
Database, 2022, 1–15
DOI: https://doi.org/10.1093/database/baac060
Original article

NetREx: Network-based Rice Expression Analysis Server 
for abiotic stress conditions
Sanchari Sircar†, Mayank Musaddi† and Nita Parekh*

Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 
500032, India
*Corresponding author: Tel: +91-40-6653 1000; Fax: +91-40-6653 1413; Email: nita@iiit.ac.in
†These authors contributed equally to this work.

Citation details: Sircar, S., Musaddi, M. and Parekh, N. NetREx: Network-based Rice Expression Analysis Server for abiotic stress conditions. Database
(2022) Vol. 2022: article ID baac060; DOI: https://doi.org/10.1093/database/baac060

Abstract
Recent focus on transcriptomic studies in food crops like rice, wheat and maize provide new opportunities to address issues related to agriculture 
and climate change. Re-analysis of such data available in public domain supplemented with annotations across molecular hierarchy can be of 
immense help to the plant research community, particularly co-expression networks representing transcriptionally coordinated genes that are 
often part of the same biological process. With this objective, we have developed NetREx, a Network-based Rice Expression Analysis Server, 
that hosts ranked co-expression networks of Oryza sativa using publicly available messenger RNA sequencing data across uniform experimental 
conditions. It provides a range of interactable data viewers and modules for analysing user-queried genes across different stress conditions 
(drought, flood, cold and osmosis) and hormonal treatments (abscisic and jasmonic acid) and tissues (root and shoot). Subnetworks of user-
defined genes can be queried in pre-constructed tissue-specific networks, allowing users to view the fold change, module memberships, gene 
annotations and analysis of their neighbourhood genes and associated pathways. The web server also allows querying of orthologous genes from 
Arabidopsis, wheat, maize, barley and sorghum. Here, we demonstrate that NetREx can be used to identify novel candidate genes and tissue-
specific interactions under stress conditions and can aid in the analysis and understanding of complex phenotypes linked to stress response
in rice.
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Introduction
Entities in a biological system seldom work in isolation. There 
is a coordinated association between them at every level 
of the molecular hierarchy. These associations are context-
specific and involve the making and breaking of links among 
the entities depending upon the developmental stage, tissue 
and environmental conditions. In field conditions, plants are 
generally exposed to multiple stresses. Thus, finding processes 
that are common or unique across various stress conditions 
can provide novel insights into multi-stress tolerant crops. 
One of the first studies on multi-stress expression profiling in 
rice (using rice complementary DNA microarray) was con-
ducted by Rabbani et al. (1) with the objective to identify 
genes induced by cold, drought, high-salinity and abscisic acid 
(ABA) treatments. Although this early study was on a limited 
set of probes, it demonstrated a common set of genes differen-
tially expressed across various environmental conditions. This 
paved the way for numerous studies on various crops: expres-
sion profiling in potato in response to cold, heat and salt stress 
(2), effect of ABA, drought and salinity stress on pathogen 
defence in tomato (3), transcriptome responses during single 
and combination of stresses in Arabidopsis (4) and expression 
profiling of chickpea genes in response to salinity, drought and 
cold stress (5).

Transcriptomic resources have made major contributions 
to plant functional genomics. For example, RiceXPro hosts 
rice transcriptomic data across various conditions, namely, 
different plant hormone treatments, cell and tissue types, 
and field/developmental stages (6). The database RiceSRTFDB 
provides expression information for transcription factors 
(TFs) in rice under drought and salinity stress and vari-
ous developmental stages (7). More recent resources include 
ePlant web server that provides an integrated view of the 
genome, proteome, interactome, transcriptome [both from 
microarray and RNA sequencing (RNA-seq) data] and 3D 
molecular structure data in Arabidopsis (8), Rice Expres-
sion Database (RED) (9) and Transcriptome ENcyclopedia Of 
Rice (TENOR) database, a collection of large-scale messen-
ger RNA (mRNA)-seq data obtained from rice under a wide 
variety of conditions (10). For researchers, such large-scale 
resources provide further opportunities to re-analyse the data 
with new hypotheses.

A transcriptomic experiment (microarray or RNA-seq) typ-
ically detects thousands of genes differentially expressed with 
respect to control conditions. Functional analysis of such a 
large set of genes is a daunting task. A popular approach is 
to construct co-expression networks based on the similarity 
of gene expression profiles (11). Here, nodes represent genes, 
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Table 1. Number of samples and biological replicates for the mRNA-seq data from DDBJ-SRA (DRA000959) considered for multi-stress analysis are 
summarized

 Time points (No. of biological replicates)

Conditions Treatment Root Shoot No. of samples

Cold 4∘C 0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

Root: 13
Shoot: 13

Drought Grown without medium 0 h (2), 1 h (2), 3 h (2), 6 h (2) 
12 h (2), 1 day (2)

0 h (2), 1 h (2), 3 h (3), 6 h (2), 
12 h (2), 1 day (2)

Root: 12
Shoot: 13

Osmotic 0.6 M mannitol 0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2)

0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2)

Root: 11
Shoot: 11

Flood Completely submerged in 
medium

0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2), 3 day (2)

0 h (3), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (3), 3 day (2)

Root: 15
Shoot: 16

ABA 100 μM 0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

Root: 12
Shoot: 12

JA 100 μM 0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2)

