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a b s t r a c t

Motivation: Machine learning (ML)-based stroke risk stratification systems have typically focused on
conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image pheno-
types (CUSIP) have shown to be powerful phenotypes risk stratification. This is the first ML study of its
kind that integrates CUSIP and CRF for risk stratification (AtheroRisk-integrated) and compares against
AtheroRisk-conventional.
Methods: Two types of ML-based setups called (i) AtheroRisk-integrated and (ii) AtheroRisk-conventional
were developed using random forest (RF) classifiers. AtheroRisk-conventional uses a feature set of 13 CRF
such as age, gender, hemoglobin A1c, fasting blood sugar, low-density lipoprotein, and high-density li-
poprotein (HDL) cholesterol, total cholesterol (TC), a ratio of TC and HDL, hypertension, smoking, family
history, triglyceride, and ultrasound-based carotid plaque score. AtheroRisk-integrated system uses the
feature set of 38 features with a combination of 13 CRF and 25 CUSIP features (6 types of current CUSIP, 6
types of 10-year CUSIP, 12 types of quadratic CUSIP (harmonics), and age-adjusted grayscale median).
Logistic regression approach was used to select the significant features on which the RF classifier was
trained. The performance of both ML systems was evaluated by area-under-the-curve (AUC) statistics
computed using a leave-one-out cross-validation protocol.
Results: Left and right common carotid arteries of 202 Japanese patients were retrospectively examined
to obtain 404 ultrasound scans. RF classifier showed higher improvement in AUC (~57%) for leave-one-
out cross-validation protocol. Using RF classifier, AUC statistics for AtheroRisk-integrated system was
higher (AUC ¼ 0.99,p-value<0.001) compared to AtheroRisk-conventional (AUC ¼ 0.63,p-value<0.001).
Conclusion: The AtheroRisk-integrated ML system outperforms the AtheroRisk-conventional ML system
using RF classifier.
© 2020 Cardiological Society of India. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular disease (CVD) and stroke are the major global
challenges for public healthcare.1 The CVD/stroke risk assessment
using statistically-derived risk predictionmodels can support in the
A, 95661, USA. Fax: þ916 797
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prevention and management of these diseases.2e8 But such
statistically-derived models either underestimate or overestimate
risk CVD risk in certain patients.9e15 The primary reason for this
poor performance is the dependence of such models on the car-
diovascular risk factors (CRF) that does not provide complete in-
formation about cardiovascular health of patients.16e20

Non-invasive ultrasound imaging of carotid arteries can capture
the morphological variations in atherosclerotic plaque
components.16e25 These variations are indicated using the carotid
intima-media thickness (cIMT) and carotid plaque (CP) (Fig. 1),
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Fig. 1. Risk stratification based on automated CUSIPcurr and CUSIP10yr. Row 1 - Patient 70L (low-risk): (A) Original Image; (B) Processed image using AtheroEdge™ 2.0; CUSIPcurr:
cIMTave ¼ 0.47 mm, cIMTmax ¼ 0.6 mm, cIMTmin ¼ 0.35 mm, cIMTV ¼ 0.07 mm, and TPA ¼ 14.96 mm2, AECRScurr ¼ 7.81%; CUSIP10yr:cIMTave10yr ¼ 0.56 mm, cIMTmax10yr ¼ 0.71 mm,
cIMTmin10yr ¼ 0.36 mm, cIMTV10yr ¼ 0.07 mm, and TPA10yr ¼ 17.87 mm2, AECRS10yr ¼ 10.15%. Row 2 - Patient 103R (moderate-risk): (C) Original Image; (D) Processed image using
AtheroEdge™ 2.0; CUSIPcurr: cIMTave ¼ 0.82 mm, cIMTmax ¼ 1.01 mm, cIMTmin ¼ 0.53 mm, cIMTV ¼ 0.14 mm, and TPA ¼ 27.32 mm2, AECRScurr ¼ 25.94%; CUSIP10yr:
cIMTave10yr ¼ 0.84 mm, cIMTmax10yr ¼ 1.02 mm, cIMTmin10yr ¼ 0.69 mm, cIMTV10yr ¼ 0.15 mm, and TPA10yr ¼ 28.07 mm2, AECRS10yr ¼ 46.65%. Row 3 - Patient 110L (high-risk): (E)
Original Image; (F) Processed image using AtheroEdge™ 2.0; CUSIPcurr: cIMTave ¼ 2.18 mm, cIMTmax ¼ 3.53 mm, cIMTmin ¼ 0.77 mm, cIMTV ¼ 0.87 mm, and TPA ¼ 71 mm2,
AECRScurr ¼ 75.28%; CUSIPcurr: cIMTave10yr ¼ 2.26 mm, cIMTmax10yr ¼ 3.76 mm, cIMTmin10yr ¼ 0.78 mm, cIMTV10yr ¼ 0.88 mm, and TPA10yr ¼ 73.06 mm2, AECRS10yr ¼ 80.30%. (AECRS:
AtheroEdge Composite Risk Score, TPA: Total Plaque Area, cIMTave: Average cIMT, cIMTmax: Maximum cIMT, cIMTmin: Minimum cIMT, cIMTV: Variations in cIMT; ‘curr’ indicates
present value and ‘10-yr’ indicates value after 10 years).
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which are also considered as the surrogate markers of coronary
heart disease (CHD).26,27 In recent years multiple automated ca-
rotid ultrasound image-based phenotypes (CUSIP) were
derived,21,28e32 which can provide better CVD/stroke risk stratifi-
cation, when combined with the conventional risk factors. In order
to ease the image analysis and further improve the accuracy of the
risk stratification artificial intelligence techniques such as machine
learning (ML) algorithms are widely adopted.33e36 The ML algo-
rithms are data-driven techniques that classify the patients into
risk categories based on various complex interactions between
input risk predictors.16,37e39 ML algorithmsminimize the intra- and
inter-operator variability CUSIP measurements, and, therefore,
perform better compared to conventional statistically-derived risk
calculators.37,40

