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A B S T R A C T

Recent advances in phytochemical analysis have allowed the accumulation of data for crop researchers due to its
capacity to footprint and distinguish metabolites that are present within an organisms, tissues or cells. Apart from
genotypic traits, slight changes either by biotic or abiotic stimuli will have significant impact on the metabolite
abundances and will eventually be observed through physicochemical characteristics. Apposite data mining to
interpret the mounds of phytochemical information from such a dynamic system is thus incumbent. In this
investigation, several statistical software platforms ranging from exploratory and confirmatory technique of
multivariate data analysis from four different statistical tools of COVAIN, SIMCA-Pþ, MetaboAnalyst and RIKEN
Excel Macro were appraised using an oil palm phytochemical data set. As different software tool encompasses its
own advantages and limitations, the insights gained from this assessment were documented to enlighten several
aspects of functions and suitability for the adaptation of the tools into the oil palm phytochemistry pipeline. This
comparative analysis will certainly provide scientists with salient notes on data assessment and data mining that
will later allow the depiction of the overall oil palm status in-situ and ex-situ.
1. Introduction

Phytochemicals are low molecular weight small molecules found in
plant cells and tissues and are easily absorbed or damaged by sponta-
neous reactions, enzymatic reactions or conjoined with other molecules
(Zhou et al., 2012). Extensive phytochemical analysis in relation to
functional genomics and systems biology within an organism, tissue or
cell under a given set of conditions at specific time is dubbed as metab-
olomics (Sindelar and Patti, 2020). The size and complexity of plant
metabolites collections, i.e., metabolome vary by species and samples
(Beisken et al., 2015). A metabolome can be examined by two distinct
approaches; nontargeted and targeted analysis of endogenous and
exogenous metabolites (Brown et al., 2009). The nontargeted method-
ologies is the most suitable technique to detect unexpected changes in
phytochemical concentrations. It involves profiling of metabolites with
maximum metabolome coverage over a wide range of complex phyto-
chemical structures to provide more opportunity to identify changes
without bias and a priori knowledge regarding the examined specimens.
In the targeted approach, a relatively small number of metabolites of
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interest is to be predefined prior to running the experiment for detection
and quantification.

Metabolome analysis is particularly employed to monitor, measure and
assess themyriad diversity of various physical properties of metabolites and
demands high end analytical instrumentations and software solutions, i.e.,
gas chromatography-mass spectrometry (GC-MS), liquid chromatography-
mass spectrometry (LC-MS), capillary electrophoresis–mass spectrometry
(CE-MS) and nuclear magnetic resonance (NMR) spectroscopy (Johnson
and Gonzalez, 2012). Analysis of intricate biological samples are being
routinely carried out using LC-MS compared to other metabolomics ap-
proaches due to a combination of sensitivity and the amount of information
generated by the analysis for instance retention time (tR) information,
mass-to-charge ratios (m/z), signal intensities and ion abundance,which can
be further used as an additional information for indexingmetabolites (Dunn
et al., 2013). The resulting metabolome profiles provide functional signa-
tures that can be analysed using chemometricswhich involves simultaneous
measurement of two or more variables in an experiment to capture rela-
tionship among the variables caused by changes of metabolite abundance
(Saccenti et al., 2014). Post-hoc analysis of high-throughput
anuary 2021
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Table 1. Summary of unsupervised and supervised method strategies.

Type of methods Examples of analysis Goal Application Input Output

Unsupervised
method

Principal Component Analysis
(PCA)

Reduction of data
dimensionality, visual
inspections of data grouping
and pattern recognition

Dimensional reduction
recognition into an observed
variation data and extraction
of components that explain
maximum variance(s)

Data tables without class
associations: each row
represents a subject and each
column represents
concentration/abundance of a
metabolite (e.g., MS and NMR
peak list or spectral bin)

Data summary in scores and
loadings plots for pattern
recognition

Hierarchical Clustering Display of subjects'
connectivity in cluster
formation

Grouping of data into
dendrogram and heat map

Supervised method Partial Least Squares (PLS) Biomarker discovery and class
membership prediction

Assessment of variables
contributing to discrimination
of subjects

Data tables with prior class
membership dictation

Selection of dependent
variable (metabolites) to
represent class membership

Support Vector Machine
(SVM)

Construction of model that
can assign new subject(s) to
one category or the other

Selection of metabolites as
predictors to construct
prediction model
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multi-dimensional data generated from metabolomics platforms may
require the involvement of multidisciplinary skilled personnel, e.g., analyst,
bioinformatician or scientist who are proficient in chemometric analysis. A
number of available tools for metabolomics data mining are dedicated for
pattern or attributes recognition and dimension reduction based on two
strategies of exploration and confirmation; the unsupervised and supervised
methods respectively.

Unsupervised method generates data clusters without any prior
knowledge about the group structure (Ren et al., 2015). This method is
commonly used in preliminary evaluation of the information contained
in the data sets. Examples of the analysis of unsupervised method are the
principal component analysis (PCA) and clustering. On the other hand,
supervised method such as partial least squares data analysis (PLS-DA)
and support vector machine (SVM) are widely used in discovering bio-
markers, classification, and prediction. This method is used to confirm
the results obtained from the unsupervised method. Unsupervised and
supervised methods are not completely independent and each method
serves different research goals (Ren et al., 2015). The different functions
and features of the methods do not imply superiority of supervised over
unsupervised method and vice versa. Each method has a different pur-
pose and is used according to fittingness of the exploration. The summary
for the methods mentioned above is described in Table 1.

The human population is estimated to reach 9 billion in 2050 which
will manifest into the shift and rise of food demand (B�en�e et al., 2019).
Oil palm has become one of the most versatile and important crops
globally due to its status as high oil-yielding source of vegetable oil which
can then be widely utilised for both food and non-food products (oleo-
chemical industries and biofuel) (Kushairi et al., 2018). Producing the
highest yield of oil per unit area compared to any other crops (Oettli
et al., 2018), its harvests include crude palm oil, crude palm kernel oil,
palm kernel and palm kernel cake as commodities, and biomass products
as energy and non-energy feedstock (Sukiran et al., 2018). However, the
oil palm industry faces challenges of sustainability and struggles to
remain competitive in catering the demand for the vegetable oil which is
steadily increasing. With the aim of minimum acreage with optimum
Figure 1. General metabolom
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yield, the research and development (R&D) towards achieving the full oil
palm genetic yield potential competes with gaps caused by agro-climatic
factors (Barcelos et al., 2015). The focus of this survey will be on the
analysis output of oil palm metabolome data sourced from one of our
field trials using several statistical platforms from both unsupervised and
supervised methods. Oil palm systems biology study is still at infancy and
the depth and extent of these statistical analysis has allowed us to
exhaustively examine and decipher the raw data into meaningful inter-
pretation in effort to uncover and understand the complexities and
diverse physiological processes of the species. We will also discuss the
advantages and limitations of these methods to assess their suitability to
be adapted into our phytochemical analysis pipeline of oil palm field
data.