Root: 12
Shoot: 12

No treatment (NT) – 0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2), 3 day (2), 
4 day (2), 5 day (2), 10 day (2)

0 h (2), 1 h (2), 3 h (2), 6 h (2), 
12 h (2), 1 day (2), 3 day (2), 
4 day (2), 5 day (2), 10 day (2)

Root: 20
Shoot: 20

Total Root: 95
Shoot: 97

and edges represent the strength of correlations between 
them. Highly correlated genes can then be grouped into func-
tional modules, reducing the dimensionality of data. Another 
approach is to convert the raw correlation values (Pearson or 
Spearman) into the highest reciprocal ranks (HRRs) or mutual 
ranks (12, 13). Several studies have shown that the biologi-
cal relevance of ranked-based methods is more significant and 
robust than those constructed using raw Pearson’s correlation 
coefficients (PCCs) because they intuitively consider PCCs of 
the neighbourhood of gene pairs as well (13–15). Moreover, 
these methods circumvent the problem of hard-thresholding 
of PCCs and allow weak but significant co-expression rela-
tionships between genes based on ranks (16–19).

For the plant community, various functional resources are 
available. At the global scale, condition-independent net-
works constructed across a large number of data sets from 
varying experimental conditions, platforms, tissues and devel-
opmental stages are available, e.g. AraNet (20), RiceNet 
(21) and MaizeNet (22). Although these allow one to derive 
associations from a large sample size, the merging of dif-
ferent experimental conditions might incorporate complex-
ities in the network difficult to account for. Nevertheless, 
these resources have been useful in the functional annota-
tion of unknown genes and the prioritization of candidate 
genes (20–22). On the other hand, condition-dependent net-
works, derived from smaller data sets representing certain 
specific conditions, provide opportunities to query context-
specific associations (23, 24). In NetREx, a Network-based 
Rice Expression Analysis Server, data corresponding to four 
stress conditions (drought, cold, flood and osmotic stress) 
and two hormonal treatments [ABA and jasmonic acid (JA)] 
from seedlings (10 days after germination) from the TENOR 
database (10) have been considered for network construction 
and analysis. First, we construct a global rank-based stress 
network across four stress conditions and two hormonal treat-
ments, separately for root and shoot tissues. Stress-specific 
networks are then derived from these global networks using 
differentially expressed genes. These networks along with 
functional information are hosted in the database. 

Materials and methods
Data sets
For the construction of this resource, we have considered 
publicly available mRNA-seq data from rice seedlings under 
four environmental stresses (drought, cold, flood and osmotic 
stress) and two plant hormone treatments (ABA and JA), 
obtained from the TENOR database (DDBJ Sequence Read 
Archive: DRA000959). All the experiments have been per-
formed using a single mRNA-seq platform under standard-
ized laboratory conditions and from the same rice cultivar 
Oryza sativa L. (cv. Nipponbare), making it possible to 
compare gene expressions across different stress conditions. 
These are 76-bp single-read sequences obtained from the 
Illumina GAIIx instrument under uniform library condi-
tions (10). Information about the number of samples and 
biological replicates corresponding to the stress conditions, 
tissues and time points are given in Table 1, and links 
to the individual replicates are given in Supplementary
Tables S1–S7. 

Pre-processing
Raw reads are processed for quality control. Adaptor 
sequences and low-quality bases (<Q15) at 5′ and 3′ ends 
of the reads are trimmed using Cutadapt (ver. 1.15) (25). 
After trimming, reads < 20 bp are discarded as these may 
lead to non-specific alignment to the reference genome. For 
each sample, reads are aligned to the rice reference genome 
(Os-Nipponbare-Reference-IRGSP-1.0) using a graph-based 
alignment programme, HISAT2 (ver. 2.1.0) (26), and gene 
annotations are taken from the The Rice Annotation Project 
(RAP) database (version: 2017-04-14) (27). For each sam-
ple, the total base pairs before and after filtering and 
the percentage of reads aligned to the genome are given 
in Supplementary Tables S1–S7. The percentage of reads 
mapped to the reference is a global indicator of sequenc-
ing accuracy as well as the presence of contamination in the
samples (28).
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Table 2. Number of DEGs across various conditions

 DEGs in at least two time points

Tissue/stress Drought Cold Osmotic Flood ABA JA NT Total DEGs—NT

Total DEGs 
used for network 
construction

Root 3817 6327 8040 3651 9340 8835 1127 16 812 13 695
Shoot 10 576 4540 6267 6955 8898 6531 1116 15 804 13 717

Table 3. Number of DEGs across various conditions in the PCC network

 PCC network (with PCC > 0 and P-value < 0.05)

Tissue/stress Total network Drought Cold Osmotic Flood ABA JA

Root Nodes 13 695 2970 5005 6311 2347 7460 7565
Edges 26 269 920 1 686 453 3 637 333 6 286 236 895 590 8 363 871 9 629 038

Shoot Nodes 13 717 8809 3688 5280 5791 7546 5523
Edges 29 180 730 14 425 817 2 430 142 4 956 792 5 793 144 9 582 721 5 320 944

Table 4. Number of DEGs across various conditions in the HRR-100 network

 HRR-100

Tissue/stress Total network Drought Cold Osmotic Flood ABA JA

Root Nodes 13 695 2970 5005 6311 2347 7460 7565
Edges 2 138 990 130 207 352 715 353 129 63 630 463 175 466 528

