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Microbial communities have a preponderant role in the life support processes of our common home pla-
net Earth. These extremely diverse communities drive global biogeochemical cycles, and develop inti-
mate relationships with most multicellular organisms, with a significant impact on their fitness. Our
understanding of their composition and function has enjoyed a significant thrust during the last decade
thanks to the rise of high-throughput sequencing technologies. Intriguingly, the diversity patterns
observed in nature point to the possible existence of fundamental community assembly rules.
Unfortunately, these rules are still poorly understood, despite the fact that their knowledge could spur
a scientific, technological, and economic revolution, impacting, for instance, agricultural, environmental,
and health-related practices. In this minireview, I recapitulate the most important wet lab techniques and
computational approaches currently employed in the study of microbial community assembly, and
briefly discuss various experimental designs. Most of these approaches and considerations are also rele-
vant to the study of microbial microevolution, as it has been shown that it can occur in ecological relevant
timescales. Moreover, I provide a succinct review of various recent studies, chosen based on the diversity
of ecological concepts addressed, experimental designs, and choice of wet lab and computational tech-
niques. This piece aims to serve as a primer to those new to the field, as well as a source of new ideas
to the more experienced researchers.

� 2020 The Author. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In nature, microorganisms most commonly appear as microbial
communities; groups of potentially interacting populations that
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Fig. 1. Diagram depicting the general experimental scheme followed by microbial community assembly studies, pinpointing the most common design and analytical
possibilities chosen by researchers.
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co-exist in space and time [1], where each population is formed by
genetically homogeneous individuals possessing specific genomic
features which reflect on their associated life strategies, and to
some extent determine their distribution in the environment [2].
The term ‘‘community assembly” commonly refers to the sum of
all mechanisms that shape the composition of a microbial commu-
nity, nowadays most often conceptualized as divisible into four
basic processes; selection, dispersal, drift, and diversification [1].

Microbial communities account for a large fraction of the Earth́s
biomass and biodiversity, and play essential roles in ecosystem
processes [2]. Our understanding of the Earth́s microbial commu-
nities’ structure and function has increased significantly during
the last decade as a result of a myriad of surveys, fostered by the
arrival and subsequent democratization of high-throughput
sequencing technologies. These surveys have uncovered common
assembly patterns, such as high diversity and species richness,
coexistence of theoretically competing populations, conspicuous
functional stability despite large species turnover, and phyloge-
netic clustering. These common patterns of microbial community
organization suggest the existence of fundamental community
assembly rules [3]. However, these rules are still very poorly
understood [4], despite the fact that their understanding would
greatly enhance our ability to manage microbial communities
[5]. Hence, understanding the common principles that govern
microbial community assembly in nature is a major challenge in
microbial ecology [6,7] with large economic and environmental
implications.

In this minireview, I recapitulate the most important laboratory
(henceforth wet lab) techniques and computational approaches
currently employed in the study of microbial community assem-
bly, briefly discuss various experimental setup considerations,
and provide a succinct review of selected recent studies (Fig. 1).
Many of these approaches, considerations, and studies are also rel-
evant to the study of microbial microevolution, as it has been
shown that it can occur in ecological timescales [8].
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2. Wet lab methods

In addition to general techniques in microbiology and molecu-
lar biology, the study of microbial community assembly often
employs a series of common tools and approaches to evaluate
community structure and function, which I summarize here.

Absolute population counts. Most studies rely solely on 16S
rRNA gene sequence profiling for their analysis. The observed rel-
ative abundance of sequence variants, or of groups of sequences
clustered at specific phylogenetic depths (i.e. Operational Taxo-
nomic Units; OTUs), indicate the existence of individuals with a
shared phylogeny, commonly termed phylotypes. Nevertheless,
measuring the actual number of individuals in experimental sam-
ples is required not only to fine-tune many experimental setups
(e.g. inoculation loads, dilution factor in serial transfer experi-
ments), but can also be used as a measure of overall community
function (total biomass), or to feed various computational mod-
elling approaches requiring absolute abundance information [9].

The most straightforward choice is the analysis of cell densities
using optical density measurements. While certain cellular traits
(e.g. cell adhesion, shape, size) can influence these measurements
[10], it remains a fast and inexpensive proxy for cell density. How-
ever, the correlation between cell density and optical density holds
true in a limited range of conditions, and thus the procedure
requires proper calibration [10]. Another more precise yet time-
consuming possibility is the use of direct cell counts using a variety
of fluorescent stains and a cell-counting chamber [11] or flow
cytometry, both of which can also feature live/dead discrimination
modifications [12]. Counting colony forming units on solid media
can be used as well in some circumstances as a proxy of total cell
counts; the key is to work with synthetic communities of known
composition whose members can be cultured and discriminated
on chosen media. The abovementioned techniques are only suited
for liquid samples, or samples were bacteria can be effectively
detached from its solid matrix into a liquid sample. When this is
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not possible, total DNA extracted from a sample has been used as a
proxy of community biomass [13]. Nevertheless, here one needs to
take into account the measurement threshold and error associated
with the chosen DNA measuring technique, as well as the fact that
DNA extraction efficiencies will vary between individual extrac-
tions. Finally, qPCR can also be used in certain settings, for
instance with host-associated communities by normalizing
bacterial gene counts against those of host-derived housekeeping
genes [14].