The objective of this study is to predict the risk of CVD/stroke
using an ML framework on retrospective data while using the
event-equivalence gold standard (EEGS) as the surrogate end-
points. Since our dataset is retrospective and does not have primary
endpoints (like cerebrovascular or cardiovascular events), we,
therefore, use event-equivalence gold standards (EEGS). The carotid
lumen diameter (LD) has been used as an EEGS in our study. The
justification of EEGS is exclusively discussed in the next section.
This study introduces an ML-based framework that integrates
CUSIP with CRF for risk stratification (so-called AtheroRisk-inte-
grated system, a class of AtheroEdge™ systems, CA, USA). This is
similar to CVD risk being estimated by integrating (a) wall pheno-
types (such as wall thickness, lumen area, vessel area, or atheroma
area) with (b) grayscale wall-based texture features for better
performance41. Since imaging of the carotid artery phenotypes may
offer insight into CVD/stroke risk not evident from conventional
features alone, we hypothesize that the AtheroRisk-integrated sys-
tem would show a greater area-under-the-curve (AUC) in predict-
ing the CVD/stroke compared to AtheroRisk-conventional system.
The acronyms used in this study are tabulated in Table A and Table B
under Section A of the Supplementary Material.
2. Event-equivalence gold standard

Cardiovascular and/or cerebrovascular mortalities are often
considered as the primary endpoint to evaluate any clinical
studies.42, 43 However, such primary endpoints are expensive and
time-consuming.44 Furthermore, they require a large number of
samples with long follow-up duration.42, 43 Thus, there is a need to
search for secondary endpoints or surrogate biomarkers that can
mimic the behavior of the primary endpoints.27, 42, 43, 45 Such
endpoints can be used as a gold standard for assessing the risk of
future CV events with fewer sample sizes, at a lower cost, and with
shorter study duration.42, 43 Since these gold standards are the al-
ternatives to the primary endpoints, we can thus call them as the
event-equivalence gold standards (EEGS).

Note that atherosclerosis is developed by the accumulation of
calcium, lipid, collagen, fibrosis, macrophages, and other similar
substanceswithin thewalls of the blood vessels.27 Furthermore, the
progression of atherosclerosis is highly associated with the future
risk of CV or stroke events.46, 47 Thus, the EEGS is the one that
explains the progression of atherosclerosis disease.42, 43 Carotid
lumen diameter (LD) reflects the growth in atherosclerosis and also
considered as a risk factor of cardiovascular diseases.48 Further-
more, carotid LD is an indicator of arterial remodeling and thus can
provide more information about the vascular health of a person.48
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Narrowing of the carotid LD (stenosis) has been considered a major
risk factor of ischemic stroke events.49�51 We thus hypothesize the
usage of carotid LD as a powerful EEGS model for CVD/stroke risk
assessment.52�54 An LD threshold of 6 mm was selected for risk-
stratifying the patients into either high-risk or low-risk category.