Shoot Nodes 13 717 8809 3688 5280 5791 7546 5523
Edges 2 272 758 657 747 178 198 303 953 335 654 500 651 321 672

Estimating read counts and differential gene 
expression analysis
Raw read counts for a gene are a measure of its expres-
sion. Here, we use the ‘featureCounts’ tool from the SubRead 
package (1.6.0) (29) and the gene annotation file from RAP-
DB to compute gene expression. The percentage of reads 
assigned to the genes is given in Supplementary Tables S1–S7. 
Differentially expressed genes (DEGs) are determined in a 
tissue-specific manner for every time point at a 2-fold change 
and P-value < 0.05 using DeSeaq2 (30). Genes that are differ-
entially expressed in at least two time points for a given stress 
condition are given in Table 2. Stress/treatment-specific DEGs 
overlapping with the developmental time points (NT) are fil-
tered out as these basically account for diurnal/developmental 
changes. The final count matrix across various stress/hor-
mone treatments is constructed considering genes having raw 
read counts ≥ 5 in at least 50% of the total samples across 
time points. In RNA-seq data, most strongly expressed genes 
show large variations across samples compared to those 
with lower expression profiles (heteroscedasticity). On the 
other hand, most common methods of multi-dimensional data 
analysis like clustering work best with homoscedastic data 
(variance is independent of mean). To achieve this approxi-
mate homoscedasticity, the combined count matrix is normal-
ized using variance stabilizing transformation in DeSeaq2 to 
obtain a relatively flat trend of variance as a function of mean 
(31). The DEGs are then considered for rank-based network 
construction (details given in the ‘HRR network construction’ 
section). Table 2 indicates that for certain stress conditions, 
e.g. drought and flood stress, a large number of DEGs are 
observed in the shoot tissue compared to the root tissue, indi-
cating that major physiological changes like growth in the 

green tissues and plant height get impacted by these condi-
tions. Also, exogenous and direct applications of hormones 
like ABA and JA induce drastic changes in the plant at the 
molecular level with a large number of DEGs getting activated 
or repressed.

HRR network construction
A network-based approach is used to capture the associations 
between genes that are up- or down-regulated under vari-
ous stress conditions. For this, PCCs are computed between 
DEGs under various stress conditions (Table 2), for root 
and shoot tissues separately. Positively correlated genes with 
P-value < 0.05 are considered for the construction of the 
HRR-based co-expression network proposed by Mutwil et al.
(12), both for root and shoot tissues. The HRR score between 
genes A and B is given by the following equation: 

where r(A, B) is the correlation rank of gene B in gene A’s 
co-expression list, and r(B, A) is the correlation rank of gene 
A in gene B’s co-expression list. For this study, the root 
and shoot networks are constructed with HRR values ≤100
(i.e. only the top 100 neighbours for each gene are considered) 
and are termed as an ‘HRR-100’ network. Corresponding 
stress-specific subnetworks are derived from the HRR-100 
network for each of the tissues using respective stress-specific 
DEGs in Table 2.

The number of DEGs across various conditions in the 
correlation network and the HRR-100 network is given in 
Tables 3 and 4, respectively. It may be noted that the major 
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Table 5. Summary of parameters used for the construction of the signed, weighted gene co-expression network using the WGCNA R package

Tissue
No. of 
samples No. of genes 𝛽 cut-off

R2

scale-free fit Mean k Median k Max. k
No. of 
modules

Root 69 13 695 26 0.91 15.4 8.7 151 22
Shoot 72 13 717 26 0.81 36.4 18.2 262 18

advantage of considering the HRR-100 network over the PCC 
network is a significant reduction in the number of edges. 
Moreover, while ranking the genes, this process intuitively 
considers the vicinity of the network neighbours as well which 
has a considerable impact on the biological relevance of the 
networks (14).

Network clustering with Weighted Gene 
Co-Expression Network Analysis (WGCNA)
Co-expressed gene clusters often point to coordinated bio-
logical processes and help in reducing the dimensionality of 
the data. For this purpose, a ‘signed’ co-expression network 
is constructed with 13 695 and 13 717 DEGs from root and 
shoot tissues, respectively. The unsigned networks use the 
absolute value of correlations, sij

unsigned = ∣cor(xi,yj)∣, and are 
unable to distinguish between gene activation (sij

unsigned = 1) 
and gene repression (sij

unsigned = 1), leading to the loss of bio-
logical information (32). Hence, here we construct a signed 
co-expression network, considering the ‘sign’ of correlation 
between expression profiles of genes and the similarity mea-
sure, in this case, is defined as follows:

where xi and yj are the expression profiles of genes i and 
j across the samples. Here, sij

signed = 1 corresponds to posi-
tive correlation, sij

signed = 0 corresponds to negative correla-
tion and sij

signed = 0.5 corresponds to no correlation, thereby 
distinguishing between positively and negatively correlated 
genes.

The function block-wiseModules in the WGCNA R pack-
age is used for hierarchical clustering of genes using the
Dynamic Tree Cut approach (33), with maximum block
size = 14 000, minimum module size = 50, ‘cut height’ =
0.995 and ‘deep split’ = 2. The tissue-specific network param-
eters are given in Table 5. Here, for a weighted network, 𝛽
is the soft thresholding power to which co-expression sim-
ilarity is raised to calculate adjacency, thereby emphasizing 
high correlations at the expense of low correlations. And k
refers to the connectivity or sum of the connection strengths 
with other genes in the network. The weighted topological 
overlap matrix in WGCNA allows us to compute various 
degree centrality measures, which can be useful in screen-
ing important genes. Specifically, we computed the kIM, the 
within-module degree or intra-modular connectivity of a gene 
in the respective co-expressed module. 