Community composition. Nowadays, microbial community
composition is most commonly assessed through the NGS-
mediated analysis of 16S rRNA phylogenetic marker genes present
in the sample. This gold standard of microbial ecology features the
high-throughput sequencing of amplicons obtained using univer-
sal primers targeting specific variable regions of the 16S rRNA
gene, resulting in the identification and measurement of the rela-
tive abundance of phylotypes in a sample (for a recent review on
best practices see [15]). Nowadays, such strategy represents a
cost-effective method, especially when dealing with a large num-
ber of samples of unknown composition. However, due to the high
fixed costs and often relatively slow turnaround, the approach is
less useful when, for instance, tuning an experimental setup, pro-
ducing initial results where the amount of samples is likely to be
low and a quick turnaround desired, or when the phylotype com-
position is known a priori and its relative abundances can be
tracked by other faster and less expensive methods. In this regard,
low-complexity communities can be analyzed using low-
throughput methods such as Terminal Restriction Fragment Length
Polymorphism (T-RFLP) [16], Denaturing Gradient Gel Elec-
trophoresis (DGGE) [17], or Automated Ribosomal Intergenic
Spacer Analysis ARISA [18]. These methods present very low reso-
lution when compared to 16S amplicon sequencing, but may rep-
resent a convenient way to analyze the overall community
stability of complex communities, and will likely be able to provide
a semi-quantitative assessment of the relative abundance of
known members of simple communities. Overall, these methods
have shown a comparable capacity to discern broad scale diversity
patterns when compared to high-throughput sequencing methods,
but seem to systematically underestimate community richness
[19-22].

A common approach in the field when dealing with simple syn-
thetic communities is to use plating on solid media when commu-
nity members can be discerned by either selective media or colony
morphology [23-26]. In this regard, it is worth noting that, more
often than not, members of synthetic communities are at least par-
tially selected on the basis of their discernibility by the abovemen-
tioned means. Such biased selection may cast a shadow on the
actual ecological relevance of the observed community assembly
behavior.

Community composition can also be studied using qPCRs with
simple communities if specific probes are available or can be
designed to discriminate community members [11,27]. Similarly,
flow cytometry assays [28] can be used to quantify specifically
labeled populations. Finally, for absolute, phylogeny-independent
resolution, strains in a synthetic community can be individually
tagged before experimentation, and tag-amplicon sequencing or
tag-mediated Fluorescence In Situ Hybridization (FISH) used to
measure their relative abundance and/or spatial organization
[29,30].

Spatial organization. Bacterial communities in nature most
commonly appear as biofilms [31]. Thus, the study of communities
in a spatially structured microscale environment will be central to
increase our understanding of ecologically-relevant community
assembly. In most cases, omics approaches cannot be applied to
microscale samples, providing instead an averaged representation
of a composite of microscale sites. Nevertheless, the structured
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microscale environment can still be interrogated in terms of
composition and co-occurrence patterns using fluorescence micro-
scopy. Such spatial mapping allows to better identify interacting
populations that might exchange metabolites or signals at scales
relevant to bacteria [25,32]. Different fluorescent protein genes
can be used to tag experimental populations. The approach also
offers the possibility, depending on the experimental settings, of
non-destructively imaging the communities and thus observing
assembly in real time. However, it has been observed that the bur-
den of fluorescent protein expression can alter fitness values [33],
and thus could bias the resulting assembly patterns. On the other
hand, FISH can be employed destructively with non-genetically
modified strains, commonly allowing the visualization of very
few phylotypes in a sample at a time [34,35]. Nevertheless, Valm
et al [36] demonstrated that the use of a combinatorial labeling
and spectral imaging approach to FISH (CLASI-FISH) could detect
fifteen different phylotypes in a human oral microbial community
sample.

Community function. Overall community function is an
important trait to understand community assembly patterns in a
given microbial ecosystem. Researchers commonly measure sub-
strate consumption, biomass production, or respiration rates (e.g.
[13]) as a proxy. Also, depending on the ecosystem being consid-
ered and the goals of the study, other specific important commu-
nity functions such as changes on host phenotype [37],
ecosystem-relevant enzymatic activities [13] or metabolites
[38,39] can be measured. Moreover, it is also possible to gauge
community function using a dedicated panel of ecologically-
relevant enzymatic reactions [13,40].

Metagenomics, the direct sequencing of all DNA extracted from
a sample, provides the opportunity to catalog the set of genes from
an entire community, overcoming the well-known culturing
approach bias. Although it can only say what functions can poten-
tially be expressed, there is a general good correspondence
between gene and transcript relative abundances in microbial
communities [41]. Similarly, although sequencing-based
approaches predominate in the high-throughput screening of com-
munity functions, functional gene-based microarrays can be
employed as well (see e.g. [42]).

Metatranscriptomics provides a more accurate assessment of
gene expression in the community, and thus a more precise evalu-
ation of community functions. The approach follows similar wet
lab and computational pipelines as shotgun metagenomics, but
starting with an extraction of total RNA which is immediately cop-
ied to DNA. The approach thus pinpoints the genes being actively
expressed at a given moment, and hence allows the observation
of phenotypic adaptation by the studied community. For instance,
a biocontrol rhizobacterium grown on the absence or presence of
its target phytopathogenic oomycete showed the same growth
rates, and thus a putative shotgun metagenomics approach would
have found no differences between the two scenarios. However,
the rhizobacterium did experience major transcriptional repro-
graming in the presence of its target [43].