2. Materials and methods

2.1. Sample preparation, liquid chromatography-mass spectrometry (LC-
MS) analysis, data collection and pre-processing

All experiments were performed in accordance with the protocols
established for rapid and wide range of metabolite extraction for oil palm
leaves that has permitted the identification of phytochemicals from a
single extraction (Tahir et al., 2012, 2013). The general plant metab-
olomics workflow of oil palm tissue sampling up to data analysis and
storage steps is schematised in Figure 1. LC-MS data was obtained from
the metabolomics profiling of spear leaves from clonal oil palm planted
on two different planting sites of Keratong and Teluk Intan of different
soils as previously described by Tahir et al. (2016).

In this particular analysis, LC-MS profile data from 1.0 to 59.5 min
analysis time were pre-processed with Find Molecular Features (FMF)
parameter in ProfileAnalysis™ (Version 2.0) software from Bruker Dal-
tonics GmbH. A signal-to-noise (S/N) limit of 5 was set for the peak finder
for a chromatographic peak to be eligible in peak detection. The corre-
lation coefficient threshold was applied at 0.7 for the minimal time
correlation between two related isotope traces in peak clusters to be
ics workflow for oil palm.



Figure 2. Interface (A) and workflow (B) of COVAIN toolbox.
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combined to a charge state at a given retention time. The minimum
compound length of a consecutive spectra in an MS signal was set at 10
spectra for a chromatographic peak. This value principally depends on
the chromatographic peak width and the acquired spectra rate and can be
determined by counting the number of data points at the full width at half
maximum (FWHM) of a peak. A ‘bucket’ or data matrix was generated
with LC-MS peaks components fromm/z range of 50–1000. Each data file
contains ‘mass-to-charge (m/z) ratio: retention time’ pairs with the cor-
responding peak intensities. The buckets of 60 s (s) and m/z 1.0 deltas
were arranged into a tabular data set format with retention times (rows)
against peak intensities (columns) and exported into appropriate data
format for further use, e.g.,.csv or.xls. No further data treatment was
applied onto the data set prior to data export.

2.2. Program implementation

To date, there are many software and web servers that offer easy
analysis and interpretation tools for metabolome data. All statistical
software tools in this investigation were operated with the default or
recommended settings from a server equipped with 3.10 GHz Intel(R)
Xeon(R) CPU E5-1607 and 16 GB of RAM. The operating system was
Windows 7 Professional (64 bits). In this study, four tools were selected
for data mining and the results for each utilized tools were compared.
Figure 3. Interface (A) and w
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Four software tools used in the study:

i. Covariance Inverse ‘COVAIN’ toolbox version 2017-May-16
developed by Molecular Systems Biology Department, University
of Vienna, Austria using Matrix Laboratory ‘MATLAB©’ software.

ii. SIMCA-Pþ version 12.0.1 licensed software from Umetrics (now
Sartorius Stedim Biotech) and SIMCA-Pþ 15.2 trial version.

iii. MetaboAnalyst version 4.0, a free online tool by Xia Lab at
McGill University, Canada.

iv. RIKEN Excel Macro tool, a tool for statistical analysis on
Microsoft Excel 2010 Suite, metabolomics platform by The Japa-
nese Institute of Physical and Chemical Research (Rikagaku Ken-
ky�ujyo, RIKEN)
2.2.1. COVAIN toolbox version 2017-May-16
COVAIN toolbox is a uni- and multivariate statistics, time series and

network analysis core for metabolomics covariance data supported in
MATLAB Statistics and Machine Learning Toolbox environment (Sun and
Weckwerth, 2012, 2013). COVAIN toolbox can be downloaded free of
charge from https://mosys.univie.ac.at/resources/software/, however
the potential user(s) are required to procure MATLAB software annual
license to run the toolbox. Figure 2 shows the COVAIN interface and the
orkflow (B) of SIMCA-Pþ.

https://mosys.univie.ac.at/resources/software/


Figure 4. Interface (A) and workflow (B) of MetaboAnalyst.
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toolbox workflow. The format of raw data that can be read by COVAIN
are.txt (tab delimited text),.csv (comma-separated values) and.xls/.xlsx
(Excel). The default missing value imputation is carried out by filling in
half of the minimal value of all data.

2.2.2. SIMCA-Pþ version 12.0.1
SIMCA-Pþ software is a licensed software developed by Umetrics

(now Sartorius Stedim Data Analytics AB). SIMCA-Pþ is a suite of
multivariate data analytics solution and is mainly used for the methods of
PCA and PLS regression (PLS-R) (Wu et al., 2010). Figure 3 shows the
interface of SIMCA-Pþ and the data analysis workflow. SIMCA-Pþ ac-
cepts raw data set in.txt,.csv and.xls or.xlsx file formats with many
non-numerics or zeros. For the results to be reliable, e.g., to be used for
Figure 5. Interface (A) and workflow
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model fitting, the data set should contain no more than 50% missing
values in the observations of variables. However, the tolerance of missing
value limit can be adjusted and the software will prompt a message to
include or exclude the variable with zero-valued observation. A variable
with zero value is given a scaling weight of 1 (Sartorius Stedim Data
Analytics AB, 2017). There are several parameters that need to be
determined before running the analysis including the identifiers for the
variables, the roles of the variables, the data type and indication of data
inclusion or exclusion. Many types of diagnostics and interpretation can
be performed with SIMCA-Pþ such as scores plot, loadings plot, Hotel-
ling's T2 and Distance to the model (DModX) for a meaningful confir-
matory data analysis. While using SIMCA-Pþ version 12.01 with a
perpetual license, the dataset was also tested on the trial version of 15.2
(B) of RIKEN Macro tool in Excel.



Table 2. Scaling methods.

Scaling type Calculation Details

Unit variance 1/σ � Data analysis based on correlations instead of covariances

� Inflation of measurement errors

Pareto 1/√σ � Metabolites of large fold less dominant, balances data intensity

� Data does not become dimensionless compared to unit variance scaling

� Data remains nearer to original measurement

Variance 1/σ2 � Emphasise relative responses

� Inflation of measurement errors

Vast (variable stability) 1/(σ/m) � Concentrate on metabolites with small variations

� Unsuitable for data of large induced variation(s)

*m ¼ mean, adapted from Van den Berg et al. (2006).
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(free download with registration from https://landing.umetrics.com/sim
ca-free-trial-offer) to look out for significant upgrade to the software.