The co-expressed modules (22 for root and 18 for shoot) 
are tested for their biological relevance. To that end, the 
genes of the individual clusters are submitted for over-
representation analysis in the Gene Ontology (GO) consor-
tium using the PANTHER classification system (v14.0) (34) 
for O. sativa. Results with Fischer’s exact test and the Bon-
ferroni correction for multiple testing (P-value < 0.05) are 

retrieved for each module. Significant GO terms indicate that 
genes of a given cluster are more often associated with cer-
tain biological functions than what would be expected in a 
random set of genes. Furthermore, we queried the top 100 
highly connected genes (based on intra-modular connectivity) 
in an independent database, STRING DB (35), to check for 
protein–protein interactions. The percentages of DEGs across 
modules and results from the functional databases (GO and 
STRING DB) are discussed in detail in Supplementary File 1.

Server implementation and Graphical User 
Interface (GUI)
Visualization and interpretation of large-scale data sets to 
study the emergent properties of complex biological processes 
with functional annotations across the molecular hierarchy 
has become an indispensable task for the scientific community. 
With this objective, we have developed NetREx, the web-
based network querying and visualization resource (Figure 1). 
Using NetREx, one can view relationships between query 
genes and analyse them based on different supported visual-
izations like the Network Viewer, the Network Neighbour-
hood Viewer and the Expression Viewer. It also provides the 
option to browse through the complete database based on tis-
sue, modules, stress conditions/hormone treatment and from 
the Kyoto Encyclopedia of Genes and Genomes Database 
(KEGG). It is built using Sigma JS(3), a javaScript library 
dedicated to graph drawing. The backend has been built on 
Express JS that communicates between the user and the JSON 
database and allows the handling of all logical computa-
tions like identifying the query, fetching and filtering of data 
from the JSON database that stores the complete graph and 
extracting relationship between queried genes for the chosen 
tissue and stress/treatment conditions. Clustergrammer JS is 
a front-end javaScript library for building heatmap plots in 
the Expression Viewer and provides interactive visualization 
features such as sorting and zooming (36). To make the query-
ing efficient and fast, the gene node’s position, size, shape and 
colour are pre-calculated and stored in JSON files using the 
Gephi software (34).

Modules and views
The interface of NetREx is kept simple for ease of use for 
the biologists. A comma-separated list of gene IDs (in RAP-
DB format) can be uploaded or manually pasted. A user may 
navigate NetREx either by querying a chosen set of genes or 
by browsing through various modules. In the next section, we 
discuss in detail various functionalities of NetREx.

Querying NetREx
A user can submit up to a maximum of 300 genes and 
query their expression profiles across any of the four abi-
otic stresses, namely, drought, cold, osmosis and flood, and 
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Figure 1. Schematic representation of NetREx architecture, modules and visualizations.

two phytohormone treatments, ABA and JA, for the root 
or shoot tissue. In the drop-down menu, the user may pro-
vide rice RAP-DB IDs. Alternatively, the user may also query 
using Ensembl Stable IDs for Arabidopsis, wheat (Triticum 
aestivum), maize (Zea mays), barley (Hordeum vulgare) or 
sorghum (Sorghum bicolor), and the genes will be mapped to 
the corresponding rice orthologs based on the Ensembl Plants 
database (37). The ortholog gene information is extracted 
using the BioMart RESTful services for all the rice gene 
IDs using the ‘wget’ option (https://www.ensembl.org/info/
data/biomart/biomart_restful.html). The option of querying 
orthologous genes in NetREx allows the user to investigate the 
involvement of genes in other crops under abiotic stress and 
phytohormone treatments through the interaction networks 
of their orthologs in rice.

Expression Viewer
Early and late stress-responsive genes are known to have dis-
tinct roles in the stress response. At the same time, genes 
that are ubiquitously differentially expressed across all the 
stages of plant may have some essential roles (34). Earlier 
studies have shown tissue-specific roles of stress-responsive 
genes, indicating that divergence in the expression patterns 
of DEGs is an important indicator of their functions. Par-
ticularly, for uncharacterized genes, stage and tissue-specific 
expression profiles can give important cues regarding their 
functions (38). The user can analyse such stress, tissue and 
time point–specific information through heat maps provided 
in the Expression Viewer module. For the user-provided 
gene set, differential expression of genes can be observed 
based on the fold change and P-values at various time points
for the chosen stress and tissue. The user is also provided 
with the option to sort the ordering of genes or time points 
in the heatmap based on the expression value, thus allowing 
to observe general trends across them.