3. Methods

3.1. Study cohort and image acquisition

A cohort of 202 Japanese patients (IRB approved) was recruited
for this retrospective study from Toho University, Japan, and writ-
ten consent was obtained from all participants. Left and right
common carotid arteries of all the patients were examined using a
B-mode ultrasound scanner (Aplio XG, Xario, Aplio XV, Toshiba Inc.,
Tokyo, Japan). In total, 395 CUS scans were collected by an expert
sonographer (overall mean image resolution of 0.0529 mm per
pixel). The protocol for CUS image acquisition was based on the
consensus report of the American Society of Echocardiography55

and has been discussed in detail in our previous studies.56 All the
CUS scans were retrospectively analyzed by two operators (an
expert and a novice operator). The expert operator had 15 years of
experience in ultrasonography and radiology. Compared with all
the previously published studies with the same Japanese
cohort,17,39, 57�60 this study is unique in terms of a novel design for
ML-based strategy for risk stratification by combining CUSIPcurr and
CRF (a class of AtheroEdge™ systems fromAtheroPoint™, Roseville,
CA, USA).61

3.2. Carotid ultrasound image phenotype measurements: feature
set design

The feature set is comprised of 38 features: (a) 13 types of CRF
and (b) 25 types of CUSIP.17,32, 57, 58 The 13 types of CRF includes age,
gender, hemoglobin A1c, fasting blood sugar, low-density
Fig. 2. The framework of the supervised machine learning system (Repr
lipoprotein, and high-density lipoprotein (HDL) cholesterol, total
cholesterol (TC), a ratio of TC and HDL, hypertension, smoking,
family history, triglyceride, and ultrasound-based carotid plaque
score. The 25 types of CUSIP involved (i) five types of current CUSIP
(CUSIPcurr) such as average cIMT (IMTave), maximal cIMT (cIMTmax),
minimum cIMT (cIMTmin), variations in cIMT (IMTV), and total
plaque area (TPA), (ii) five types of 10-year prediction of CUSIP
(CUSIP10yr) such as cIMTave10yr, cIMTmax10yr, cIMTmin10yr, cIMTV10yr,
and TPA10yr, (iii) two types of AtheroEdge™ composite risk scores
(AECRS) evaluated using CUSIPcurr and CUSIP10yr such as AECRScurr
and AECRS10yr, (iv) 12 types of quadratic terms (harmonics) of these
12 image-based phenotypes (measured in (i), (ii), and (iii)), and
finally, (v) an atherosclerotic plaque morphology-based feature
called age-adjusted grayscale median (AAGSM) proposed by Kotsis
et al.32

3.3. Machine learning-based risk stratification: conventional vs.
integrated models

The supervised random forest (RF)-based ML algorithm (see
Fig. 2) was used for CVD/stroke risk stratification.38,39, 62 Data
partitioning unit separates the input image database into training
and testing datasets. The feature engineering block then extracts 38
types of training and testing features. The dotted rectangular box in
Fig. 2 provides a choice to perform the CVD/stroke risk stratification
either by CRF alone (conventional ML system) or by integrating CRF
with CUSIP features (so-called integrated ML system63). The
multivariate logistic regression (MLR) was then used for feature
selection that resulted in 2 significant features (HTand TC) out of 13
CRF and 10 significant features (gender, age, HbA1c, TC, HT,
Smoking, IMTmin, AECRS10yr, AECRScurr2 , and AECRS10yr2 ) out of 38
integrated features. These significant features were then used to
train the ML-based RF classifier (for RF see Section C of
Supplementary Material) under the supervision of training labels
obtained from the EEGS. The trained ML coefficients were then
oduced with permission from Authors and Springer publications16).



Table 1
Baseline characteristics of the patients divided into low-risk and high-risk classes.

