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Abstract

We describe a novel mechanism that mediates the rapid and selective pattern formation of neuronal network activity in
response to changing correlations of sub-threshold level input. The mechanism is based on the classical resonance and
experimentally observed phenomena that the resonance frequency of a neuron shifts as a function of membrane
depolarization. As the neurons receive varying sub-threshold input, their natural frequency is shifted in and out of its
resonance range. In response, the neuron fires a sequence of action potentials, corresponding to the specific values of signal
currents, in a highly organized manner. We show that this mechanism provides for the selective activation and phase
locking of the cells in the network, underlying input-correlated spatio-temporal pattern formation, and could be the basis
for reliable spike-timing dependent plasticity. We compare the selectivity and efficiency of this pattern formation to a supra-
threshold network activation and a non-resonating network/neuron model to demonstrate that the resonance mechanism
is the most effective. Finally we show that this process might be the basis of the phase precession phenomenon observed
during firing of hippocampal place cells, and that it may underlie the active switching of neuronal networks to locking at
various frequencies.
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Introduction

Sub-threshold oscillations are ubiquitous throughout the brain

and span wide range frequencies. While the sources of these

oscillations are not well understood, they are known to originate

from various brain regions, and thus have different cognitive

function depending on their spectral properties [1]. Some of these

oscillations maybe generated by intrinsic neural oscillators, others

are thought to originate from network interactions. For example,

theta rhythms (6–10 Hz) originate in hippocampus and have been

shown to correspond to the ‘active learning’ state [2,3]. Theta

rhythms have been implicated in learning and the encoding of

memories [4–6]. These oscillations, along with synaptic modifica-

tion via spike-timing-dependent plasticity (STDP) provide the

necessary basis for the formation and changes of memory traces in

neuronal networks of the brain [6–8]. At the same time, cortico-

cortical and thalamocortical networks are implicated in generation

of alpha rhythms (8–12 Hz) [9], while beta rhythms are mostly

generated in motor cortex. Gamma rhythms (20–80 Hz) are

widely distributed over the cortex and are thought to be mediated

by fast-spiking inhibitory interneurons. Their function is still not

well understood but one possible implication is in controlling

sensory responses [10].

At the same time it has been demonstrated that certain types of

neurons have the ability to resonate [11,12] and fire in response to

a specific sub-threshold oscillatory current. Furthermore, it has

also been recently shown that this natural frequency can shift in

response to changes in the neuron’s membrane potential [13,14].

Here we propose a novel mechanism linking these three experi-

mentally observed phenomena in which a neuronal network may

utilize intrinsic oscillatory patterning, together with cell’s ability to

resonate and dynamically shift its resonant frequency, as a means

to encode patterns based on the characteristics of a sub-
threshold signal current. We show that changing the magnitude

of the sub-threshold input can shift the cells’ natural frequency

into, and out of, the sub-threshold oscillatory current’s range. This

causes the neuron to resonate and phase lock to the period of the

oscillation when the signal current is within a certain range. We

use a network of resonate-and-fire (RAF) [15] neurons to

demonstrate that this mechanism generates a highly selective

spatio-temporal firing pattern. We compare the response proper-

ties of this network to a supra-threshold stimulated RAF network

and to a network of supra-threshold stimulated integrate and fire

neurons (IAF), all receiving sub-threshold oscillatory currents. We

show that the RAF frequency adaptation mechanism is far

superior at resolving temporal correlations/differences than the

other models. This property, in conjunction with spike timing

dependent plasticity (STDP), can be utilized to store temporal

correlations between different input. Finally, we use this natural

frequency shift mechanism to explain two experimentally observed
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phenomena in the hippocampus: the phase precession [16,17]

along theta oscillation observed in the firing of hippocampal place

cells as animal traverses its place field, and the dynamic changes in

phase locking observed between the medial prefrontal cortex and

the ventral or dorsal hippocampus during fear or a working

memory task respectively [18,19].