2.2.3. MetaboAnalyst version 4.0
MetaboAnalyst is a publicly accessible, user-friendly, online metab-

olomics data analysis and interpretation tool. It is available at
http://www.metaboanalyst.ca/. Since MetaboAnalyst is a web-based
data analysis tool, internet connection is required. This program is
regularly updated and improvement activities are usually announced via
its portal or publication in refereed periodicals. As an alternative,
MetaboAnalyst provides Web Application Resource (.war) file for local
installation and operation at a computer or a server. However, this format
requires the user to have basic computer skills to successfully employ the
R programming language. MetaboAnalyst can run on Mac OS X or Linux
(Redhat Fedora, Ubuntu, etc.) operating system with memory of 4
Gigabytes or more, Java software version 1.7 or more recent, R package
version 3.4 or more recent with the following packages installed:
"Rserve", "ellipse", "scatterplot3d", "pls", "caret", "lattice", "Cairo", "ran-
domForest", "e107100, "gplots", "som", "xtable", "RColorBrewer", "xcms",
"impute", "pcaMethods", "siggenes", "globaltest", "GlobalAncova",
"Rgraphviz", "KEGGgraph", "preprocessCore", "genefilter", "pheatmap",
"igraph", "RJSONIO", "SSPA", "caTools", "ROCR", "pROC", "sva" packages
and other application servers (Glassfish or Payara version 4.0 or above).
To date, MetaboAnalyst has now an additional section of companion R
interpreter, MetaboAnalystR for more flexible data analysis and batch
processing.

MetaboAnalyst accepts data in.csv,.txt and.zip format, and also a tab-
delimited text file format for MS-based proteomics and metabolomics
called.mzTab. The software is able to process the data even though there
are many zeros in the data set. The default missing value imputation
method exchanges missing values with the half of the minimum positive
values in the original data with the assumption of it to be the detection
limit. Other missing values replacement methods are by column mean/
median, k-nearest neighbour (KNN), Bayesian PCA (BPCA), probabilistic
PCA (PPCA) and Singular Value Decomposition (SVD). Prior to data
upload, the format and arrangement of the data must follow the data
format guidelines for the data formats provided in the MetaboAnalyst
main menu at its webpage. The statistical analysis provided by Metab-
oAnalyst is listed in its interface image in Figure 4. After uploading the
raw data, just like COVAIN, this data analysis tool will pre-process the
data by filling in missing values, filtering and normalisation. After data
pre-processing, various analysis paths of uni- and multivariate analyses
can be applied to explore the data.

2.2.4. RIKEN Excel Macro tool
RIKEN released a Microsoft Excel-based statistical analysis platform

for statistical analyses such as principal component analysis (PCA) and
projection to latent structure-based multivariate data analysis, e.g., par-
tial least squares (PLS) regression (PLS-R), PLS discriminant analysis
(PLS-DA) and correlation analysis. This tool requires Windows operating
5

system (OS) andMicrosoft Excel (32 bits andMicrosoft Excel, 2007/2010
version or 64 bits and Microsoft Excel, 2010 version). Figure 5 shows the
interface and the workflow of the tool. The imported data must be in
the.csv file format. After the data is imported, the x variables need to be
determined along with the transform type and scaling type. If PLS-R or
PLS-DA is to be performed, a Y-variable must be selected. The analysis
will proceed after clicking the ‘Done’ button. The tool can be downloaded
for free from the following link; http://prime.psc.riken.jp/Metabolomics
_Software/StatisticalAnalysisOnMicrosoftExcel/index.html. As the tool
appears to aim for simplicity, comprehensive data processing function
prior to multivariate analysis such as excluding metabolite peaks by
setting a threshold at the ‘peak count filter’ parameter and comparison to
quality control (QC) sample can be performed by missing-value inter-
polation in MS-DIAL software, available at the RIKEN website (Matsuo
et al., 2017).

The four platforms have been chosen for this study based on their
availability and usage history in Proteomics and Metabolomics
(PROMET) Research Laboratory, Malaysian Palm Oil Board (MPOB). All
of these platforms have been individually applied by different re-
searchers based on their personal preferences in PROMET lab to analyse
their metabolome data. In this study, the unsupervised method available
from each platform, e.g., PCA and cluster analysis have been used onto
the data set while for supervised methods, we focused on PLS-DA avail-
able from SIMCA-Pþ, MetaboAnalyst and RIKEN Excel Macro tool.

3. Results and discussion

Ideally, statistical methods for data mining require a homogenous and
complete data set. However, in actuality several factors may contribute to
missing values in a phytochemistry data corpus:

i. natural absence of the phytochemicals in specimen (biological
replicates)

ii. error in specimen preparation (technical replicates)
iii. error from analytical platforms, e.g., injector
iv. analytical platform detection limits, e.g., ultraviolet (UV), mass

spectrometry
v. error in data collection/acquisition or data export

In particular, raw data set of phytochemical analysis from chroma-
tography paired with mass spectrometry contain many zeros as results of
data acquisition cut-offs (Yang et al., 2015). These zeros or missing
values are either removed in pairwise or list-wise manner (Szyma�nska,
2018). There are also instances of raw data from vendor data export
software containing empty fields and have to be replaced with zero or
other appropriate numeric imputations according to the types and
randomness of the absence (Wei et al., 2018). For COVAIN tool, half of
the smallest value of all data will be used to fill the missing values (Sun
and Weckwerth, 2012). From our observation, heterogeneous data with
too many non-numerics or zeros cannot be analysed by most of the tools

https://landing.umetrics.com/simca-free-trial-offer
https://landing.umetrics.com/simca-free-trial-offer
http://www.metaboanalyst.ca/
http://prime.psc.riken.jp/Metabolomics_Software/StatisticalAnalysisOnMicrosoftExcel/index.html
http://prime.psc.riken.jp/Metabolomics_Software/StatisticalAnalysisOnMicrosoftExcel/index.html


Table 3. Normalisation and scaling methods applied prior to data analysis.