Another technique that can assess the function of individual
populations within a community is the use of genetic transposon
screens. The strategy can provide per-gene fitness values for a
strain in a community context, and thus has a great potential to
reveal the genetic determinants of the strain’s biotic and abiotic
interactions in a given community and abiotic environment. While
this approach can only be employed with strains amenable to
genetic manipulation, there is continuing work on specific tools
aiming to greatly expand the range of taxa open to such studies
[44,45] and in a high-throughput manner [46]. Furthermore, a
recent study has opened the road of genome editing within a
microbial community context without requiring prior isolation
[47]. This technique may be useful in future studies to assess the
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role of particular genes on fitness, community function and com-
munity assembly.

Metaproteomics can be defined as the large-scale characteriza-
tion of the entire protein complement of a microbial community at
a given point in time [48]. Its goal is to identify and measure the
proteins produced by a microbial community and pinpoint their
phylotype of origin [49], thus enhancing our knowledge on the
functional drivers of community assembly. As for metatranscrip-
tomics, the success of metaproteomics relies heavily on the avail-
ability of relevant genomes to increase protein identification
rates [50]. When they are unavailable, it is recommended to
carry-out a combined metaproteomics and shotgun metagenomics
approach, so that the former can employ the draft genomes derived
from metagenomics to boost accurate protein identifications [51].
However, while there has been a remarkable development in
related wet lab and computational techniques, the protein identi-
fication values obtained so far are still modest when considering
the number of expected proteins in a given microbial community
sample (for a recent review on metaproteomics with a focus on
methodological considerations see [51]).

Metabolomics methods can also be applied to study complex
microbial communities [52]. Targeted metabolomics approaches
are able to adequately detect and quantify panels of metabolites
defined a priori. On the other hand, untargeted metabolomics aims
at describing the entire suite of metabolites in a sample [53]. Its
results are commonly limited by the detection of large fractions
of unknown metabolites, since metabolite identification relies on
comparisons to still sparse reference databases. For instance, over
90% of detected metabolites were classified as unknown in acid
mine drainage biofilm communities [54]. Moreover, detected
metabolites cannot be directly linked to particular members of
the community, and thus the approach is not very informative of
biotic interactions per se. This shortcoming can be bridged by the
use of Stable Isotope Probing (SIP), a technique specifically indi-
Table 1
Characteristics of common computational methods used in microbial community
assembly studies.

Method Input data Goal

Community
composition
analysis

Community tables1 Exploration of diversity
patterns

Metagenomics Shotgun sequences
from DNA

Cataloguing genes in
community /
Reconstruction of
community genomes

Metatranscriptomics Shotgun sequences
from RNA

Evaluation of community-
level gene expression

Null models Commonly community
tables1

Assessment of the
stochasticity of selected
assembly mechanism

Co-occurrence
networks

Community tables1 Evaluation of species
interactions, alternative
community regimes, and
keystone species.

Generalized Lotka-
Volterra models

Time-series
community tables1

Prediction of community
dynamics

Mechanistic models
of metabolite-
mediate
interactions

Prior knowledge of
populations’
interactions with
metabolite pool

Prediction of community
dynamics

Metabolic modelling Genomic annotations2 Prediction of community
metabolic interactions

Individual-based
models

Pre-defined
populations’ attributes

Evaluation of community-
level emergent properties
and patterns

Consumer-resource
models

Pre-defined
populations’ attributes

Prediction of community
dynamics

1Community tables are most commonly derived from 16S rRNA amplicon
sequencing data. 2 Augmented with experimental data when available.
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cated to query microbial metabolic interactions and specific ele-
mental fluxes [55]. Particular compounds whose fate is of
interest to the research question can be labelled with 13C, 15N or
18O, and introduced in the microbial ecosystem. Henceforth, SIP
can be combined with any of the above omic approaches [55].
For the most common strategy, density-gradient centrifugation is
used to separate the labelled and unlabeled DNA or RNA fractions.
Subsequent enrichment analysis of both fractions via targeted
metagenomics (e.g. 16S rRNA or specific functional genes) can
inform on the identity of the members of the community involved
in the degradation of the labeled compound [56].
3. Computational methods

Table 1 summarizes the characteristics of the computational
methods most commonly used in microbial community assembly
studies. As mentioned earlier, the use of 16S rRNA amplicon
sequencing is the dominant strategy for the analysis of complex
microbial communities. Prior to analysis, the sequences obtained
from the chosen NGS platform need to be transformed into a com-
munity table describing the relative abundance of phylotypes (ei-
ther exact sequence variants or OTUs) per sample. Depending on
the needs of subsequent analyses, it is also common to obtain a
description of the phylogenetic relationships among phylotypes
in the form of phylogenetic trees or pairwise distance/dissimilarity
values, as well as taxonomic assignments for each phylotype. The
series of steps needed for such transformations can be carried
out using various bioinformatic pipelines, each presenting different
strengths and weaknesses (see [57]). The datasets obtained can
then be used to summarize the relative abundance of phylotypes
and taxonomic ranks along the experimental samples and groups,
as well as to pinpoint statistical differences in particular taxa abun-
dances related to a given experimental variable (e.g. [58]). More-
over, community tables are the raw input to construct co-
abundance networks and generalized Lotka-Volterra models
(gLV) among other downstream analysis possibilities. Neverthe-
less, most studies interested in microbial community assembly will
commonly use a wide array of techniques to try to infer ecological
processes from diversity patterns, which can be classified as mul-
tivariate analyses and null models.