Network Viewer
This module displays connectivity between query genes in dif-
ferent stress/treatment conditions and tissue types at different 
time points. The panel on the right provides various func-
tionalities and colouring schemes to assess the relevance of 
the nodes. The size of the node is drawn proportional to its 
connectivity, i.e. the larger the node, the higher is its con-
nectivity. Also, two different shapes are used for the nodes, 
‘circle’ for genes and ‘triangle’ for TFs. In the ‘default view’, 
a gradient colouring scheme based on the degree of nodes 
is displayed. Thus, the darker the node colour, the higher 
is its degree, i.e. connectivity. Owing to the dense nature of 
the network, the arrangement of nodes in the area plays an 
important role in how the network is inferred. Thus, to make 
highly connected gene nodes appear together and unrelated 
nodes drift apart, a force-directed algorithm, ForceAtlas2, has 
been used. Upon hovering over any node in the network, the 
respective node and its first neighbours are highlighted. The 
nodes may also be coloured based on their expression status: 
‘red’ or ‘blue’ depending on whether the gene is up- or down-
regulated at a chosen time point. Thus, by comparing across 
different time points, the user can analyse which genes go up 
or down as a function of time. This functionality helps in iden-
tifying ‘early’ or ‘late’ responsive genes. This feature can also 
be used to compare differential expression of genes across tis-
sues or across different stress/treatment conditions. Another 
visualization option provided in NetREx is to colour nodes 
according to their module membership in WGCNA clusters. If 
the majority of query genes are part of the same co-expressed 
module, then it is highly likely that they represent the same 
biological process and based on their up- or down-regulation, 
we can know whether the process is activated or repressed.

The user may also highlight the genes based on KEGG 
pathway categories provided in the dropdown menu. Fur-
thermore, to aid in the identification of genes responsive 
to multiple stress conditions, the user can load other stress 
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Figure 2. A schematic representation of the ABA signalling pathway from the KEGG database.

conditions from the pull-down menu and view results in a 
new tab. Additional information, based on ‘Node’ and ‘Edge’ 
attributes, is provided in a tabular format by clicking on 
the ‘Show/Hide Table’ button. In the ‘Node’ attributes table, 
gene attributes, such as gene IDs (RAP-DB and MSU), TF 
annotations, module membership, gene descriptions and link 
to IC4R RED (9), are provided. Access to IC4R allows the 
users to compare gene expression profiles across a larger 
set of RNA-seq experiments (24 projects) across various 
growth stages, tissues and conditions. Gene functional anno-
tations, such as GO terms (based on RAP-DB annotations) 
and pathway annotations from KEGG databases (39) and 
MapMan (40), are also provided. The fold change and P-
values for each gene for every time point for the chosen 
tissue and stress/treatment condition are given. In the ‘Edge 
Attributes’ table, PCCs and HRR ranks for each interact-
ing pair are given for the selected tissue-specific network of 
query genes. Using the right panel of the “Network Viewer” 
page in NetREx, the user can view up to 100 top neighbours 
(default = 50) of the query genes based on kTotal (the connec-
tivity in the whole tissue-specific co-expression network) to 
view the network neighbourhood of query genes. In this view, 
the query genes are depicted as nodes encircled with a green
border.

Browsing NetREx
By modules
In co-expression networks, modules represent highly inter-
connected clusters of genes. These clusters may often repre-
sent coordinated biological processes with conditions/tissue-
specific functions. As discussed in the ‘Network clustering 
with WGCNA’ section, we performed hierarchical clustering 
using the WGCNA R package to derive 22 co-expressed gene 
modules for root and 18 for shoot tissues (Table 5). These 
gene modules can be accessed by clicking ‘Module-wise’ under 
the ‘Browse’ menu and choosing the tissue and module name 
from the drop-down menu. On this page, the top 100 highly 
connected genes based on their within-module connectivity 
kIM can be viewed on a graded colour scale, based on the 
‘colour name’ of the module. The top 100 genes of the mod-
ule are also listed in tabular format along with their node and 
edge attributes, functional annotation (from GO, MapMan 
and KEGG) and GO enrichment. For a given module in a 
tissue-specific network, these genes represent the core com-
ponents whose functions may be representative functions of 
the respective module. Furthermore, GO enrichment terms for 
‘biological processes’ are provided with the fold enrichment 
and False Discovery Rate (FDR) values to infer the overall 
function of the co-expressed functional cluster.

By conditions
To explore important stress-responsive genes, the user can 
browse NetREx ‘Condition-wise’. On selecting the tissue and 
stress/hormone treatment, the user can fetch the list of DEGs 
(in tabular format) for the corresponding tissue and condition 
(Table 3). The tables containing gene information and link 
to IC4R expression database, gene function (GO, MapMan 
and KEGG) and fold change along with P-value across time 
points are provided. The fold change tables can be sorted by 
the fold change or P-value to identify the most significant up- 
or down-regulated genes for the chosen condition at different 
time points.

By pathways
This is one of the attractive features of NetREx by which 
hierarchical KEGG pathways can be explored. After select-
ing the appropriate tissue and condition, the user may select 
a certain pathway of interest. Genes of the selected pathway 
that are DEGs for at least two time points (for the chosen 
stress/treatment condition) can be filtered for further network 
analysis.