Methods

Resonate and fire neuron
To investigate the performance of proposed resonance adapta-

tion mechanism we used a network of 200 randomly coupled,

excitatory, resonate-and-fire neurons [15,20]. The neurons are

described by a set of two ordinary differential equations represent-

ing the internal current (x) and voltage (y) of the cell.

dxj

dt
~bxj{vyjzI

j
ext ð1Þ

dyj

dt
~vxjzbyj ð2Þ

Where, for neuron j, v~100 modifies the natural oscillation

frequency, b~{1 defines the attraction of the voltage to it’s

resting potential, and Iext is the external current defined as

I
j
ext~Csyn

X
k

SjkIk
synzI

j
input: ð3Þ

Here, the first term is the synaptic current received from other

firing neurons; Csyn~5 is the synaptic coupling strength, Sjk is

the synaptic connectivity matrix. The synaptic coupling is defined

as

Ik
synaptic~e

{ t{tk
spike

� �

ts {e

{ t{tk
spike

� �

tf : ð4Þ

Here, t{tk
spike is the time since the pre-synaptic neuron firing,

ts~3 and tf ~:3. The variables ts and tf are chosen such that the

post synaptic potential has a pulse shape and lasts approximately

2ms. The second term, I
j
input, denotes external current.

After each neuron fires at x~1, x is reset to 0 and held there for

10ms – the duration of the refractory period.

Based on experimental results [13,14] the resonant frequency

shift is set to be a linear function of the total external current

received by the given cell,

vj~vj
0zdI

j
ext: ð5Þ

Here v
j
0 is the oscillation frequency in the absence of any

external currents, and d is a scaling factor. Figure 1 demon-

strates the resonance response of the neuron for different signal

currents and sub-threshold current frequencies. Experimental

studies have demonstrated both positively and negatively sloped

responses to neuron depolarizations (+d) [13,14]. We have

chosen d~1, however both responses will produce similar

results.

The input current consists of two components and is defined as

Iinput~Af sin(ft)zIsignal : ð6Þ

The first component is a sub-threshold oscillatory current of

amplitude Af ~3. For b~{1 and v~100 the resonance

frequency is between f = 15–19 Hz (see above figure) thus we

used f = 17 Hz as our primary input frequency. This frequency

can be easily adjusted without changes to the described behavior.

The second component was a sub-threshold (except when

compared with supra-threshold resonate and fire network)

current input to the network (e.g. a sensory input). The specific

properties of the input signal are defined in detail in the next

section, however note that the maximum magnitude of Iinputv10,

whereas the current threshold needed for the cell to fire, defined

by Equation 1, is around I~35. Thus, for the sub-threshold

resonate and fire network, the total input current is well in sub-

threshold regime at all times.

Integrate and fire neuron
To compare the results from the RAF model to another easily

tractable model we used the leaky integrate-and-fire neuron

model:

tm
dVj

dt
~{ajV

jzRsI{
X

k

wjk
synSjkIk

syn ð7Þ

Here, Vj is the membrane potential of the jth neuron,

tm = 0.5 ms is the time constant; a is a leakage coefficient which

is different for every cell, a[ [1:1.3]; Ik
syn is the synaptic current

generated at the time of the spike, wjk
syn defines the chemical

synapse coupling strength; Sjk is the synaptic connectivity

(adjacency) matrix; I is a uniform external current which keeps

the neurons readily excitable, I = 0.5; Rs is the neuron resistance

Rs = 1.