C1 C2 C3 C4 C5 C6

SN Parameters Overall High-Risk Low-Risk P-Val

R1 Total (n) 202 108 94 e

R2 Male, n (%)a 156 (77.23%) 79 (50.64%) 77 (49.36%) 0.003
R3 Age (years)a 68.97 ± 10.96 71.29 ± 9.07 66.30 ± 12.30 0.028
R4 HbA1c (%) 6.28 ± 1.11 6.34 ± 0.93 6.20 ± 1.29 0.615
R5 FBS (mg/dl) 121.21 ± 34.81 123.50 ± 36.42 118.59 ± 32.85 0.434
R6 LDL (mg/dl) 100.75 ± 31.48 100.38 ± 30.04 101.17 ± 33.22 0.270
R7 HDL (mg/dl) 50.49 ± 14.97 49.65 ± 14.66 51.45 ± 15.33 0.676
R8 TC (mg/dl) 174.33 ± 36.73 175.44 ± 35.14 173.05 ± 38.61 0.243
R9 TC/HDL 3.65 ± 1.01 3.74 ± 1.04 3.55 ± 0.97 0.500
R10 HT, n (%)a 147 (72.77%) 90 (61.22%) 57 (38.78%) 0.000
R11 SBP (mm Hg)a 134.55 ± 8.92 136.67 ± 7.49 132.13 ± 9.82 0.000
R12 DBP (mm Hg)a 87.28 ± 4.46 88.33 ± 3.74 86.06 ± 4.91 0.000
R13 Smoking, n (%) 81 (40.10%) 45 (55.56%) 36 (44.44%) 0.333
R14 FH, n (%)a 24 (11.88%) 17 (70.83%) 7 (29.17%) 0.000
R15 PS 9.09 (5.31) 10.19 (5.31) 7.84 (5.05) 0.523

HbA1c: Glycated Hemoglobin; LDL-C: Low-Density Lipoprotein Cholesterol; HDL-C: High-Density Lipoprotein Cholesterol; TC: Total Cholesterol; SBP: Systolic Blood Pressure;
DBP: Diastolic Blood Pressure; FH: Family History; PS: Plaque Score.

a Significant Cofounding factors.
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used to transform the features derived from the test data into the
output risk classes (high-risk or low-risk). The performance of the
ML system was evaluated using area-under-the-curve (AUC)
against the gold standard test labels derived from EEGS.

3.4. Statistical analysis

SPSS23.0 and R Studio were used to perform statistical analysis.
Independent sample t-test and chi-square tests were performed for
the continuous and categorical variables, respectively. The baseline
characteristics of the study population are presented as mean ± SD
for continuous variables and numbers (percentages) for the cate-
gorical variables, respectively. Receiver operating characteristics
analysis was performed to compare the AUC values of AtheroRisk-
integrated against the AtheroRisk-conventional systems. Carotid LD
with a threshold of 6 mm has been used as an EEGS to perform the
performance evaluation using ROC analysis. The selection of LD
threshold along with its sensitivity analysis is presented in Section
B of the Supplementary Material. In order to test the validity of the
recruited sample size, a power analysis was performed using a 95%
Fig. 3. Receiver operating characteristics and AUC values for AtheroRisk-conventional
and AtheroRisk-integrated ML-based system using RF classifier.
confidence interval and a 5% error margin. This has resulted in an
overall desired sample size of 334. The sample size used in this
study (395 scans) was ~18% more than the required sample size of
334 for adequate power.
4. Results

The baseline characteristics of the Japanese cohort are presented
in Table 1. Out of 395 CUS scans, 317 (78.08%) images had a carotid
plaque score greater than 5, and 131 (32.27%) images had cIMTave
�1.00 mm. The selected patients did not have any information
about the atrial fibrillation with or without left atrial appendage
clot, and therefore, it was not considered in the design of this study.
From Table 1, it is clear that the baseline risk-profile of Japanese
patients follow the high-risk category.

Using RF-based classifier, AtheroRisk-integrated showed the
highest AUC (AUC ¼ 0.99, P < 0.001) compared to AtheroRisk-con-
ventional (AUC¼ 0.63, P < 0.001) for leave-one-out cross-validation
protocol (see Fig. 3). These results demonstrated an overall
improvement in the AUC of AtheroRisk-integrated ML system over
AtheroRisk-conventional by 57.14% with RF classifier. Due to the
small sample size, we have used a leave-one-out cross-validation
protocol. This has clearly indicated the potential role of the inte-
grated set of features in AtheroRisk-integrated which consisted of
both 13 CRF and 25 CUSIP (6 CUSIPcurr, 6 CUSIP10yr, AAGSM, and 12
quadratic terms - harmonics), unlike AtheroRisk-conventional that
used only 13 CRF.