Discussion
Querying NetREx: a case study
To illustrate the efficacy of NetREx, we consider a set of 
drought-responsive genes in rice. The selected genes belong to 
the ABA signalosome complex comprising pyrabactin resis-
tance (PYR)/pyracbactin resistance-like (PYL) receptors, pro-
tein phosphatase 2Cs (PP2Cs), SNF1-related protein kinase 
2 (SnRK2) and ABF/bZIP TFs, obtained from the KEGG 
database (pathway ID: dosa04075) (41, 42) for this case 
study. The ABA signal transduction pathway is one of the 
key mechanisms by which plants respond to environmen-
tal stresses like drought. Several studies indicate that the 
central signalling module comprises three protein classes: 
PYR/PYL/regulatory component of ABA receptor (RCARs) 
proposed to be the ABA receptors and the regulatory proteins, 
namely, PP2Cs which act as negative regulators together with 
SnRKs which are positive regulators (Figure 2). An increase 
in ABA levels during stress leads to the PYR/PYL/RCAR–
PP2C complex formation causing inhibition of PP2C activity, 
thereby allowing activation of SnRKs which target the func-
tional proteins, such as membrane proteins, ion channels and 
TFs, and facilitate transcription of ABA-responsive genes. 
Thus, network-based resources such as NetREx can enable 
us to query the coordinated interactions of regulatory genes 
and their functional targets which further trigger downstream 
processes.
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Table 6. Shoot- and root-specific subnetworks of the ABA signalosome 
complex extracted using NetREx under drought stress

RAP-DB ID Gene name
Component of the 
ABA signalosome Degree

Shoot network
Os09g0325700 OsSIPP2C1 PP2C phosphatase 7
Os01g0583100 OsPP2C06 PP2C phosphatase 6
Os03g0268600 OsPP2C30 PP2C phosphatase 6
Os05g0537400 OsPP2C50 PP2C phosphatase 6
Os01g0656200 OsPP2C08 PP2C phosphatase 5
Os01g0869900 SAPK4 SnRK2 protein 

kinase
5

Os02g0766700 OsbZIP23 bZIP TF 5
Os06g0211200 OsAREB1 bZIP TF 2
Os07g0622000 SAPK2 SnRK2 protein 

kinase
1

Os05g0213500 OsPYL5 ABA receptor 1
Os01g0867300 OsbZIP10 bZIP TF 1
Os02g0551100 SAPK6 SnRK2 protein 

kinase
1

Os01g0813100 HBF2 bZIP TF 0
Os10g0564500 SAPK3 SnRK2 protein 

kinase
0

Os03g0390200 SAPK1 SnRK2 protein 
kinase

0

Os05g0437700 OsbZIP40 bZIP TF 0
Os02g0255500 OsPYL3 ABA receptor 0

Root network
Os01g0656200 OsPP2C08 PP2C phosphatase 7
Os09g0325700 OsSIPP2C1 PP2C phosphatase 7
Os05g0537400 OsPP2C50 PP2C phosphatase 7
Os03g0268600 OsPP2C30 PP2C phosphatase 7
Os01g0583100 OsPP2C06 PP2C phosphatase 5
Os01g0867300 OsbZIP10 bZIP TF 5
Os02g0766700 OsbZIP23 bZIP TF 5
Os06g0211200 OsAREB1 bZIP TF 5
Os02g0255500 OsPYL3 ABA receptor 0
Os02g0551100 SAPK6 SnRK2 protein 

kinase
0

Os07g0622000 SAPK2 SnRK2 protein 
kinase

0

Os10g0573400 OsPYL1 ABA receptor 0
Os09g0456200 OsbZIP72 bZIP TF 0

A total of 41 rice genes from KEGG (pathway ID: 
dosa04075) are queried in NetREx in ‘root’ and ‘shoot’ tissues 
under ‘drought’ stress. Of these 13 and 17 genes, respectively, 
mapped to the root and shoot networks (Table 6). The fil-
tered gene sets (13, 17) are a union of DEGs across all time 
points for the chosen condition (drought) and tissue (root and 
shoot). The ‘invalid genes’ on the other hand either have very 
low expression values or are not differentially expressed in at 
least two time points and hence were not considered in the 
network construction in NetREx (Table 2). 

In the ‘Expression Viewer’, the fold change of the filtered 
(valid) genes is displayed as heatmaps, shown in Figure 3. 
For the root tissue (Figure 3A), it is observed that the major-
ity of the DEGs are strongly up-regulated as early as a 1-h 
time point. However, at 3 h, a decrease in the fold change 
is observed which is probably due to transcriptomic and 
metabolic reprogramming. For the shoot tissue (Figure 3B), 
it is observed that most genes are not induced at a 1-h 
time point, but gradually the fold change increases at later 
time points. This indicates that response to drought stress is 
induced in the root tissue earlier compared to the shoot tissue.