The synaptic current is activated after the pre-synaptic neuron

reaches a threshold Vthresh = 1 and fires an action potential. The

pre-synaptic neuron is then returned to V = 0 and remains there

Figure 1. Firing frequency response of a single neuron to
varying strengths of the signal current and frequencies of the
oscillatory current. The oscillating current amplitude is fixed at A~3
and d~1. The color scale denotes the firing frequency of a neuron.
doi:10.1371/journal.pone.0018983.g001
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for a refractory period tref = 10 ms. The synaptic current is of the

form

Ik
syn(t)~e

{ t{tk
spike

� �

ts {e

{ t{tk
spike

� �

tf
ð8Þ

where (t{tk
spike) is the time since the last firing of the presynaptic

neuron, ts = 3 ms is the slow time constant, and tf = 0.3 ms is the

fast time constant. The variables ts and tf are chosen such that the

post-synaptic potential lasts approximately 2 ms.

Measuring temporal pattern properties: mean phase
coherence

We used the mean phase coherence (MPC) to measure the

amount of phase locking between cells [15,21]. The MPC ranges

between 0 (no phase locking) and 1 (maximal phase locking). The

MPC is calculated pair-wise between neurons n and m:

MPCnm~
1

S

XS

s~1

eiwnms (j)

�����

����� ð9Þ

Here S is the total number of spikes of cell m and wnms
is the

phase between cell n and m for interval j containing s. This phase

is defined as:

wnms
(j)~2p

tnj ,ms

tnj

, ð10Þ

where

tnj
~tnjz1

{tnj
; ð11Þ

is the inter-spike-interval j for neuron n containing spike s of the

m-th cell and

tnj ,ms~tms{tnj
; ð12Þ

is the time difference between the initial firing of neuron n, on

interval j, and the firing s, of neuron m, with the condition,

tnj
ƒtmsƒtnjz1

ð13Þ

Finally, we take the average of all MPC pairs across all neurons,

MPC~
1

N(N{1)

XN

n

XN

m=n

MPCnm ð14Þ

where N~200 are the total number of neurons.

Signal Phase Coherence
We also measure phase coherence of the neurons with respect to

the oscillatory drive. Here the phase of the oscillatory signal at

which given cell fired was obtained directly. The signal phase

coherence was calculated in a similar fashion to the MPC.

Mean minimal interneuron interspike interval
To further quantify the temporal spiking pattern between the

neurons we calculated mean minimal interneuron interspike

interval (mISI). Namely we calculated the ISI length for the

nearest firing times between every neuron:

ISInm~
1

S

XS

s~1

jtns{t’ms j ð15Þ

where, t’ms is the nearest firing of cell m to tns .

Then

jISI j~ 1

N(N{1)

XN

n

XM
m

ISInm ð16Þ

is the mean inter-neuron ISI.

Results

We compared the performance of the RAF resonant frequency

adaptive network with two other network realizations: an identical

RAF network driven by a supra-threshold signal current, and a

non-resonating IAF [22] network driven by a supra-threshold

signal current. All networks received a fixed sub-threshold

oscillatory current with a frequency of f = 17 Hz and an

amplitude of Af = 3. The examples of the raster plots and the

relation of spike timing to the underlying oscillation for all three

networks are shown on Figure 2.

Comparison of neuronal and signal phase locking
properties

First we examined the response of the networks to a range of

different input currents. We do this by investigating the degree of

selectivity and locking of network activity as a function of the

variance of the input (Isignal ). Here, the magnitude of the input

current was drawn from a random Gaussian distribution to vary

the signal currents into each neuron. To keep the relative variance

range (between the sub and supra-threshold signal currents) the

same, the subthreshold amplitude of the signal current, (Isignal ),

had a mean 6 and maximal variance of 3, while the supra-

threshold currents amplitude had a mean of 80 with the maximal

variance of 40. These maximal variances correspond to 1 on the x-

axes of plots on Figure 3. For each simulation, the specific value of

the signal current was kept constant over time. We computed the

mean phase coherence, phase locking of activity to the oscillatory

current, and the mean inter-neuron ISI for the three types of

networks.