In order to test the stability of the ML system, five current CUSIP
were measured by two operators (an expert and a novice) at
different time instants using AtheroEdge™ (AtheroPoint, Roseville,
CA, USA)0.56, 64 Using these two different sets of CUSIP, the ML-
based system was trained and tested against EEGS. The mean risk
stratification accuracy and AUC for two sets of measurements were
differed by less than 5% (Accuracy: 93.15% vs. 96.22% and AUC 0.92
vs. 0.96, p < 0.001). The precision-of-merit and figure-of-merit was
96% with an overall mean absolute error of less than ±5%. This
indicated CUSIP used for risk stratification was highly stable and
reliable.
5. Discussion

This study validated our hypothesis that shows a greater risk
predictive ability forML-based systems using integrated risk factors



Table 2
Machine learning-based CVD/Stroke risk stratification.

#SN
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Authors AT
(Modality)

Features Types TF Classifier
Type

Ground
Truth

N* TI Training
Protocol

Performance
Evaluation

Benchmarking

R1 Kariacou et al17

(2012)
Carotid
(CUS)

Image-based
Texture

27 SVM, LR Follow-up
data labels

108 e e ACC (77%) e

R2 Acharya et al18

(2013)
Carotid
(CUS)

Grayscale Features 17 SVM, GMM, RBPNN, DT,
kNN, NBC, FC

Labels from
Physicians

445 492 K3 DB1:Accuracy (93.1%)
DB1:Accuracy (85.3%)

e

R3 Acharya et al72

(2014)
Carotid
(CUS)

Phenotypes & HoS
Features

7 SVM, RBPNN, kNN, DT Labels from
physicians

59 118 K10 Accuracy (99.1%) e

R4 Gastounioti
et al19 (2015)

Carotid
(CUS)

Kinematics
Features

1236 SVM Follow-up
data labels

56 4200 e Accuracy (88%) Against kNN,
PNN, DT, DA

R5 Araki et al20

(2017)
Carotid
(CUS)

Image-based
Texture Features

16 SVM LD-based risk
labels

204 407 K5, K10,
JK

Accuracy (NW: 95.08%&
FW: 93.47%)

e

R6 Saba et al21

(2017)
Carotid
(CUS)

Image-based
Texture

16 SVM LD-based risk
labels

204 407 K10 Accuracy (NW: 98.83%&
FW: 98.55%)

e

R7 Weng et al22

(2017)
e CRF 30 RF, LR, GBM, ANN Follow-up

data labels
378256 e K4 AUC: 0.764 Against PCRS

R8 Kakadiaris
et al23 (2018)

e CRF 9 SVM Follow-up
data labels

6459 e K2 Se (86%),
Sp (95%),
AUC (0.92)

Against PCRS

R9 Proposed (2019) Carotid
(CUS)

Integrated Features 38 RF Labels from
physicians

202 395 K2, K5,
K10, JK

AUC: 0.99 Against
Conventional

CUS: Carotid ultrasound, LR: Logistic Regression, SVM: Support Vector Machine; Se: Sensitivity, Sp: Specificity; DWT: Discrete Wavelet Transform, kNN: K-Nearest Neighbor,
RBPNN: Radial Basis Probabilistic Neural Network, GMM: Gaussian Mixture Model, NBC: Naïve Bays Classifier, FC: Fuzzy Classifier, DB: Database, HoS: Higher order Spectra,
LBP: Local Binary Pattern, FDR: Fisher Discriminant Ratio, WRS: Wilcoxon Rank-Sum, PCA: Principal Component Analysis, DA: Discriminant Analysis, MLP: Multilayer Per-
ceptron, RF: Random Forest, BS: Brier Score, QNN: Quantum Neural Network, IGR: Information Gain Ranking, MDMST: Minimal Depth of Maximal Subtree, SOM: Self Or-
ganization Map, FRS: Framingham Risk score, PCRD: Pooled Cohort Risk Score.
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(AUC ¼ 0.99, P < 0.001) compared to the CRF alone (AUC ¼ 0.63,
P < 0.001).