Using the ‘Network Viewer’ module in NetREx, the user 
can observe stress and tissue-specific view of the HRR-100 
network. The expression status of the queried genes can be 
viewed in a time-specific manner by choosing the time points 
of 1 (default), 3 h, 6 h, 12 h and 1 day. In Figure 4, the ‘default 
view’ indicates that among the 13 and 17 DEGs that mapped 
to the drought HRR-100 network in the root (Figure 4A) and 
shoot (Figure 4B), respectively, 8 genes are seen to form the 
largest connected component in both these networks. Figure 5 
shows the connectivity information between genes, using the 
colour coding scheme: up- regulated (red) and down-regulated 
(blue) genes at 1 h, 3 h and 1 day. For example, in the shoot 
network, the high-degree gene OsSIPP2C1 is observed to be 
up-regulated at 3 h of stress, while it is up-regulated even ear-
lier at 1 h in the root network. Interestingly, it was observed 
in previous studies that OsSIPP2C1 is negatively regulated by 
ABL1 which is involved in abiotic stress and panicle develop-
ment in rice (43). In the root network, the components are 
more tightly connected with the PP2Cs, namely, OsSIPP2C1, 
OsPP2C50, OsPP2C30 and OsPP2C08, with the highest 
degree genes interacting with the TFs OsAREB1, OsbZIP23 
and OsABF1. Also, most of the genes are up-regulated at 1 h 
time point (Figure 5) and are probably early response genes 
in the root tissue, except OsAREB1, which seems to be a late 
response gene activated only at 6 h. For the shoot network, 
the response is delayed as discussed earlier, and the SNRK2 
protein kinase, SAPK4, is not induced until 12 h. While the 
majority of the valid genes are up-regulated in shoot and 
root, a few genes are observed to be down-regulated. These 
include OsPYL3 (Os02g0255500), down-regulated both in 
root and shoot tissues. Indeed, this gene has been shown 
to be down-regulated in drought-susceptible rice genotype 
under abiotic stress conditions, while over-expression of this 
gene in Arabidopsis led to improved tolerance in cold and 
drought stress conditions (44). The shoot-specific TF HBF2 
is also down-regulated in the shoot network (6 h, not shown 
in the figure), while the root-specific OsPYL1 gene is down-
regulated at 1 h in the root network (Figure 5A). Among the 
13 root and 17 shoot genes, 11 genes are common and differ-
entially expressed in the two tissues. Interestingly, all the five 
2C protein phosphatase (PP2C) proteins are common to both 
root and shoot, indicating their ubiquitous role of the neg-
ative regulation of ABA (via SnRK2s and PYR/PYL/RCARs) 
in both the tissues (45). However, in terms of the network 
concepts, connectivity between the common gene sets dif-
fer between the two tissues as observed in Figure 4. Among 
the six shoot-specific DEGs, the bZIP TF HBF2 has been 
shown to be highly expressed in shoot apical meristem (46). 
On the other hand, the root-specific gene OsPYL1 was 
shown to interact with OsABIL2 that has a role in root
development (44).

Clusters of co-expressed genes often represent coordinated 
biological processes. The analysis of gene co-expression net-
works has been helpful in functional annotation of unchar-
acterized genes (38, 47), prioritization of candidate genes 
(48, 49) and inferring biological processes, e.g. metabolic 
pathways (50, 51), stress response mechanisms (52, 53) and 
cell wall metabolism (54, 55). For example, out of the 13 
genes in the root network, 8 genes belong to the root-specific 
Magenta module, as shown in Figure 6. Incidentally, they also 
form the largest component in the network (Figure 6A). The 
remaining five genes with zero degree belong to GreenYellow, 
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Figure 3. Heatmaps from the Expression Viewer for (A) the root tissue and (B) the shoot tissue under drought stress. The figure depicts transcriptional 
changes across time points after drought stress with genes having high positive fold change and those in blue having high negative fold change with 
respect to control (0 h, no stress).

Figure 4. Default views for the Network Viewer from (A) the root tissue and (B) the shoot tissue under drought stress.

Yellow (two genes), Blue and the Brown module. To obtain 
further details on the root-specific Magenta module, we 
use the ‘Browse’ option in NetREx for the ‘Root’ tissue. 
Some of the significant GO terms include ‘regulation of tran-
scription, DNA-templated’ (GO:0006355, FDR = 8.56e-04) 
and ‘abscisic acid-activated signaling pathway’ (GO:0009738, 
FDR = 7.64e-03), indicating the relevance of the Magenta 
module in drought stress. Similarly, for the shoot network, 

out of 17 genes, 8 belong to the shoot-specific Turquoise 
and 4 to the shoot-specific Salmon modules. The Salmon 
module harbours genes are involved in Dephosphorylation 
(GO:0016311, FDR = 1.98e-02), while the Turquoise module 
is involved in a number of stress-responsive processes includ-
ing Endoplasmic reticulum (ER)-associated misfolded protein 
catabolic process (GO:0071712, FDR = 8.83E-03) and regu-
lation of response to stress (GO:0080134, FDR = 3.51e-05).
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Figure 5. Time point–specific views from the Network Viewer for root tissue at (A) 1h, (B) 3h, (C) 1day and shoot tissue at (D) 1h, (E) 3h and (F) 6h. The 
figure provides a comparative view of the transcriptional changes for the different time points along with tissue-specific gene connectivities.

Figure 6. Module views of the Network Viewer for (A) the root tissue and (B) the shoot tissue under drought stress.

The Module Viewer allows further exploration of genes 
belonging to the respective modules. For example, the above 
analysis indicates that genes of the root-specific Magenta 
module maybe biologically relevant for drought stress. On 
exploring the top 100 highly connected genes of the module, 
we see several known TF family genes like bZIPs and HSFs 

that are important hubs of this module. Along with these, sev-
eral ‘Conserved hypothetical proteins’ lacking detailed func-
tional annotations are also part of the hubs. The associations 
of these genes with known TFs can be further queried in 
NetREx along with their expression profiles across different 
conditions and different tissues (IC4R Expressions).
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Figure 7. Neighbourhood View of 13 root-specific genes with (A) default view and (B) module views under drought stress.

Figure 8. Time point–specific views for the extended neighbourhood for root-specific genes at (A) early time point of 1 h and (B) late time point of 12 h 
under drought stress.