Figure 3A depicts the phase locking of neuronal activity to the

network oscillatory drive as a function of the input variance. One

can observe that the phase locking for the frequency adaptation

network is nearly perfect for most of the range, tailing off when the

subthreshold Isignal variance approaches half of its maximal value,

or 1.5. This indicates that the neurons are locked to specific phases

on the oscillatory current. This is due to the fact that the active

neurons (i.e those that receive appropriate current shifting their

natural frequency towards the frequency of the oscillatory drive),

being effectively oscillators, phase synchronize with the oscillatory

current [15,23,24]. Other neurons remain quiescent as they do not

enter resonant firing - their natural frequency is significantly

different from that of the oscillatory drive while the total input

signal they receive is sub-threshold. Figure 2A demonstrates this

behavior and shows that the firing times are locked near the peaks

ð8Þ
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of the oscillation, overlayed in gray. This effect is significantly

diminished for the RAF network with supra-threshold input (B),

and almost completely absent in the IAF network (C). It occurs

because the neurons’ firings are effectively driven by the supra-

threshold inputs with the cell firing frequency determined by the

amplitude of this input.

Figures 3B and 3C depict the MPC changes of uncoupled

neurons and coupled networks, respectively. The MPC is an

indicator of the stability of the phase relationships between the

neurons themselves. This, in turn, determines stability and

selectivity of the generated network activity pattern. The MPC

for the uncoupled adaptive RAF network is shown in blue in

Figure 3B. Here the MPC is high for low input variance but

declines quickly as the input variance is increased. This is in

contrast to the signal coherence in 3A because, even though the

neurons are locked to the phase of the individual oscillatory cycle,

they fire at different cycles, depending on the signal current

magnitude. Figure 2 demonstrates this effect in the shaded region.

Here we see the timing of neurons’ firing, on a specific oscillatory

cycle, as a function of input signal, where neurons with similar

Isignal fire near synchronously with a consistent phase relationship

to the oscillatory signal. Neurons with significantly different input

Figure 2. Raster plot of neuronal responses of neurons to a range of input signal currents compared across different models. The
neuron id/current (y-axis) vs. time (x-axis) is plotted where stars represent the neuronal firing times. The neurons are uncoupled here to best
demonstrate their firing pattern response. The resonant RAF model is plotted in A, the supra-threshold RAF model in B, and the supra-threshold IAF
model in C. The neurons were ordered so that the signal current to a neuron increases with its id. The oscillatory current is overlayed with the spike
times to demonstrate the phase-locking of the neurons to the oscillation. A) Neurons receiving similar currents fire in a temporal order dependent
directly on the value of the input current they receive (shaded regions). Neurons receiving significantly different currents fire on different oscillatory
cycles, remaining phase locked to the oscillation, but not to each other. B and C) Neurons fire erratically, not phase locked to the resonant oscillations,
or in any particular order corresponding to the signal current.
doi:10.1371/journal.pone.0018983.g002
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currents however, fire on different oscillations of resonant current

(shown by different green arrow lengths). When the neurons are

coupled (Figure 3C), the excitatory connections mediate increased

neuronal interactions and firing at the same oscillatory cycle

leading to a higher MPC. By comparison, for both the coupled

and uncoupled case, the supra-threshold RAF and IAF networks

have lower MPC. For the supra-threshold RAF neurons the MPC

remains high for a narrow range of signal currents because of the

phase locking of the cells receiving similar input, however for

larger values of the variance the differences in the Isignal lead to

significantly different firing frequencies, no locking to the

oscillatory current and thus abolishing of phase locking

(Figure 2). For the IAF model the MPC remains low over all

input variance range, because the non-oscillating neurons lack and

frequency response properties.