Functional profiling is commonly carried out using translated
search of metagenomic reads against a comprehensive protein
database using dedicated software (e.g. [59]). On the other hand,
genome assembly of metagenomic reads can lead to the recovery
of draft genomes for the most abundant populations in a sample,
which can in turn be used to feed downstream analyses (e.g. meta-
bolic modelling) to increase our understanding of community
assembly (for a recent review of best practices in shotgun metage-
nomics see [60]). If only 16S rRNA sequencing data is available, one
can still use dedicated bioinformatic tools to provide a prediction
of functional potential of a bacterial community [61], or even pre-
dict metabolomic profiles [62] and metabolic interactions [63,64].
The usefulness of metatranscriptomics is boosted if the genomes of
the community members are available. In this case, each transcript
can be accurately assigned to its original source genome using a
read aligner (e.g. [65]), thus moving from an assessment of com-
munity function to an individualized functional assessment of each
population in the community [27].

Many microbial ecology experiments nowadays produce a large
number of variables such as phylotypes, genes, proteins, or
metabolites. Thus, a common way to analyze such data is using
multivariate statistics. While the number of multivariate statistical
techniques is vast and continuously expanding, they can be catego-
rized in three groups [66]; i) Exploratory methods; used to explore
relationships between objects based on their variables profiles. ii)
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Interpretative methods; where external explanatory variables are
used to constrain the community table data. iii) Discriminatory
methods; which aim to produce functions that distinguish
between objects of different classes (for an extensive description
of multivariate analyses see [66]).

Null models generate statistically expected random patterns
through random permutations of ecological data by deliberately
excluding certain mechanisms of interest (e.g. bioitic interactions
or environmental filtering [67], phylogeny-based assembly). When
the experimentally observed patterns are undistinguishable from
the generated random patterns, community assembly is taken to
be stochastic with respect to the mechanism excluded [68]. Neu-
tral models represent a special case of mechanistic null models.
Here, species are assumed to present equal fitness, and community
structure is modeled on the basis of immigration from the meta-
community, random demographics, and speciation rate [69]. When
the neutrality test is rejected, it is commonly taken as indicative of
selection (abiotic and/or biotic) playing a significant role in com-
munity structure (for a comprehensive review on the use of null
models see [4]).

Another common way to analyze community tables is building
co-occurrence networks, were nodes represent taxa/phylotypes
and edges co-abundance-derived metrics. These networks could
be used to identify alternative community regimes, species inter-
actions, and keystone species. However, their interpretation is
not straightforward; while they represent an adequate tool to
explore ecological associations, the implications of such associa-
tions are uncertain, and it is disputed to which degree biotic inter-
actions can be recapitulated using available methods [70–72].

Community dynamics in a multi-species system can be studied
using a gLV model; a system of ordinary differential equations with
parameters commonly inferred from time-series data (e.g. [73]).
Here, each population is parameterized with a growth rate and
coefficients describing the strength of its interaction with every
other population in the system (for a useful perspective on gLV
see [74]). The approach assumes a constant abiotic environment
and additive pair-wise interactions. While the researcher must
consider whether or not the ecosystem under study represents a
constant environment, it is yet unclear if additive pair-wise inter-
actions can truly recapitulate community behavior. In this regard,
Friedman et al [75] showed experimentally that additive pair-
wise interactions could predict community dynamics to some
extent in an eight species synthetic community. On the other hand,
Momeni and co-workers [76] showed in silico that a gLV system
cannot adequately model various common types of interaction
mechanisms, and thus may often fail to predict community
dynamics. An alternative to population dynamic models such as
the gLVs are mechanistic models based on metabolite-mediate
interactions. Here, community dynamics are simulated using prior
knowledge of the interactions of individual microbes with a shared
metabolite pool [76]. The approach has been shown to outperform
gLV models [76,77]. However, the required prior knowledge is not
easily obtained, but may be retrieved from in vitro studies,
genome-scale metabolic models, or the literature [77]. Finally,
Gaussian processes-based non-parametric modelling approaches
are becoming increasingly popular in the analysis of longitudinal
omics datasets and external variables for their flexibility and accu-
racy (e.g. [78]).