5.1. Benchmarking

Table 2 chronologically compared the proposed AtheroRisk-in-
tegrated system against the eight ML-based studies (row R1 to R8)
using eleven attributes (column C1 to C11). Nearly all the previous
studies used either the conventional blood biomarkers and clinical
parameters, or the grayscale image-based features for CVD risk
assessment. The conventional risk factors do not capture the
morphological variations in the blood vessels, which, however, can
be possible using the image-based phenotypes.16e18, 32, 36, 38, 65
Thus, integrating this CUSIP with CRF can provide a stronger
assessment of risk assessment.18, 65, 66 Our study (row R9) is the
only study that combined the CRF with the CUSIP leading to 38
features. As a result, the integrated RF-based ML system demon-
strated an AUC~0.99, which is far better than the studies that used
CRF or image-based grayscale features alone.

5.2. Effect of using cIMT as EEGS for CVD/stroke risk assessment

Pignoli et al67 presented the use of B-mode ultrasound for
visualizing the cIMT. Since then, the use of cIMTas a preventive tool
for the CVD/stroke risk assessment is continuously debated.5, 55,

68e73 cIMT has been also been tested as a surrogate marker of
CVD/stroke events in the literature.74e82 Thus, we investigated its
effect as EEGS for ML-based CVD/stroke risk stratification. With
cIMT as EEGS, AtheroRisk-integrated showed a superior perfor-
mance (AUC ¼ 0.95, P < 0.001) compared to the AtheroRisk-con-
ventional (AUC ¼ 0.59, P < 0.001) with an overall improvement in
AUC of ~61%. It should be noted, cIMT as EEGS reported the highest
improvement in AUC value (~61%) compared to LD as EEGS (~57%).
However, it is also important to note that in our current study using
cIMT as EEGS may lead to a bias effect. This is because the feature
set of 38 risk factors was derived by using 16 types of cIMT values
(four current cIMT, four 10-year cIMT, and eight harmonics
(quadratics terms) of cIMT). Thus, carotid LD was considered to be
the best choice for EEGS.

5.3. A note on the therapeutic implications of ML-based risk
stratification

The primary objective of the risk stratification system is to
predict the risk profile of the patients and stratify them into one of
the several CVD/stroke risk categories such as low-risk, moderate-
risk, or high-risk. In general practice, risk assessment systems aid
physicians in deciding the need and strength of the medications
such as lipid-lowering medications (for example pravastatin, ator-
vastatin, and simvastatin)83 or diabetes control medication (for
examplemetformin)0.84 Compared with traditional risk prediction
models, ML-based risk assessment systems have the promise to be
more accurate37 and avoid the under or overestimation of CVD/
stroke risk.

5.4. Strength, limitations, future scope

Although the study results support our hypothesis, we believe
that additional investigations may allow for more progress in ML-
based strategies for risk stratification. Even though the pilot study
had a small cohort size with acceptable power analysis for sample
size test, the ML had an ability to adjust the variations of the image
phenotypes when combined with the CRF during training to
compute the predicted risk on test patients. Note that the ML sys-
tem did use the surrogate image-based biomarker (lumen diam-
eter) as EEGS, 17, 19, 32, 39, 58e60, 85 which may add to a slight
bias in the overall estimation of predicted risk. Thus, we need a
larger multi-ethnic, multi-center cohort for stronger validation and
performance evaluation of ML systems using primary endpoints. At
last, the current study did not consider the effect of carotid stenosis,
which is a well-established atherosclerosis-driven CVD/stroke
biomarker,20e23 and hence, needs further validation. The proposed
ML-based integrated system can be extended by incorporating in-
flammatory markers, renal disease markers, grayscale features that
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are also associated with the risk of CVD and stroke, and further be
converted as an online platform for risk stratification.24 Even
though our LD estimation methods were scale-space based, the
system can be extended using deep learning-based models for LD
estimation.25e27 Similarly, image phenotypes can also be computed
using deep learning-based solutions.28

6. Conclusion

We presented a novel ML system that integrated 25 carotid ul-
trasound image-based phenotypes (CUSIP) with 13 conventional
risk factors (CRF) factors. We proved our hypothesis that AtheroR-
isk-integrated is far superior to AtheroRisk-conventional for using
Random Forest classifier. Our results demonstrated that AtheroRisk-
integrated showed an overall improvement of 57.14% in the AUC
when using an RF-based classifier. Since our machine learning
systems were generalized, it can, therefore, be extended to deep
learning-based paradigms.
What is already known?

Generally, statistically derived and machine learning-based

risk prediction models use either conventional clinical pa-

rameters for CVD risk assessment.

What this study adds:

Integration of conventional clinical risk factors with carotid

ultrasound image phenotypes can offer higher risk stratifi-

cation ability.
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