Finally, Figure 3D depicts the modulation of the inter-neuron

inter-spike intervals (ISI) as a function of variance of input

currents. The mean ISI changes significantly for the resonance

adaptation mechanism, while it remains constant for other two

models. This indicates an increased signal current selectivity (in

terms of spiking coincidence), as a function of input variance, for

the adaptive resonance mechanism compared with supra-thresh-

old input for both RAF and IAF models. This occurs because, for

small values of variance, the active cells fire within narrow time

windows. When the variance is increased the cells are still locked

to the oscillation phase but are firing on different oscillatory cycles,

rapidly increasing the mean ISI value. Again, we can observe this

on Figure 2 where, as the current deviates further from the peak of

6, the pair-wise ISIs increase more and more. This effect is

abolished for the other two network realizations as the supra-

threshold inputs inhibit cells from phase locking and thus the

specific variance of input has little effect on the ISI. As we will

show below, this phenomenon has a large effect on the efficiency

of the STDP driven synaptic modifications.

Specific effects of resonant frequency shift vs. different
sub-threshold currents

Enhanced STDP driven synaptic modifications and the

spatio-temporal correlation of inputs. The results described

above indicate that the resonance frequency shift provides a

superior mechanism to translate differences in the input signal

characteristics to distinct patterns of spatio-temporal neuronal

activity. Next we investigate how well these neuronal activity

patterns translate to STDP modified network connections. To do

this we used a standard symmetric decaying exponential learning

rule to model the effects of STDP on the network. Here the

synapses may be strengthened (depressed) by a factor C if the

presynaptic neuron fires shortly before (after) the postsynaptic cell:

Cj(tdiff )~D
Tdiff

jTdiff j
e
{Tdiff

t , ð17Þ

where tpost and tpre denote time before and after synaptic

modification, respectively; Tdiff is the time difference between

the presynaptic and postsynaptic neuron firing, D~0:1 scales the

STDP strength, and t~15ms is the STDP time constant defining

the relevant timescale for synaptic changes.

Figure 3. Response of neurons to a range of input signal currents. The RAF resonance adaptation mechanism with sub-threshold input is
denoted by blue, RAF with supra-threshold input by red, and IAF with supra-threshold by green. a) The phase coherence of the network firing times
with the oscillatory current v.s increasing ranges of signal currents. b) The MPC response of an uncoupled network to increasing ranges of signal
currents. c) The MPC response of a coupled network to increasing ranges of signal currents. d) The mean inter-spike interval (ISI) calculated between
neurons vs. increasing ranges of signal currents for a coupled network. Errors are calculated over five simulations.
doi:10.1371/journal.pone.0018983.g003
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The network was divided into two sub-groups (id. 1–100, 101–

200) each receiving a signal current with time-shifted Gaussian

profile,

Isignal~D exp {(t{tshift)
2=s2, ð18Þ

where s~1:5s, D~7 for sub-threshold input and D~80 for

supra-threshold input, Figure 4A. For the data depicted on

Figure 4A–C the time shift between the two sub-groups was fixed

at 0:5s. The two Gaussians represent distinct activation fields by

which the two subpopulations respond to (e.g two nearby place

fields that activate two subpopulations sequentially, as an animal

runs through the maze). Figure 4B depicts the spike timing raster

of the network, and Figure 4C shows the resultant connectivity

matrix, obtained at the end of the simulation (t = 10 s), averaged

over 100 trials. We see that, within each sub-region, where

neurons receive identical inputs, strong increases or decreases

occur in the synaptic strengths. These changes are symmetrical

(the net changes average to zero), with the specific patterning of

STDP changes governed by the initial random connectivity. More

importantly however, one can observe a strong unidirectional

strengthening (weakening) of connections from regions with the

leading(following) Gaussian. This is due to the fact that the subset

receiving to the leading Gaussian initially receive a slightly higher

current, in the resonant range, compared to the subset receiving

the lagging Gausssian. When these differences are small, this leads

to robust phase shifts in firing within the same oscillatory cycle,

between the two populations (Figure 2).

