the resting-state visual FC
network

For each participant, the identified task-associated
FAUPA in area V1 for the unfamiliar face category
was arbitrarily selected as seed to compute seed-
mean signal time course. This seed time course was
then used as the reference function to compute the R
map in the original subject space for each resting-
state run (Fig. 1). A mean R map averaged over
the two resting-state runs was computed for each
participant. This resulted in 8 mean resting-state R
maps for SAD, 11 mean R maps for MAD and 25
mean R maps for HS, respectively, with each R map
serving as an independent measure. Then, for group
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RS visual mean R map (R>0.3)

Face-evoked visual mean R map (R>0.3)

RS visual FC network (R>0.6)

HS MAD SAD

Face-evoked visual-processing network (R>0.6)

HS MAD SAD

Fig. 2. Tllustration of the two visual group-mean R maps identified for the three subject groups (top panel) and their corresponding functional
networks (bottom panel). (Note that these R maps were thresholded with R >0.3 for better visual comparison between the resting and task
states.) The face-evoked visual-processing network was mainly confined within the visual cortex for the severe AD (SAD), but extended to
the fusiform gyrus (FG) for the healthy senior (HS) controls and mild/moderate AD (MAD). In contrast, the resting-state visual functional
connectivity (FC) network was located mainly within and around area V1 for the SAD patients, but substantially extended for the MAD

patients and HS controls.

analysis, mean resting-state R maps were converted
to standard template space in the same way of con-
verting those face-evoked R maps to the standard
space. For each subject group, we first computed
the group-mean R map averaged over all subjects
within that group (Fig. 2, top panel, left). Based on
the visual examination of these group-mean R maps,
they were thresholded at R>0.6 (total time points
N=168, p<7.5 x 1071) to yield resting-state visual
FC networks for each group (Fig. 2, bottom panel,
left).

Group statistical analysis

We undertook two separate analyses to examine the
effect of AD on the visual functional networks. First,

for each functional network type (i.e., task-evoked
versus resting-state), we used the HS-specific net-
work as a mask and computed the total number of
voxels with R>0.6 within that mask for each sub-
ject. Voxel numbers were then compared among the
HS, MAD, and SAD to determine the effect of AD
on the spatial extent of the visual functional network.
Using the same HS-based mask, we also computed
the mask-mean R value across all voxels within the
mask for each subject. These R values were com-
pared among these three subject groups to determine
the effect of AD on the connectivity of the visual
functional network. ANOVA testing was utilized for
statistical comparisons, with significant group-level
differences followed up with Tukey HSD post-hoc
testing. For all R-related group statistical tests, the R
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values were converted to Z values through Fisher’s Z
transformation to improve the normality of the distri-
bution.

Next, we performed a similar analysis, though
utilizing an inverse process to create highly group-
specific masks for each of the six visual functional
networks for examining the effect of AD severity on
these networks. Specifically, we created six, network
type specific, masks in which: 1) two SAD masks
with each one composed of its SAD-specific net-
work; 2) two MAD masks with each one composed
of the part of its MAD-specific network that was dis-
tinct from its corresponding SAD mask, i.e., the part
not shared by the SAD-specific network; and 3) two
HS masks with each one composed of the part of
its HS-specific network that was distinct from both
masks of MAD and SAD, i.e., the part not shared by
neither the MAD- nor SAD-specific networks. For
each of these six masks, we computed the mask-mean
R value across all voxels within that mask for each
subject. Resultant R values were compared amongst
groups for each mask using ANOVA, with significant
group-level differences followed up with Tukey HSD
post-hoc testing.

Finally, we assessed the association of the dis-
rupted visual functional network with the disease
severity measured with a commonly used clinical
cognitive screen (MMSE), for each functional net-
work type. To do this, we generated a mask composed
of that portion of the HS-specific network that was
distinct from the SAD-specific network, i.e., the
largest part of the functional network affected by the
disease. We then computed the mask-mean R across
all voxels within the mask for each subject and con-
ducted a correlation analysis of these R values with
the MMSE scores for each functional network type to
test the potential of using functional network changes
as a biomarker for predicting AD progression.

RESULTS

The two identified visual functional networks are
visualized in the bottom panel in Fig. 2; on the left
are the resting-state visual FC networks for the HS,
MAD, and SAD patients, respectively, and at right
are the face-evoked visual-processing networks. Of
note, the three face-evoked visual-processing net-
works of the three subject groups were similar to
those determined with threshold R > 0.7 and reported
in our previous study [32]. For the HS, in the ventral
pathway the face-evoked visual-processing network
started from area V1 and ended within the fusiform

gyrus. This face-evoked network appeared partially
disrupted and reduced in the MAD patients, and sub-
stantially disrupted and reduced in the SAD patients.
This gradual disruption to the visual-processing net-
work from the HS to the SAD patients was the same
observation reported in our previous study [32]. In
contrast, the resting-state visual FC network was
mainly limited to the visual cortex for all three sub-
ject groups. This FC network appeared comparable
in size for the HS and MAD patients, but reduced in
size in the SAD patients.