The metabolic modelling of microbial communities allows to
simulate the metabolic interactions between its members, and
can help explain observed diversity patterns and generate novel
hypotheses regarding community assembly (e.g. [79]). The general
pipeline for a single population starts with the use of its genome
annotation to construct the corresponding metabolic network.
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The ensuing network is then constrained using knowledge from
biophysics and environmental conditions under the steady-state
assumption. The resulting constraint-based model [80] is com-
monly processed using Flux Balance Analysis (FBA) [81] by adding
a declaration of an objective function. The particular choice (com-
monly maximization of growth rate) is subjective and will influ-
ence the resulting flux distribution [82]. For a given input list of
possible community members, the same overall approach can be
assayed to predict its community composition on a given abiotic
environment, and the metabolic fluxes that sustain it [83]. How-
ever, the application of FBA to microbial communities is challeng-
ing, since its underlying assumptions (i.e. steady-state, single
objective function) are oversimplistic in a community setting. This
fact has led to the development of several specific tools for the
metabolic modelling of microbial communities, which could be
divided into quantitative and large-scale methods [84]. The former
present significant predictive potential but are limited to simpler
systems (e.g. Dynamic Flux Balance Analysis [85,86]), while the lat-
ter provide rather qualitative insights but can be used to model
complex communities (e.g. [87,88]).

The metabolic modelling of microbial communities has, in
many instances, allowed to accurately predict microbial interac-
tions, dynamics, and evolution [79,89,90], but with exceptions
[89]. Originally, the production of per-taxon high-quality meta-
bolic models required time-consuming manual curation. Fortu-
nately, enhanced automated tools that produce quality metabolic
models from genome annotations alone are now available [91].
Finally, the metabolic modelling of a microbial community can
be refined using metaproteomics and metabolomics data, if avail-
able [92].

The individual-based models simulate the discrete behavior of
each individual in a community, and their collective action deter-
mines the emergent properties of the community as a whole. The
approach seeks to model the properties, activities and interactions
of all individuals in a community [93]. During simulation, individ-
uals progress to the next iteration according to probabilistic rules
arising from the model’s parameters. In this regard, the approach
can accommodate a wide range of parametrized mechanisms, such
as mutation rates or metabolic states, and is suitable to describe
the modeled community at different temporal and spatial resolu-
tions [94]. Significantly, their ability to give rise to different assem-
bly outcomes depending on local context is most useful to the
study of microbial community assembly, since biotic interactions
most commonly occur at the microscale [32]. For instance, Bauer
et al [95] integrated individual based modelling with metabolic
models to simulate the behavior of a seven species model commu-
nity of the human gut. Among other things, their results indicated
that spatial gradients of mucus glycans shaped community
structure.

Closing this concise review of common computational methods
used to unravel microbial community assembly are the consumer-
resource models. Here, different taxa have different resource pref-
erences, and community dynamics are defined on the basis of
resource consumption rates. While this approach cannot be used
to explicitly model any particular microbial community, it can be
used to investigate if mechanistic assumptions about ecosystem
workings can recapitulate experimentally observed patterns. For
instance, Goldford et al [3] used a generic consumer-resource
model to explain how secretion-mediated interactions could allow
the experimentally-observed coexistence of a bacterial consortium
on a single simple carbon source. More recently, Marsland and co-
workers have developed an enhanced microbial consumer-
resource model which incorporates metabolic cross-feeding and
stochastic colonization [96].
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4. Experimental systems

Microbial community assembly can be studied using different
experimental scenarios that can be roughly classified into three
categories; natural ecosystems, microcosms, and artificial systems.
These categories can largely be positioned in that order along the
representativity vs. flexibility-tractability axis. In the last few
years, the study of community assembly in natural ecosystems
has shifted its focus from a descriptive ‘‘who is there?” approach,
to elucidating the relative contribution of stochastic vs. determin-
istic processes on community assembly (e.g. [97–99]). Both
approaches are indeed pertinent to increase our understanding of
the particular ecosystem under investigation. However, they are
less useful for the goal of unraveling a set of common assembly
rules in microbial communities. Nonetheless, these studies provide
valuable coarse-grained assembly patterns (e.g. richness values, b-
diversity patterns, phylogenetic signal) that need to be explainable
by putative common assembly rules put forward by the research
community (e.g. [100]). Microcosms, on the other hand, consist
of environmental samples cultured in the lab under well-defined
conditions [9]. These systems strive to be as similar to its natural
counterpart as possible, yet allowing for increased experimental
flexibility-tractability (e.g. [23]). A highly related concept is that
of gnotobiotic organisms, whose microbiome only contains a
defined experimental community (e.g. [101]). Lastly, artificial sys-
tems, while unrelated to microbial communities in nature, allow
for high replication and tightly controlled experimental
parameters.

Most experiments on microbial community assembly are car-
ried out in a homogeneous liquid medium. To increase throughput,
allow for increased replication and reduce costs, many studies are
nowadays conducted using microtiter well plates. On the other
hand, the small volume employed makes the control of abiotic fac-
tors more difficult, and imposes limitations on the amount of sam-
pling that can be achieved. While in itself growth in a microtiter
well represents batch growth, these containers have been
employed in setups mimicking a continuous culture by performing
serial transfers of the community into fresh media until a stable
composition is reached [3,13,79,102,103]. During each growth-
dilution cycle, cells are grown for a fixed period of time, then
diluted using a constant factor and inoculated into fresh media.
In this approach, the per-cycle incubation period and dilution fac-
tor need to be previously fine-tuned depending on the goal of the
study. Most commonly, the sole criterion for this tuning is the abil-
ity to obtain a stable and diverse composition after a number of
transfers. It is important to note that the community dynamics
recorded during such serial transfer experiments will be influenced
by fluctuating nutrient concentrations. For instance, Estrela et al
[79] were able to obtain stable compositions dominated by Pseu-
domonadaceae and Enterobacteriaceae when performing ex situ cul-
tivation of complex natural communities on glucose and minimal
media. However, they also reported that each of these groups
had a significant growth advantage at different periods of each
cycle related to the abovementioned fluctuations. Using a different
approach, the study of biofilms offers a wealth of research data and
associated technical experience on specific model communities
[11,34,38], as well as experience in evaluating spatially-
structured local community assembly [25,104].