Tools Normalization Scaling Notes

COVAIN (Sun and Weckwerth, 2013;
2012)

Several options provided:
-Normalisation by internal standard
- Normalisation by sample fresh weight

N/A Other pre-treatment process options:
- data transformation (Log transformation and z-score transformation)

SIMCA-Pþ (Wu et al., 2010) - Standard Normal Variate – SNV Pareto scaling Other types of scaling selections:
- mean centering
- auto scaling

MetaboAnalyst
(Chong et al., 2019)

Several options provided:
- None (no normalization applied)
- Sample-specific normalization (i.e., weight, volume)
- Normalization by sum
- Normalization by median
- Normalization by reference sample (probalistic
quotient normalization, PQN)
- Normalization by a pooled sample from group
- Normalization by reference feature
- Quantile normalization

Pareto scaling Other pre-treatment process options:
- data transformation (Log transformation and cube root transformation)
Other types of scaling selections: (Mean centering, auto scaling and
range scaling)

RIKEN Excel Micro tool
(Matsuo et al., 2017)

- Normalization method by internal standard Pareto scaling Other pre-treatment process options:
- data transformation (Log10 transformation and 1/4 root transformation)
Other types of scaling selections: (Mean centering and auto scaling)

*N/A: not available.
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thus, the data has to be ‘cleaned’ prior to uploading (Sun andWeckwerth,
2013). In addition to this, the SIMCA-Pþ software requires a data set with
less than 50% missing value (default value) as compared to RIKEN Excel
Macro tool which does not state any missing value threshold or per-
centage. The data set was then manually reviewed according to the
modified 80% rule (Yang et al., 2015) as follows:

i. Removal of columns with zero values of peak intensity across all rows
of ‘mass-to-charge (m/z) ratio: retention time’ pairs

ii. Removal of columns with zero values of peak intensity across more
than 80% rows from both sites of Keratong and Teluk Intan. This step
prepares a better data set than SIMCA-Pþ requirement.

Data pre-processing or data ‘cleaning’ represents an important step in
the data mining process to cope with values from analytical platform
such as mass spectrometry that will be transformed into a sound data
format. Data pre-processing is considered the crux of data interpretation
Figure 6. PCA scores (a) and loadings plots (b) of oil palm leaf metabolome of differ
RIKEN Excel Macro tool.
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as any steps applied at this stage will affect subsequent statistical analysis
and poor data handling could result in or introduce unwanted variation
(Engel et al., 2013). The data can be pre-treated and analysed only after a
meticulous pre-processing step. This requires an effective process to
address variations due to measurement deviations, experimental arte-
facts and complexity across the samples that can subsequently affect the
performance of multivariate data analysis. For instance, data collected
from mass spectrometry analyses need to be pre-processed with noise
filtering, automatic peak detection or feature detection, chromatographic
alignment or normalisation. Further steps of pre-treatment involve
mean-centering, scaling or data transformation, although not all of these
methods are necessarily used each time (Karaman, 2017).

Data for multivariate data analyses are normally brought to relativity
to a factor or ‘scaled’ to adjust fold differences or to reduce dominance of
large spectral feature, if any. This pre-treatment calculates the data
dispersion or the size measurements of the data to obtain the mean value.
Inevitably, different types of pre-treatment applied to input data can
ent planting sites generated by COVAIN toolbox, SIMCA-Pþ, MetaboAnalyst and



Figure 7. Scores (a) and loadings plots (b) of oil palm leaf metabolome of two different planting sites generated by MetaboAnalyst. The image orientations changed
with “flip image” button function on X-axis (c and d), Y-axis (e and f) or both axes (g and h).
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influence the results (Van den Berg et al., 2006). Scaling is one of the
pre-treatment steps often employed prior to multivariate data statistical
model construction which attempts to regulate the fold differences of
metabolites by dividing each variable by a factor of dispersion to avoid
total dominance of a particular variable as summarised in Table 2 below.

For most of our analysis, Pareto was preferred as the scaling method
based on its balanced calculation between mean-centering (subtraction
of the variable averages from the data) and unit variance scaling and its
ability to decrease metabolite level variation without increasing the
measurement deviation of low abundance metabolites (Yang et al.,
2015). On another note, this data set was normalised and scaled ac-
cording to method availability of the individual tools as explained in
Table 3.
3.1. Unsupervised method

3.1.1. Principal component analysis (PCA)
PCA is the primary and most widely used unsupervised analysis

technique in metabolomics which helps phytochemists to reveal outliers,
groups and trends in metabolome data (Madsen et al., 2010). It is usually
used for dimensionality reduction of the data by decomposing the spec-
tral data into several principle components that are linear combinations
of the original spectral data (Elmasry et al., 2012). In each software
platform, the PCA generates scores and loadings plots by which the scores
plot represents the original data in a new coordinate arrangement and
provide an overview of the observation groups (Xia and Wishart, 2011).
The loadings plot reveals the variables that exert influence on the model
and are responsible in clustering the groups (Worley and Powers, 2013).
Figure 6 shows the PCA scores and loadings plots generated by the four
investigated platforms of COVAIN toolbox, SIMCA-Pþ, MetaboAnalyst
and RIKEN Excel Macro tool from the metabolome data of oil palm leaf
sample planted on different soil types.

To investigate general interrelation between the oil palm specimens
and to observe any clustering and outliers among the samples,
COVAIN generated PCA variance occupancy (%) of each principal
components (PC), scores plot of all samples in two dimensional space
(2D) and three dimensional space (3D), and loadings plot of pair-wise
7

PCs that facilitated interpretation and evaluation of the data (Sun and
Weckwerth, 2012). The scores plot shows the vertical plane dispersion
of the samples at PC2. The loadings plot reveals the two furthest
variable points from the center, conforming to the direction of scores
dispersion in the scores plot. Loading point 1 (retention time (tR); 90.2
s; m/z 131.5) is in the furthermost area corresponding to the samples
from Keratong trial while the loading point 2 (tR 150.2 s; m/z 152.5)
approximates to the samples from the Teluk Intan trial in the scores
plot.

In SIMCA-Pþ visualization of the same data, the PCA scores plot was
exhibited as variables principal properties while the loadings plot illus-
trates variable correlations and model contribution. The scores and
loadings plots show distribution between the vertical elements of prin-
cipal component 2 (PC2) that signify for different soil types of the
planting trials. The variables were found to be in association with the
dispersion in the scores plot and were labelled as 1 and 2, with similar
attributes to the variables found in COVAIN PCA output, with the same
orientation.

For PCA in MetaboAnalyst, user can specify the PCs on the X and Y-
axes for the 2D scores and loadings plots to observe the plots in different
orientations whether on X-axis, Y-axis or both. The concentration dis-
tribution of each variable in the form of box plot can be visualised by
clicking on the corresponding variable point in the loadings plot. The
server will then generate a detailed report describing each applied
method embedded with graphical and tabular outputs (Xia et al., 2009).
The results for all analyses performed on the data set will be available in a
downloadable.zip file for user for further use. The data will remain on the
server for 72 h before being automatically erased. However, if left un-
attended for 30 min, the website will prompt user to keep working before
the session expires in about 10 s. Similar variables were discovered
responsible to separate the two planting sites, Keratong and Teluk Intan;
loading point 1 (tR 90.2 s;m/z 131.5) and loading point 2 (tR 150.2 s;m/z
152.5). However, the orientation of the scores and loadings points are
inverse (at x-axis) to that of COVAIN and SIMCA-Pþ. As MetaboAnalyst
provide a function of image flipping at both axes, the PCA scores and
loadings after flipping the image at X-axis are comparable to the other
tools (Figure 7).