Finally, we investigated how the unidirectional coupling changed

as a function of the temporal shift between the Gaussian signal

currents. We did this for all three neuron/network models by

computing the difference between the mean couplings of both

regions. This will directly measure the extent to which the changes

in the network topology reflect the correlation between the signal

currents. Figure 4D depicts the normalized (per spike) changes in

directional connectivity between the two neuronal sub-groups for

the RAF frequency adaptation network with sub-threshold input

(blue), supra-threshold input (red), and the IAF network with supra-

threshold input (green). Clearly the sub-threshold input, together

with the resonant frequency adaptation mechanism, provides the

most supportive dynamical environment for the network reorgani-

zation. The changes are reflected in directional connectivity

between the two regions, correlating the time dependence of the

signal currents to the strengthening of connections.

Figure 4. STDP network connectivity changes due to the correlation of Gaussian inputs. A) The Gaussian profile and temporal shift of the
signal currents into each region, here s~1:5s, D~7 for sub-threshold input and D~80 for supra-threshold input. B) Example of the activity raster
plot of neuronal activity. C) The pattern of modified connectivity strengths between the neurons at the end of the simulation (10 s), averaged over
100 trials, for all possible connections. x-axis is from, y-axis it to. D) Comparison of mean, directional connectivity changes between the two network
subgroups as a function of the input shift. The different colors are a comparison between the RAF adaptive resonance network, supra-threshold RAF
network, and supra-threshold IAF network.
doi:10.1371/journal.pone.0018983.g004
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Discussion

Based on the results above, it is clear that the sub-threshold

driven resonant neurons, coupled with a voltage dependent

natural frequency shift, provide a very efficient dynamical

mechanism for the formation of input driven spatio-temporal

patterns of activity. This, integrated with STDP learning, provides

an efficient mechanism that underlies the formation of a

connectivity topology that maps the temporal and spatial

characteristics of the input signal(s) - more so than supra-threshold

input driven networks. This effectiveness arises from the enhanced

phase and signal locking, due to the resonance frequency shift

response, and the higher sensitivity in spike timing due to

resonance induced firing. In short, the neurons’ firing times are

consistently mapped onto specific, current dependent, phases of

the input oscillation, rather than just being modulated by a supra-

threshold oscillating current.

Input dependent phase precession
This input-dependent phase locking and phase precession has

been observed experimentally in nearly all parts of the brain

involved in learning [6,25,26], and specifically during hippocam-

pal place cell firing [16,17] when the animal is traversing the place

field associated with that cell. While it is relatively difficult to

explain this phenomenon using supra-threshold network realiza-

tions, it is an intrinsic property of the sub-threshold resonance

adaptation mechanism we described Figure 5.

Dynamic modulation of information transfer between
brain modalities

Finally, the voltage dependent natural frequency shift may

explain recently observed dynamic changes in information flow

between different brain modalities. It has been shown that the

medial prefrontal cortex synchronizes with the ventral hippocam-

pus (vHPC) during anxiety [18] and with the dorsal hippocampus

(dHPC) during working memory tasks [19], specifically in the theta

(4–12 Hz) range in both cases. It is also known that the dHPC and

vHPC have slightly different preferred frequencies of theta that

route the flow of information in different states. Such a dynamic

change in frequency preference between modalities is easily

explained within our model. While it is not clear what, in this case,

causes direct additional cellular depolarization creating the

resonant frequency shift, it was shown that in 5HT1A KO mice

(i.e. serotonin receptor knock-outs, a model for increased anxiety),

that there was an increased theta power increases over wild type

[18]. Since the knock-out of 5HT1A receptor has depolarizing

effect it could provide the mechanism for the proposed resonant

frequency shift leading to increased theta frequency. Figure 6

depicts such a transition for the frequency ranges we used earlier.

Here the network receives two oscillatory inputs with slightly

different frequencies. As the cells’ membranes are progressively

depolarized the network shifts from being locked to the lower

frequency input to the higher frequency one, as reported by the

signal coherence.

To the best of our knowledge, we are the first to demonstrate

the use of oscillations and the sub-threshold frequency shift as a

mechanism which provides brain networks with the enhanced

ability to encode input patterns.
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