Microbial community assembly experimentation can be under-
taken using natural complex communities or simple synthetic con-
sortia. For the first strategy, different initial diversities can be
attained by serial dilutions of the initial inoculant [39,105]. Migra-
tion can be artificially imposed by first pooling species from each
replicate community to form a regional species pool, and then
inoculate a percentage of this pool into each replicate community
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when desired [79]. Moreover, if replicate communities share the
same abiotic space, such as when microbial communities are
grown on beads introduced in the same reactor [6], replicate com-
munities conform a natural metacommunity, with the down side
that migration cannot be controlled. On the other hand, experi-
mental setups featuring synthetic consortia can directly modify
the initial diversity and migration rates [106] if desired. However,
bear in mind that the use of synthetic consortia heavily influences
the experimental representativity, and requires an initial cultur-
omics effort to obtain the needed strains that will form the consor-
tia. Interestingly, Kehe et al recently developed a droplets-based
platform for the fast, massively parallel construction and screening
of combinatorial synthetic communities [107]. Since natural com-
munities can serve as the input species pool, their approach can
somehow be regarded as standing in between the above two
strategies.

When a mid-term goal of a research group is to build an
increased understanding of a particular microbial ecosystem using
microcosms, or when such ecosystem has merely been chosen as a
model to study community assembly, obtaining a rich and repre-
sentative collection of strains derived from the represented natural
ecosystem using high-throughput cultivation (i.e. culturomics)
may be a sound investment. Clearly, the choice of model commu-
nity would incur in trade-offs related to various criteria such as
financial constraints, representativity, tractability, stability, and
size [108,109]. Nevertheless, such collection would permit experi-
mentation using representative synthetic consortia, allowing for
greatly increased tractability and monitoring of the community.

Culturomics approaches may employ various strategies based
on different culturing media and conditions [110]. Furthermore,
when a particular strain has been targeted for cultivation, there
are bioinformatic approaches to reverse-engineer a suitable cultur-
ing media, such as using its 16S rRNA gene sequence [111]. For
instance, Hartman et al. [112] reported the production of an isolate
collection of 200 members spanning around 25% of the abundant
members of the rhizosphere of clover using only one specific
media. Bai and co-workers [113] employed various different media
with the limiting dilution method, together with cell sorting and
high-throughput sequencing of isolates, to obtain 7943 isolates
from the Arabidopsis microbiome, while Zhang et al [114] devel-
oped an improved identification method using Illumina HiSeq
sequencing which allowed them to characterize 70% of the rice
root microbiome members. Following a different rationale, Lozano
et al [115] proposed a three-member consortium of genetically and
biochemically-tractable strains from the dominant rhizosphere
bacterial phyla showing various emergent properties as a means
to further explore community ecology.

More common in the literature is the use of post hoc cultur-
omics, where researchers focus on isolating a few strains selected
on the basis of previous experimental results with complex natural
communities, with the goal of performing follow-up experiments
to complement or substantiate previous observations and
hypotheses [3,6,13]. One such common follow-up experiment is
the use of conditioned media to probe pairwise interspecies inter-
actions [3,6,39]. Here the spent media obtained after growth of a
donor strain, depleted for specific resources and containing new
secreted metabolites, is used to measure growth of a recipient
strain.

5. Representative studies

What follows is a series of cherry-picked recent studies, chosen
on the basis of the variety and relevance of the experimental set-
ups developed and the wet lab and computational tools employed
(see Table 2 for a summary). As an example of a comprehensive



Table 2
Characteristics of selected studies focusing on microbial community assembly.

Experimental setup Wet lab methods Computational methods

� Artificial Ref: [3,79]
� Microtiter plate-based
� High replication
� Simple media
� Serial transfers
� Different natural source communities
� Migration (forced)
� Time series

� 16S rRNA gene profiling
� Targeted metabolomics
� Conditioned media
� Culturomics (post hoc)

� Diversity exploration
� Null model
� Consumer-resource model
� Metabolic model
� Functional prediction

� Natural (Soil) Ref: [97]
� High replication
� Wide range of environmental conditions

� 16S rRNA gene profiling
� ITS profiling

� Diversity exploration
� Null model
� Neutral model
� Co-occurrence Network

� Microcosm (Pitcher plant) Ref: [13]
� Microtiter plate-based
� Realistic complex medium
� Serial transfers
� Different natural source communities
� Time series

� 16S rRNA gene profiling
� EcoPlates
� Culturomics (post hoc)

� Diversity exploration
� Null models

� Artificial (Phycosphere) Ref: [102]
� Microtiter plate-based
� Realistic simple media combinations
� Serial transfers
� Single natural source community