Table 4. Distance and linkage metrics for available tools for clustering.

Tools Distance Linkage Reference

1 COVAIN (dendrogram þ heatmap) Euclidean distance Average (Sun and Weckwerth, 2013; 2012)

2 SIMCA-Pþ (dendrogram) Euclidean distance Ward
Single

(Wu et al., 2010)

3 MetaboAnalyst (dendrogram þ heatmap) Euclidean
Pearson
Minkowski

Ward
Average
Complete
Single

(Chong et al., 2019)

MetaboAnalyst (dendrogram) Euclidean
Pearson
Spearman

(Matsuo et al., 2017)

*items in bold are default metrics.

Figure 8. Dendrogram and heat map generated by COVAIN.
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Microsoft Excel-based platform offers the approachability and ease of
adjustment of figures (Tsugawa et al., 2015). This has led to the devel-
opment of RIKEN Excel Macro tool for metabolomics data that only ne-
cessitates ample proficiency of basic Excel operation. For PCA calculated
using the RIKEN Excel Macro tool, the analysis results were in tabular
processed data, scores plot, loadings plot, and a PCA result sheet. The
scores and loadings data were plotted based on the PCs chosen by the
user, in this instance, PC1 vs. PC2.

In all PCA results from the tools of SIMCA-Pþ platform, COVAIN
toolboxes and RIKEN Excel Macro generated PCA plots of similar orien-
tation except to that of MetaboAnalyst with inverse plots with flexible
image rotation. This option eventually allowed us to obtain comparable
results to other three software with groupings according to planting trials
in all scores plots and similar phytochemical candidates from their
loadings plots. When comparing the scores plot generated by all four
tools, it is evident that grouping could be seen for the samples originating
from different planting sites. The loadings plot shows corresponding
variation amongst the different groups. In order to determine the vari-
ables responsible for separating the data, the loading points that were
distinct from the origin in comparison to other points were chosen. All
loadings plots from the tools displayed at least two loading points
(labelled as points 1 and 2) located at the furthest points from the origin
8

or center. From here, we can conclude that the loading points 1 and 2 are
accountable in the scores and loadings plots pattern. These revealed
metabolites or signatory phytochemical markers (m/z ions) which are
influential on the clusters as seen on the scores plot are unique for the two
different planting sites. Identification of the metabolites using MS/MS
(fragmentation of selected ions using collision-induced dissociation (CID)
in quadrupole-time-of-flight (Q-TOF) mass spectrometer and liquid
chromatography tR comparison with commercial standards deduced the
loadings point 1 as asparagine while metabolite of loadings point 2 was
dopamine (Tahir et al., 2016). The identification of these phytochemicals
fitted into Level 1 of identity confidence of the Metabolomics Standards
Initiative (MSI) (Viant et al., 2017). In other cases of metabolites that are
unidentified using available chemical standards, identification can be
facilitated by referring to the public databases containing metabolomics
data established bymetabolome scientists over the years, e.g., the Human
Metabolome Database (HMDB), MassBank, METLIN, PubChem, Lipid
Metabolites and Pathways Strategy (LIPID MAPS), Kyoto Encyclopaedia
of Genes and Genomes (KEGG), Chemical Entities of Biological Interest
(ChEBI) and others (Klassen et al., 2017). Each database contains
assorted metabolites data information, e.g., spectral data from mass
spectrometry and NMR spectroscopy of samples from different species.



Figure 9. Heat map generated by COVAIN toolbox.

Figure 10. Dendrogram generated by SIMCA-Pþ.
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3.1.2. Clustering
Another unsupervised method for identifying groups in the orig-

inal data commonly adopted in metabolomics is clustering. Clustering
techniques group the subjects in such a way that subjects in the same
group are more similar to each other than to subjects in another (Ren
et al., 2015). The greater the similarity within a group and the
greater the difference amongst groups, the more distinct the clus-
tering is (Tan et al., 2013). Primarily, clustering is employed to
examine underlying structure of a data set; to generate hypotheses
and to recognise phytochemical features and anomalies. It is also
used to classify specimens into their natural forms or relationships
and to organise and compress a data set for further assessment (Jain,
2010). Several methods in clustering are hierarchical cluster analysis
(HCA), K-means clustering and self-organising map (SOM).
9

HCA is commonly preferred for small molecule data set due to its
straightforward and universal approach as the number of clusters is un-
known a priori (Boccard et al., 2010). There are two approaches in hi-
erarchical clustering: agglomerative and divisive. The agglomerative
clustering technique begins with each point as a singleton cluster and
then repeatedly merging the two closest clusters until a single,
all-encompassing cluster remains. On the other hand, the divisive clus-
tering is a method for cluster splitting and is known better as top-down
clustering. All points are gathered in one big cluster, and as one moves
down the hierarchy it splits into smaller size and more similar clusters
until each point has its own singleton cluster. Graphically, HCA builds a
hierarchy and uses a dendrogram to represent the ranked structure based
on similarity levels at which groupings change. HCA is often used
together with a heat map to visualize the data matrix with different
colours representing different entries in the data matrix (Ren et al.,



Figure 11. Dendrogram and heat map generated by MetaboAnalyst using default metrics.
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2015). The (dis)similarity metrics between pairs of subjects and pairs of
clusters must be chosen beforehand in order to form the hierarchical tree
since this will influence the shape of the clusters. This kind of metrics are
called ‘distance’ and ‘linkage’. ‘Distance’ defines how far apart two data
points are in general while ‘linkage’ describes and calculates the expanse
between two clusters. From our review on the four tools, we found that
RIKEN does not offer clustering analysis while MetaboAnalyst provides
comprehensive clustering exploration for its user. Ward linkage is the
default linkage metrics for MetaboAnalyst and SIMCA-Pþ. Table 4
summed up the distance and linkage metrics available by the tools for
clustering.