For the HS controls, the resting-state visual FC
network contained 14,277 voxels (voxel size 1 x 1 x
1 mm?) and the face-evoked visual-processing net-
work contained 47,376 voxels. Using the size (14,277
voxels) of this HS-specific intrinsic FC network as
the comparator reference, the relative size of the
two networks for the three subject groups are illus-
trated in the top panel of Fig. 3 (left: resting-state
FC network; right: face-evoked network). Both rest-
ing and task states showed same trend; the HS had
the largest voxel number, SAD had the smallest
number, and MAD was in the middle. The corre-
sponding ANOVA showed a significant group effect
for the task state [F(2,41)=8.0, p=0.001], but not the
resting-state. For the face-evoked network, post hoc
Tukey HSD testing showed significant differences
between the HS and SAD (p=0.001) and between
the MAD and SAD (p=0.041), but no difference
between the HS and MAD (p =0.43). These results
demonstrate an AD-reduced network size to the face-
evoked visual-processing network that was driven by
reduced activation in SAD patients.

The effect of AD on the connectivity (R) within
each HS-specific functional network is illustrated in
the bottom panel of Fig. 3 (left: resting-state FC net-
work; right: face-evoked network). As in the spatial
extent results, both resting and task states showed
same overall trend; the HS had the largest R, SAD
had the smallest R, and MAD was in the middle.
Corresponding ANOVA of the Z values showed a
significant group effect for the task-based network
[F(2,41)=6.76, p=0.003], but not for the resting-
state. For the face-evoked network, post hoc Tukey
HSD testing showed a significant difference between
the HS and SAD (p =0.002), no difference between
the HS and MAD (p =0.43), and a trend toward sig-
nificance between the MAD and SAD (p=0.078).
These results showed an AD-reduced connectivity
to the face-evoked visual-processing network, again
driven by decremental activation-based connectivity
in SAD patients.
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Fig. 3. Group comparisons of the visual functional networks for the three subject groups with respect to the spatial extent of these networks
and the R values within each network. Top panel: the relative size of resting-state visual FC network (left) and of face-evoked visual-processing
network (right) for the HS, MAD, and SAD, respectively. The size of the resting-state visual FC network of the HS (the red clusters in the
1st column of the bottom panel in Fig. 2) was chosen as the reference for network size comparisons between the two functional states and
among the three subject groups. Bottom panel: group-mean R values for the two functional networks and the three subject groups. The error

bar indicates the standard deviation.

The top panel in Fig. 4 illustrates the three group-
specific masks for each functional network, which
allowed further examinations of the effect of AD
severity on these networks. For the face-evoked
visual-processing network, the SAD mask covered
an area that was mainly within the visual cortex.
The mean R within this mask showed a similar value
for all three subject groups [F(2,14)=0.40, p=0.67]
(Fig. 4B, left). Thus, connectivity within the SAD
subjects’ face-evoked visual-processing network was
just as strong as in MAD and HS. The MAD mask,
excluding the area covered by the SAD mask, cov-
ered an area that extended both within and outside
the visual cortex substantially. The mean R was sub-
stantially smaller for the SAD in comparison to the
HS and MAD. Their corresponding ANOVA of the

Z values showed a significant difference among the
three groups [F(2,41)=9.73, p<0.001] (Fig. 4B,
middle). Post hoc Tukey HSD testing showed signifi-
cant differences between the SAD and HS (p =0.001)
and between the SAD and MAD (p=0.001), but no
difference between the MAD and HS (p=0.77). The
mean R values of the MAD and HS were at the same
level as that within the SAD mask, showing that the
visual areas in this MAD mask were activated in both
the MAD and HS as strongly as that in the SAD
mask. This area, however, was not activated in the
SAD, reflected in its significantly reduced R. The HS
mask, excluding the areas covered by the MAD and
SAD masks, covered an area that further extended
outside the MAD mask. The mean R was substan-
tially smaller not only for the SAD but also for the
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Fig. 4. Illustration of the three group-specific network masks for the two functional states (A), and their corresponding group comparisons
for the three subject groups: the face-evoked visual-processing network (B) and the resting-state visual FC network (C). For each functional
network, the SAD mask is the cortical area of the corresponding functional network of the SAD patients alone. The MAD mask is the
cortical area of the corresponding functional network of the MAD patients, excluding the corresponding SAD mask, i.e., the part of the
MAD network distinct from the SAD network. The HS mask is the cortical area of the corresponding functional network of the HS controls,
excluding both MAD and SAD masks. The error bar indicates the standard deviation.