� 16S rRNA gene profiling
� Metagenome sequencing and assembly
� Untargeted metabolomics

� Diversity exploration
� Weighted sum model

� Artificial (Human gut) Ref: [103]
� Microtiter plate-based
� Rich medium
� Serial transfers
� Strain collection combinations
� Time series

� 16S rRNA gene profiling
� Conditioned media
� Targeted Metabolomics

� Co-occurrence Network
� gLV

� Artificial (Marine particles) Ref: [6]
� Hydrogel beads in shared reactor
� Realistic simple media combinations
� Single natural source community
� Migration (natural)
� Time series

� 16S rRNA gene profiling
� Targeted Metabolomics
� Conditioned media
� Culturomics (post hoc)

� Diversity exploration

� Artificial (Biofilm) Ref: [118]
� Drip-flow biofilm
� Rich medium
� Strain collection combinations

� Metatranscriptomics
� FISH

� Differential gene expression
� Co-localization analysis

� Microcosm (Biofilm) Ref: [38]
� Carriers in shared reactor
� Realistic medium
� Physical constraints
� Single natural source community
� Migration (natural)

� 16S rRNA gene profiling
� FISH

� Diversity exploration
� OTU significance testing
� Null model
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study of a natural microbial ecosystem, Jiao et al analyzed micro-
bial diversity in adjacent pairs of rice (flooded) and maize (not
flooded) fields in 127 sites distributed along a wide range of habi-
tats and regions [97]. In addition to the more common b-diversity
analyses, they used null model analysis, neutral models, and co-
occurrence networks to assess the relative importance of commu-
nity assembly processes in soils linked to measured abiotic envi-
ronments and geographic patterns. Following similar goals and
overall analytical framework, Logares and co-workers [99]
assessed the drivers of prokaryotic and picoeukaryotic community
structure in the sunlit ocean.

Cui et al studied the apple flower stigma [116], representing an
interesting experimental system to probe community assembly
hypotheses in a natural setting. When flowers bloom, immigrating
microbes are received by a nutrient-rich virgin environment. Sam-
pling the stigma from individual flowers likely provided a closer
representation of a local community than most other natural stud-
ies. Moreover, samples represented relevant host-associated com-
munities that can be more easily manipulated and monitored than,
for instance, the rhizosphere or the gut environments.

Martinez and co-workers used an effective design to study his-
torical contingencies in the mice gut [117]. Germ-free mice were
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sequentially inoculated in alternating order with different complex
source communities, or a simplified synthetic community and a
complex source community. Using this simple approach, the
authors uncovered both historical contingency effects and priority
effects in the assembly of mice gut communities. Carlström et al
also focused on assessing historical contingency and priority
effects in the phylosphere of the model plant Arabidopsis thaliana
[58]. However, they chose a different approach including only syn-
thetic communities built from a pool of 62 native strains. Here,
they performed drop-out experiments, measuring the effect of
the absence of the selected taxonomic group or strain on the rest
of the community, as well as late introduction experiments where
the taxonomic group or strain that had been left out was later
introduced.

As mentioned earlier, biofilms represent an excellent resource
in the study of community assembly. For instance, Liu et al [118]
studied the interactions within three and four-species biofilms
using metatranscriptomics and FISH, and concluded that the
observed increase in biomass productivity of the four-species con-
sortium emerged from a fine-tuned microscale distribution of each
species driven by concerted biotic interactions. Another example is
Suarez and co-workers’ study of community assembly on nitrifying
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biofilms [38]. Their setup featured the same source community and
(uncontrolled) immigration on their replicated experimental com-
munities. The main variable assessed was the thickness constraint
physically imposed on the community. In addition to community
composition exploration through the use of b-diversity analyses
and null models, they also studied the 3D assembly of the commu-
nities using FISH.

Venturelli et al [103] employed a robot-assisted serial transfer
setup on microtiter plates to study a twelve-members bacterial
collection derived from the human gut. The authors first measured
individual growth rates in mono and co-cultures. Subsequently,
they measured each member’s growth rate in the complete
community, as well as in drop-out experiments. With dense
time-resolved data, they developed a model to predict higher-
dimensional community structure from lower-order assembly
data. Their results support the notion that pairwise interactions
are major drivers of complex community dynamics, an idea previ-
ously put forward by Friedman et al’s experiments [75].

Enke and co-workers [6] employed minute (ca. 100 lm) param-
agnetic hydrogel beads made with chosen substrates to study
microbial community assembly on marine polysaccharide parti-
cles. Their experimental setup had various interesting characteris-
tics; the small size of the community growing onto each bead
could mean that each bead contained a single local community.
Thus, a single-bead sampling technique could be devised allowing
for a greatly reduced noise in studies of microbial interactions. The
beads where immersed in the same milieu, and hence were sub-
jected to the same abiotic conditions. Moreover, all beads within
the recipient naturally formed an actual metacommunity, with
the possibility of immigration between local communities and a
shared regional species pool. Also, sampling at different times
allowed following successional dynamics. Featuring essentially
the same characteristics, Leventhal et al studied community
assembly on granular biofilms [119].