Figure 8 shows the dendrogram and heat map generated by COVAIN
based on Average linkage of Euclidean distance metric as its default
distance. Euclidean is the most commonly used distance function for
clustering due to its simplicity and instinctive appeal to reflect the
dissimilarity between two patterns. It evaluates the vicinity of objects in
two or three-dimensional space (Terziyan, 2017). Here, the samples were
not clearly clustered into groups based on their sampling sites. COVAIN
also provides another graphical representation of data set that enable a
more focused visualisation in a form of a heat map (Figure 9). The locus
of several samples from planting trials in contrasting group could be due
10
to technical errors while preparing the samples. The samples are listed in
the columns while the mass to charge (m/z) ratio of metabolites are in the
rows. The yellow colour indicates higher metabolite abundance with
decreasing abundance towards bluer hue. From a close observation of the
heat map, higher abundance of the following metabolites in ‘tR: m/z’
pairs were indicated;

SIMCA-Pþ provides two options of ‘Ward’ or ‘Single’ linkages for
clustering and for this analysis, ‘Ward’ variance function was applied
based on the deduction that ‘Ward’ method takes into account both the
between-cluster and within-cluster distances (Strauss and von Maltitz,
2017). The resulting clusters from our initial experiments using this
method produced better output in terms of consistency. While ‘Single’
linkage assigns two closest points from each cluster according to their
similarity, the ‘Ward’ linkage measures the error increment of each
merging cluster (Sartorius Stedim Data Analytics AB, 2017) and com-
putes the increase of error after combining two clusters and minimize the
error in consecutive clustering steps (Clifford et al., 2011). The dendro-
gram generated by SIMCA-Pþ in Figure 10 showed slightly different
results compared to the output of the COVAIN tool which employs a
default Average linkage. Although it produced a clear clustering, more
samples were admixed together beyond their sampling soil types.



Figure 12. Dendrogram and heat map generated by MetaboAnalyst using
Pearson distance metric.
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In MetaboAnalyst, there are three types of distances that can be
chosen for clustering (dendrogram with heatmap) from the settings
namely Euclidean distance, Pearson distance and Minkowski distance
Figure 13. Dendrograms from heat map generated by Metab
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while for an individual dendrogram, different options are given;
Euclidean distance, Pearson distance and Spearman distance. This tool
also provides several types of linkage selection which are Ward, Single,
Complete or Average linkages. Figure 11 is the dendrogram and heat map
produced from MetaboAnalyst version 4.0 using the default Euclidean
distance and Ward linkage.

In Figure 12, the dendrogram and heat map was produced using
Pearson distance and Ward linkage to see if better clustering can be ob-
tained for the samples according the planting sites. Pearson distance
metric delineates the correlation coefficient between two lists of values
(Cox et al., 2005). This result produced a dendrogram with a slightly
better cluster for the two planting sites. Figure 13 shows the comparison
of the two constructed dendrograms employing the two distance metrics.

In MetaboAnalyst's dendrogram and heat map, the red colour in-
dicates higher metabolite abundance in contrast with lower ones in blue
colour. There are several straightforward utility for users to probe into
the heatmap results. The results can be seamlessly rearranged according
to distance and linkage metrics and several view selections. Based on the
dendrogram and heatmap in Figure 14, the top 10 significant variables
were viewable from the t-test/ANOVA options. The variable pairs of 90.2
s; m/z 131.5, 90.2 s; m/z 373.5 and 90.2 s; m/z 516.5 were present in
most samples from Keratong while variables of 90.2 s; m/z 165.5, 90.2 s;
m/z 164.5, 150.2 s; m/z 152.5, 150.2 s; m/z 333.5, 150.2 s; m/z 439.5,
90.2 s; m/z 333.5 and 90.2 s; m/z 439.5 were detected in more samples
from Teluk Intan. This function allows users to indicate important vari-
ables and samples for further exploration and inspection.

In a separate dendrogram utility in MetaboAnalyst, another com-
parison using default Euclidean and Spearman distance metrics was
reviewed as shown in Figure 15. The Spearman metric is a nonparametric
(distribution-free, not adhering to assumptions) distance measure and is
less influenced by outliers, such as the presence of lower or higher in-
tensity (Cox et al., 2005). Better clusters were recorded with Spearman
distance and Ward linkage by which the samples were generally assem-
bled into groups based on their sampling sites compared to its Euclidean
default.

Altogether, different outputs of clustering have been produced from
MetaboAnalyst, COVAIN toolbox and SIMCA-Pþ. From the four statisti-
cal tools used in this analysis, MetaboAnalyst and COVAIN are found to
be equipped with both dendrogram and heat map function while SIMCA-
Pþ provides dendrogram construction tool. Although the clustering in
SIMCA-Pþ and MetaboAnalyst began by using default method of similar
Euclidean distance and Ward linkage metrics, the result of the dendro-
grams from these tools are not alike. This could probably be due to
different background or underlying algorithm behind their “distance”
and “linkage” metrics in addition to the various pre-processing steps
involved prior to clustering. It was also found that several samples
deviated from their respective technical replicates in the clusters as listed
in Table 5 below:

As observed from the dendrograms generated by these three tools,
differences within the groups of samples were managed to be detected by
the clustering methods of dendrogram and heatmap as compared to the
output of PCA although all of these approaches are of unsupervised na-
ture. This is due to the fact that the clustering algorithm consecutively
pairs entities together for the highest degree of similarity while PCA
reduces dimensions of the data for total variability or divergence
(Robledo et al., 2015). More biological and technical replicates for a solid
data set in addition to scrutiny into the pre-processing parameters could
oAnalyst using Euclidean and Pearson distance metrics.



Figure 14. Top 10 variables based on t-test/ANOVA analysis using Pearson distance and Ward clustering algorithm presented in dendrograms and heat map generated
by MetaboAnalyst.

Figure 15. Dendrograms generated by MetaboAnalyst with Euclidean and Spearman distances.
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illuminate the factors contributing to these different findings. While
pre-processing steps for multivariate data analysis aided in the scaling
and normalisation of the data set throughout PCA, the technical variation
found in several samples were quite profound that it was eventually
observed in the cluster analysis. It is no doubt that the linearity, preci-
sion, repeatability, stability and accuracy of an analytical method are the
critical criteria for a sound phytochemical analysis (Sun et al., 2017).
Human errors that contributed to the sample mishmash should be traced
and investigated and more technical replicates should be prepared to
investigate the magnitude of the error. Multistep extraction procedures
increases the chance of error introduction and should be minimised
(Emwas et al., 2016) and attention should be given to the protocols and
technical approaches for maximum reliability, reproducibility, and
sensitivity of analysis due to the fact that a metabolome is a very dynamic
unit and is highly responsive to different stimuli, e.g., sample handling
and sensitive to surrounding for instance thermal degradation (Fang
et al., 2015).
12
3.2. Supervised method

3.2.1. Partial least squares discriminant analysis (PLS-DA)
PLS-DA is often applied in the encounter of many possible correlated

predictor variables in a matrix of responses. It maximises and exploits the
covariance between the variables (X) and the informative response (y),
when response (y) is available in a challenge to understand which vari-
ables carry the class separating information. PLS-DA produces scores
vectors and loadings vectors, similar as PCA output. The strategy differs
from PCA in that it includes the additional input (vector y) by adjusting
the model to capture the Y-related variation in X and also to enhance the
poor clustering obtained with the PCA model. PLS-DA is frequently
employed in cases with two classifications of participants such as treated
versus untreated control groups or infected versus healthy control.
Several members of PLS-DA family are PLSR-DA (PLS Regression-DA),
Orthogonal-PLS (OPLS), Orthogonal PLS-DA (OPLS-DA), Power-PLS



Figure 16. PLS-DA scores (a) and loadings plots (b) of oil palm leaf metabolome of different planting sites generated by SIMCA-Pþ, MetaboAnalyst and RIKEN Excel
Macro tool.
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(PPLS) and its adaptation; PPLS-DA and Canonical Powered PLS (CPPLS)
(Liland, 2011).