MAD in comparison to the HS, and their correspond-
ing ANOVA of the Z values also showed a significant
difference among the three groups [F(2,41)=12.01,
p<0.001] (Fig. 4B, right). Post hoc Tukey HSD test-
ing showed significant differences between the HS
and SAD (p<0.001) and between the HS and MAD
(p=0.012), but no difference between the SAD and
MAD (p=0.24). The mean R value of the HS was at
the same level as that within the SAD mask, showing
that the cortical area of this HS mask was activated

in the HS. This area, however, was not activated in
both the MAD and SAD, reflected in their signifi-
cantly reduced R values. These results demonstrated
a progressive reduction to the face-evoked visual-
processing network based on AD severity.

For the resting-state visual FC network, the SAD
mask covered an area centered at area V1 (Fig. 4A,
3rd column). The mean R within this mask again
showed a similar value for all three subject groups
[F(2,14)=0.19, p=0.83] (Fig. 4C, left). The MAD
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Fig. 5. Association of the disrupted network with the disease severity. Left: scatter plot of R versus MMSE for the face-evoked visual-
processing network. Right: scatter plot of R versus MMSE for the resting-state visual FC network. MMSE, Mini-Mental State Examination;
and r, the correlation of R with MMSE over all subjects (N =44); RL, regression line; and CI, confidence interval.

mask substantially extended outside this SAD mask,
and the HS mask further extended outside this
MAD mask in some degree. Within the MAD mask,
although the mean R of the SAD was the small-
est one and showed a similar behavior to that
of the face-evoked visual-processing network, the
three mean R values of the three groups showed
no statistically significant difference [F(2,41)=2.62,
p=0.085)] (Fig. 4C, middle). Within the HS mask,
the three mean R values of the three groups also
showed a similar behavior to that of the face-evoked
visual-processing network, and their corresponding
group-level ANOVA of the Z values also showed
a significant difference [F(2,41)=3.31, p=0.047]
(Fig. 4C, right). Post hoc Tukey HSD testing, how-
ever, did not show any specific significant differences
for the three-paired comparisons among the HS,
MAD, and SAD. These results suggested a much
smaller effect of AD on the resting-state visual FC
network in comparison to that on the face-evoked
visual-processing network.

For each functional network type, using the part
of the HS-specific network that was distinct from the
SAD-specific network as a mask, the mask-mean R
was computed for each subject. Correlation analy-
ses of these R values with MMSE scores showed a
strong association between these two measures for
the face-evoked visual-processing network (R =0.64,
p=3.2x107%), but a weaker correlation for the
resting-state visual FC network (R=0.33, p=0.030)
(Fig. 5), suggesting the potential of using particu-
larly task-based network disruption as a predictor or
biomarker of AD progression.

DISCUSSION

A task-associated FAUPA is defined as one that
is activated when the task is performed [29]. In this
study, the task was to view the visually presented
face photos. For the representative subject, the signal
time course of the identified task-associated FAUPA
in area V1 showed the task-induced signal changes
from trial to trial (Fig. 1, top plot), and these vari-
ations characterized this individual’s response for
each task trial. Using the signal time course of a
task-associated FAUPA as the reference function, a
correlation analysis with all voxels across the brain
may yield a functional network specific for the task,
i.e., a task-processing network. Using the signal time
course of a task-associated FAUPA to identify the
task-processing network may have advantages over
using an expected ideal response in the general linear
model [48, 49] because it takes into account response
variations from trial to trial and from participant to
participant, potentially yielding a more objectively
identified task-processing network for each individ-
ual. This may be particularly important for patients
with difficulty in performing a task properly as
demonstrated in our previous study [32]. To that end,
in a previous task-based study of passive face view-
ing, we found that face-evoked visual-processing
network was disrupted and reduced in the AD patients
in a disease-severity dependent manner. However,
task-based studies, even passive viewing tasks, can
be challenging for cognitively impaired patients. We
thus set out to compare intrinsic visual network FC,
vis a vis resting-state fMRI, compared with respect
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to our prior task-based approach in probing robust
visual network-based markers of AD progression.