Goldford et al [3] and Estrela et al [79] employed the same
microtiter plate serial transfer strategy to study microbial commu-
nity assembly of large and complex microbial communities on sin-
gle carbon and energy sources. The system allowed for easy high-
replication and handling due to the microtiter plate support. It also
allowed to modify the abiotic selective pressures [3], as well as the
use of various different initial community sources, and the ability
to impose different levels of migration from a regional species pool
[79]. In this regard, the experimental communities behaved as a
metacommunity except for the fact that immigration was not
dependent on the microbes’ dispersal capabilities or natural mass
transfers, but on experimentally producing a regional pool and
forced immigration at each transfer. With such simple yet flexible
setup, both complementing studies showed how the observed
reproducible community assembly results presented significant
phylogenetic signal and reflected an emergent metabolic structure
which could be predicted by genome-scale metabolic models.

Oliphant et al [120] employed replicate bioreactors with differ-
ent media mimicking different human dietary regimes to grow a
defined synthetic community formed by bacterial strains obtained
from the same human faecal sample, which then were profiled by
16S sequencing and metabolomics. Once the behavior of this initial
control community was established, the authors recreated the
same defined community but with each strain arising from differ-
ent donors, with the goal of assessing whether coadaptation
between strains, as expected to be present in the first community,
influenced community dynamics. In this elegant yet simple man-
ner, their results pointed, for instance, to polysaccharide utilization
by Firmicutes being dependent on coadaptation.

Bittleston et al [13] studied the microbial community of wild
carnivorous pitcher plants. The rationale for such unconventional
choice was that it represents a plant associated microbiome with
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an evident community function, degradation of insect biomass,
that can be evaluated in the lab as the activity of a series of specific
enzymatic reactions (e.g. chitinase). The authors produced syn-
thetic pitcher plants microcosms using a realistic complex media
(ground crickets) in a serial transfers setting. With this approach
and an exhaustive analysis of time series data, they found that
community structure was contingent on early community states;
the same strain could have different dynamics in different commu-
nity contexts. Also, early community dynamics could translate into
different microbial regimes that, despite convergence on overall
community function (i.e. respiration rates), had different func-
tional repertoires.

Closing this brief list is Fu and co-workers’ study of community
assembly on the phycosphere [102]; the diffusive boundary sur-
rounding phytoplankton cells. Instead of following the same
approach as Bittleston et al [13], and thus employ a realistic com-
plex media derived from phytoplankton, the authors used syn-
thetic media composed of different combinations of five
exometabolites common in the phycosphere. These different
media were used to grow a single natural community in what
was essentially a serial transfer experiment. With this setup, they
showed that community assembly could be predicted as a simple
sum of assemblages supported by each individual metabolite,
hence supporting similar previous results by Enke et al [6].
6. Summary and outlook

There is a constant rise in the number of studies featuring lab-
based microbial community assembly experimentation. As suc-
cinctly reviewed above, these studies are ever more sophisticated
in their experimental design and analytical strategies. The field
has shown a noticeable increasing interest in adequately combin-
ing wet lab and computational approaches, but still requires fur-
ther collaborative efforts between microbial ecologists,
physiologists, and computational biologists.

Since biotic interactions mostly occur at the local scale [32],
future experimental designs and development of wet lab tech-
niques should strive to obtain experimental data from discrete
local communities. Similarly, immigration and micro-evolution
are potentially important drivers of community structure, and as
such should be taken into account when considering experimental
design (e.g. [121]). Furthermore, future experimental designs
should strive towards increased experimental replication and
highly time-resolved data to better understand microbial commu-
nity dynamics, and the potential role of higher order interactions in
determining community assembly. Finally, since in nature the bac-
terial kingdom seldom appears alone, microbial community
assembly studies should take more into account potential multi-
kingdom interactions, significantly phage-bacteria interactions
where density-dependent effects and co-evolution are important
drivers of community dynamics [122,123].

A promising path rests in the use of microfluidics or
microdroplet-based systems [124,125] as vehicles for local com-
munity assembly and sampling. These systems can also effectively
allow the analysis of structured community assembly, thus facili-
tating the study of biotic interactions and local assembly [126].
Moreover, their increased throughput and sampling possibilities
may allow to sample a larger parameter space in a single experi-
ment [127]. Another innovative possibility is the use of advanced
functional materials, not only as a physical container and support
for the community or to facilitate other experimental features such
as sampling or migration, but also as a means to manipulate and
interact with the communities in vivo [128].

Finally, a much awaited technique still in need of robust proto-
cols is the mass spectrometry imaging of microbial communities.
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The approach is capable of interrogating chemically complex sys-
tems with high spatial specificity, and thus is well positioned to
provide complementary information to many of the wet lab and
computational approaches enumerated in this piece [129]. Another
emerging technique allows for the chronological labelling of living
bacteria. The approach is based on the incorporation of fluorescent
D-amino acids (FDAAs) into the peptidoglycans of metabolically
active bacteria. Following this approach, Wang et al assessed the
viability of transplanted microbiotas [130]; the authors first
administered a FDAA to the donor mice, the labeled microbiota
was transplanted to recipient mice which then received a second
FDAA with a different fluorophore. The surviving transplanted pop-
ulations could be differentiated by presenting both fluorophores
simultaneously.
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