The PLS-DA plots in SIMCA-Pþ displayed the relation between the X-
variables and the Y-variables with values of R2X (cum) of 0.500, R2Y
(cum) of 0.904929 and Q2 (cum) of 0.63923. The PLS-DA scores plot in
Figure 16 shows a complete and significant separation of these two
sample groups of different planting trials. While in the loadings plot,
similar variables as in PCA were discovered responsible to separate the
two planting sites, Keratong and Teluk Intan; loadings point 1 (tR 90.2 s;
m/z 131.5) and loadings point 2 (tR 150.2 s;m/z 152.5). The loadings line
plot in Figure 17 shows the X-variables with red circled peak pinnacles
that are responsible in separating the data into two groups. The Variable
Figure 17. PLS-DA loadings line
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Importance for the Projection (VIP) plot (Figure 18) summarises the
importance of the variables for interpreting X and correlating to Y. VIP
values larger than 1.0 indicates “important” X-variables and values lower
than 0.5 indicates “unimportant” X-variables. These “important” X-var-
iables are the variables responsible for distinguishing the data into two
group of clusters. The interval between 1.0 and 0.5 is a grey area, where
the importance level depends on the size of the data set. However, only
variables with VIP values > 2.0 were selected for further data analysis.
Such a strict criterion was set because of the large number of variables in
the plot. The following variables of ‘tR: m/z’ pairs should be chosen for
further analysis, e.g., identification and pathway mapping:
plot generated by SIMCA-Pþ.



Figure 18. PLS-DA VIP plot generated by SIMCA-Pþ.

Table 5. Examples of deviating samples discovered from clustering analysis.

Tools Teluk Intan Cluster Keratong Cluster

COVAIN (dendrogram þ heatmap) Keratong 154 Teluk Intan 528

Keratong 152 Teluk Intan 513

Keratong 151

Keratong 139

Keratong 138

SIMCA (dendrogram) Keratong 194 Teluk Intan 765

Keratong 153 Teluk Intan 672

Teluk Intan 513

Teluk Intan 233

MetaboAnalyst (dendrogram þ heatmap using Pearson distance) Keratong 194

Keratong 154

Keratong 152

MetaboAnalyst (dendrogram using Spearman distance) Keratong 194 Teluk Intan 672

Keratong 154 Teluk Intan 513

Keratong 152 Teluk Intan 233
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The VIP scores generated in MetaboAnalyst version 4.0 shown in
Figure 19 demonstrates the top 15 important features identified by PLS-
DA in Figure 16. These identified variables were responsible for
discriminating phytochemical profiles of the two planting sites in the
PLS-DA scores and loadings plots. The coloured boxes on the right indi-
cate the relative abundances of the corresponding metabolites in the two
planting sites; red colour indicates high abundance and green colour
indicates low abundances.

From the VIP scores of the top 15 variables, m/z 152.5 at 150.2 s and
m/z 131.5 at 90.2 s were identified as the metabolites that significantly
contributed to the class separation of oil palm leaf metabolome profiles
from the different planting sites. Metabolite m/z 152.5 is of higher
abundance in samples from Teluk Intan and metabolite m/z 131.5 is
higher in samples from Keratong. The MetaboAnalyst loadings plot of
PLS-DA (Figure 16 (b)) shows that the variables similar to the VIP
14
findings are plotted further away from the origin which are m/z 131.5 at
90.2 s and m/z 152.5 at 150.2 s. These variables are responsible in
separating the data into two groups of clusters as shown in the scores
plot. To validate the statistical modelling of the two different planting
sites in the PLS-DA model, a cross validation test was conducted in
MetaboAnalyst with the result of R2 ¼ 0.95995 and Q2 ¼ 0.58703. R2
reading represents the model's degree of fitness and Y variables quality
while Q2 reading explains the predictive quality of the PLS model with
the best model having value closer to 1.0 (Khoo et al., 2015). The load-
ings plot generated by RIKEN Excel Macro Tool in Figure 16 (b) shows
m/z 131.5 at 90.2 s and m/z 152.5 at 150.2 s as the most influential
metabolites in the separation of the two different sample groups. The
loadings plot produced by the RIKEN Excel Macro tool was comparable to
the loadings plots from the MetaboAnalyst platform in terms of orien-
tations and dispersal of elements in its scores and loadings plots. A



Figure 19. PLS-DA variable importance in projection (VIP) by MetaboAnalyst.
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cross-validation test validated the model with a result of Q2 ¼ 0.63924.
More than 15 metabolites with VIP scores greater than 1.0 were observed
across different samples from both Keratong and Teluk Intan trials.
However, due to the large number of variables in the plot, only variables
with VIP values>2.0 were selected for further analysis (Figure 20). They
are:

From the three software platforms providing supervised methods, the
recorded important variables from SIMCA-Pþ output are similar to those
of RIKEN Excel Macro tool. MetaboAnalyst on the other hand, listed 90.2
s:m/z 333.5 in its lists of VIP values>2.0. The influential loadings ofm/z
131.5 at 90.2 s and m/z 152.5 at 150.2 s for the PLS-DA from all three
tools were consistent. When SIMCA-Pþ version 12 was compared to one
of the more recent edition, we noticed its improved performance in term
Figure 20. PLS-DA VIP scores b
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of processing speed and its user-friendliness, i.e., pop-up windows.
Nevertheless, our existing SIMCA-Pþ version still works reasonably on
par with the other tested platforms. Based on the testing of each tool,
every platform has its own function and features in analysing the data.
The runtimes of all installed tools were comparably fast with only
MetaboAnalyst running online and every statistical plot was generated in
less than 2.0 s Table 6 summarises the platforms that were used for the oil
palm metabolome data analysis.