The face-evoked visual-processing network deter-
mined with R>0.6 in this study was similar to that
determined with R>0.7 in our previous study [32].
Both studies produced similar results with all conclu-
sions remained the same, demonstrating that these
results were independent of the chosen thresholds.
This identified face-evoked visual-processing net-
work in the ventral pathway started from area V1
and ended within the fusiform gyrus for the HS
(Fig. 2, bottom panel, right), consistent with the fact
that the fusiform gyrus is an essential extra-striate
location involved in face perception and recognition
[33]. In contrast, with the same threshold R>0.6,
the identified resting-state visual FC network was
mainly confined within the visual cortex (Fig. 2, bot-
tom panel, left). The total volume of the face-evoked
visual-processing network was about 3 times larger
than that of the resting-state visual FC network and
was consistent across all our three subject groups
(Fig. 3, top panel). In general, for each functional
network type (face-evoked versus intrinsic FC), HS
had the largest network volume followed by MAD
and then SAD; this AD-reduced network size was
statistically different across groups only for the face-
evoked visual-processing network. The connectivity
within each network of the HS was also generally
reduced in AD (Fig. 3, bottom panel), though again
only the face-evoked visual-processing network met
threshold for statistical significance. The same trend
of reduction in both the network size and R value for
both functional networks suggested a progressively
reduced visual functional network with AD sever-
ity, though the effect was significantly more robust
for the face-evoked network in comparison to the
resting-state network.

This study further examined the effect of AD sever-
ity on face-evoked and resting-state visual functional
networks in a different way, with three highly group-
specific masks per network type (Fig. 4A). For the two
SAD masks specific to spatial extent of face-evoked
activation and intrinsic activity in SAD subjects,
mask-mean R values were similar for all three subject
groups, and these R values were comparable between
the two functional networks (Fig. 4B and C, left).
Thus, there remained a core of residual, “normally”
functioning, lower-order visual network activity and
FC in SAD. However, outside this core area, AD gen-
erally disrupted these two network types in a severity
dependent manner. This was the case particularly for
the face-evoked visual-processing network (Fig. 4B,

middle and right). Here, MAD disrupted and reduced
the network mainly in the higher-order visual asso-
ciation areas, and SAD further reduced the network
to the lower-order visual association areas (Fig. 2,
bottom panel, right). To a lesser extent, resting-
state FC within the HS-specific mask (Fig. 4C, far
right) showed evidence of AD-mediated dysfunc-
tion in intrinsic visual network FC. These results
demonstrated a severity dependent reduction in visual
functional network integrity, primarily with respect to
response to visual cortical face processing. Similar
findings with respect to significant correlation of net-
work R-values with MMSE (again face-evoked more
robustly than intrinsic FC) provides further evidence
of an association between network disruption and AD
severity (Fig. 5). These results are consistent with
our hypothesis regarding AD’s temporally sequen-
tial pathologic effects on higher to lower-order visual
association areas prior to affecting primary visual cor-
tex [13, 17, 50-53]. The MMSE-related findings may
additionally reflect the AD’s temporally sequential
pathological effect on the cognitive function, which is
consistent with the progressive disintegration of over-
all cognitive processing in later-stage AD [54, 55].

Overall, these findings suggest the potential of
using functional network changes as a predictor or
biomarker of AD progression. However, at least
based on this current study in the visual system, an
activation-based visual network would likely be a
more sensitive marker of AD progression, in con-
trast to our intrinsic/resting-state visual FC network.
The latter makes sense based on neuropathological
findings in AD, as early-stage AD pathology (Braak
stage 3) begins in higher-order heteromodal associ-
ation cortices such as BA 20. To that end, candidate
networks to evaluate AD progression—or risk of
progression—would likely need to involve tasks spe-
cific to AD-associated cognitive impairments that
could effectively provoke higher-order heteromodal
association cortical activation. The FAUPA method
could then be utilized to identify task-specific net-
works and test their sensitivity and specificity for
predicting AD progression in comparison to exist-
ing neuropsychological gold standards. Alternatively,
resting-state intrinsic networks involving hetero-
modal cortices, such as default mode or salience
networks [37], could be another viable candidate for
future investigation in this regard.

Our FAUPA based comparison of task and resting-
state connectivity was based on seed selection using
task-based data. This method can provide useful
information about the integrity of visual functional
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networks with respect to rest-stimulus interactions
in healthy conditions and disease states like AD
[38]. However, our approach did rely on prior com-
pletion of a task for seed selection, and could
result with different connectivity maps from analyses
based on resting-state data alone, including indepen-
dent component analysis [56]. Further comparisons
between different approaches will be valuable in
future research.

CONCLUSION

The functional connectivity of the two identified
visual functional networks for rest and task states was
disrupted and reduced in a similar severity-dependent
manner: the more severe the cognitive impairment,
the greater reduction in network connectivity. How-
ever, findings were far more robust with respect to
face-evoked visual network connectivity. The pattern
of this network connectivity disruption and reduc-
tion is also consistent with the canonical view of the
temporally sequential advancement of AD pathology
through visual cortical areas. The observed associa-
tion between the functional network disruption and
AD severity suggests the potential of using functional
network changes as a predictor or biomarker of AD
progression.
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