4. Conclusion

Subtle changes in the environment affect crop productivity and per-
formance whether on the instant or in the long term. As part of our effort
to streamline the ecometabolomics workflow for sustainable oil palm, the
utilization of a rapid, straightforward and cost-effective method of field
data interpretation is ideal. In this investigation, the raw LC-MS data set
from an earlier published work (Tahir et al., 2016) was used for com-
parison of COVAIN toolbox, MetaboAnalyst, SIMCA-Pþ, and RIKEN
Excel Macro statistical analysis tools. The real data set represents the
individual biological palms of similar genetic background to put the
genetic factor as a constant and to monitor the plants components such as
the metabolome that responds to environmental stimuli in a metabolic
homeostasis (Nagler et al., 2018). The four software that were assessed
have helped us to reveal the different methods, purposes and interfaces of
each approach in interpreting the metabolome data. This comparison
allows identification of relationships and the capabilities of respective
statistical analysis tool for oil palm metabolomics research. There is no
single statistical tool that possess an entirely desirable features as every
tool has its own advantages and limitations. The statistical tools are
comprised of different multivariate data analysis for complex metab-
olomics data as such used in the literatures (Bartel et al., 2013; Worley
and Powers, 2013). There are many methods that can be applied in
analysing raw metabolome data, and both unsupervised and supervised
techniques were used in this study. Depending on functions and objec-
tives of the exploration, the unsupervised and supervised approaches
have no superiority over one another. Nevertheless, unsupervised
methods are routinely used as an initial step to limit and consequently
delineate the most significant remaining variables, often to attain a
global overview of the data set and to allow generation of hypotheses that
y RIKEN Excel Macro tool.



Table 6. Comparison of investigated metabolomics statistical tools.

Tools COVAIN toolbox Version 2017-May-16 SIMCA-Pþ version 15.2 MetaboAnalyst version 4.0 RIKEN Excel Macro Tool

Type of platform Toolbox with window or pane with
quick access to common operation
functions in the program

Licensed software Web server Tool

Statistical analysis offered PCA
ICA
Clustering (Dendrogram and heat map
utility)
Correlation analysis

PCA
PLS, OPLS
PLS-DA, OPLS-DA
Clustering (Dendrogram
utility, PLS-tree, etc.)

PCA
PLS-DA
OPLS-DA
Clustering (Dendrogram and heat
map utility, K-means, self-
organizing map (SOM), etc.)

PCA
PLS-R
PLS-DA
Correlation analysis

Cost COVAIN itself is an open source
software but annual renewal of
MATLAB license costs at least USD29
(student license) on top of one-time
software and tools package purchase

Perpetual software license for
one time purchase

Free online and offline open
source local installation usingWeb
Application Resource (.war) file

Microsoft Excel which cost at
least USD140 (for Home &
Student version)

Runtime (Analysis time) 1.79 s 1.91 s Runtime of the online tool
depends on user's internet
connection unless locally
installed.

1.29 s

Limitations � Requires MATLAB licensed software
to run the toolbox
� Supports.xls or.xlsx and.txt file
format
� No supervised methods function

� The software product need
to be purchased at a cost
� Support.xls or.xlsx,.csv
and.txt file format
� No heat map utility

� Requires internet connections
� Support.csv,.txt and mass
spectrometry file formats
� The information for pathway and
metabolite identification for plant
and microbial metabolism is still
improving

� Requires:
-Windows operating system
-Microsoft Excel Version 2010
� Supports.csv file format
� No dendrogram and heat
map utility

Advantages � Freely accessible for download
� Easy to use

� Excellent graphic
capabilities
� Comprehensive analysis
options for three multivariate
data analysis methods

� Freely accessible
� Easy to use
� Offers many statistical analysis
methods
� Has its own metabolite and
pathway identification tools

� Freely accessible
� Easy to use
� Easy adjustment of figures

Experience of use Generated figures from statistical
analysis are adjustable. However, data
pre-processing parameters and
supervised methods are limited. Apart
from statistical analysis, COVAIN tool
consist of Granger time-series analysis,
pathway mapping, correlation
network topology analysis and
visualization.

A well-known data mining
software for more than 30
years. However, users need to
clearly define variables
including identifiers for the
variables, the roles of the
variables, the data type which
can be quite confusing for the
newbies. This could be due to
usage of SIMCA-Pþ for
multiple fields other than
metabolomics.

A complete pipeline for high-
throughput metabolomics starting
from data pre-processing,
multivariate data analysis and
data annotation. It provides
interesting functions-biomarker
analysis, various pathway
analysis, etc. The software is
constantly updated for public use.

A user friendly tool with
comprehensive manual.
Figures generated are easy to
adjust due to familiarity of
Microsoft Excel.
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can then be verified statistically using supervised approach (Noto et al.,
2016).

In common circumstances, the methods and tools that are chosen by
users for their data analysis are based on the capability and availability of
these platforms. Cost for obtaining and renewing software licenses may
influence the decision to choose or switch over to publicly available tools.
At present, there are many methods and tools that have been established
to aid phytochemists and these methods need to be explored in order to
find and tailor the most efficient and optimum data interpretation plat-
form into a metabolomics workflow. Several initiatives have been carried
out to fill the gaps to tackle the data rich, information poor quandary
(Tachibana, 2014) and the tools that go as far as distinguishing and
mapping the metabolites into pathways and integrates the findings with
other "omics" platforms are the cr�eme de la cr�eme (Klupczy�nska et al.,
2015). Overall, with regards to cost and versatility, this investigation
gave a better understanding and a foundation for the application of the
best statistical tools into the oil palm research pipeline which at present
was found to be MetaboAnalyst.

While applying the tools onto the raw data set, it was found that
apart from discovering differences and similarities between the sam-
ple groups relevant to the hypothesis, multivariate data analysis is
useful for critical assessment of data integrity. While biological
contamination could cause a sample fail to cluster within the group,
technicalities issues such as repeated measurements of biological
16
replicates would allow the evaluation of the clustering robustness. In
addition to this, precision and accuracy of the analysis could be
improved by looking at the intra- and inter-day relative standard de-
viation (RSD) for example analysing at least five replicates of quality
control (QC) samples at three different concentrations on the same day
and for at least three consecutive days. The concentration of each QC
sample is then calculated using a standard curve of the day. The
precision can be determined as the RSD while the accuracy is estab-
lished as the relative error (RE) (Peng et al., 2014). Robust analytical
design for LC-MS is crucial as the method is less reproducible than
other phytochemistry methods in terms of its hardware/parts (e.g.,
column, septa) and other parameters (mobile phase composition and
preparation, analysis temperature throughout the setup) (Defernez
and Le Gall, 2013).
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