In systems biology, network neighbourhood analysis is 
an important aspect as it facilitates a ‘guilt-by-association’ 
strategy by which we can find interesting genes which are 
closely interacting/co-expressed with the initial ‘seed genes’. 
In the “Network Neighbourhood View” on the right panel, 
the top 100 neighbours based on kTotal, the connectivity in 
the whole network, of the 13 root-specific seed genes are 
fetched. The ‘seed genes’ are encircled in green to distinguish 
from other neighbourhood genes in Figure 7A. To infer the 
overall function of the subnetwork (13 query genes and their 
respective 100 neighbours), we performed GO enrichment 

analysis. As expected, the positive regulation of the ABA-
activated signalling pathway (GO:0009789, FDR = 9.50E-
03) was the most enriched term. Two major clusters are 
clearly discernible (Figure 7B) in this subnetwork. The first 
set consists of neighbourhood genes that majorly belong to 
the Magenta module (16 genes), and these genes are in fact 
up-regulated as early as 1 h of drought stress (Figure 8A). 
As indicated earlier, the Magenta module is involved in the 
ABA signalling and stress-responsive pathways. The other 
cluster consists of most genes belonging to the Blue and 
Red modules. These sets of genes are late response genes 
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that are over-expressed as a result of downstream cellular 
and metabolic adjustments after the signalling components 
have been induced in the early time points (ABA signalling; 
Figures 2 and 8B). The Blue module includes stress-responsive 
genes that aid in the autophagy of damaged proteins and cel-
lular organelles (GO:0044805, FDR = 6.74E-03) (56). The 
Red module harbour genes involved in the methylerythritol 
4-phosphate pathway of the isoprenoid biosynthetic process 

leading to the production of carotenoids and various other 
secondary metabolites (GO:0019288, FDR = 1.32E-03).

As discussed earlier, network neighbourhood helps us 
explore novel candidate genes that are absent in the initial 
query gene set. For example, the gene with the highest kTotal
(weighted connectivity of a gene in the whole root network) is 
the TF OsPHR3 (Os02g0139000) implicated in low Pi stress 
and in regulating nitrogen homeostasis (57). To explore the 

Figure 9. Expression profile of OsPHR3 from IC4R across different tissues and developmental stages.

Figure 10. Neighbourhood View of 17 shoot-specific genes with (A) default view and (B) module views under drought stress.



12 Database, Vol. 00, Article ID baac060

transcriptomic dynamics of this gene in other stress condi-
tions, we queried in NetREx again. Using the option to check 
the expression profile in ‘other conditions’ provided on the 
right panel in the ‘Network Viewer’, we observed that this 
gene is up-regulated in osmotic stress (3–6 h), flood stress 
(1 h), ABA (1 h to 1 day) and JA (1 and 3 h), while it was 
down-regulated in osmotic stress at 12 h, flood stress (3–6 h) 
and JA (6 h to 1 day). Additionally, to explore the expression 
of this TF across rice growth stages and tissues, we used the 
IC4R link in the ‘Nodes Description’ table. From Figure 9, 
it may be noted that OsPHR3 exhibits higher expression in 
root and leaf tissues. On scanning the upstream 1 kb of this 

gene using the PlantPan v2.0 database (58), we observed sev-
eral bZIP binding motifs, especially in the 500-kb upstream 
region (Supplementary Figure S1A). Furthermore, concurrent 
with this, several binding sites for WRKY TFs were also 
detected in and around the same region, indicating that this 
TF may also be a target of biotic stress signalling cascades 
(Supplementary Figure S1B; Supplementary Table S8). The 
network neighbourhood view of OsPHR3 was next explored. 
All its neighbours are observed to be up-regulated at 6 h in 
the root tissue under drought stress, all of them belong to 
the Blue module (Supplementary Figure S2A and B). More-
over, the top 10 neighbours are involved in functions 

Figure 11. Time point–specific views for the extended neighbourhood for shoot-specific genes at early time points (A and B) and late time points (C and 
D).



Database, Vol. 00, Article ID baac060 13

like transferring phosphorus-containing groups, carbon–
nitrogen ligase activity as well as drought and biotic stress 
(Supplementary Table S8). A literature survey revealed that 
this TF has not been functionally characterized in multi-
ple stress conditions such as drought and warrants further 
investigation.

A similar analysis was carried out with 17 shoot-specific 
DEGs, and the Network View is shown in Figure 10A. It 
may be noted from the module view in Figure 10B that the 
majority of the genes belong to the shoot-specific Turquoise 
module, while a separate cluster is formed by genes of the 
Blue Module. Some of the most significant functions of 
the subnetwork include protein serine/threonine phosphatase 
activity (GO:1905183, FDR = 6.58E-03), ABA signalling 
(GO:0009789, FDR = 8.95E-03) and cellular response to 
nitrogen starvation (GO:0006995, FDR = 1.28E-03). Here, 
the gene with the highest kTotal is OsAtg8 (Os07g0512200), 
which is a well-characterized gene involved in autophagy 
and protein degradation (59). However, the role of this gene 
with respect to drought is yet to be explored. An impor-
tant point to be noted is that we extracted the extended 
root and shoot networks under drought stress using the same 
‘seed’ genes involved in ABA signalling. Needless to say, 
both the subnetworks had GO terms enriched for ‘abscisic 
acid-activated signaling pathway’ (GO:0009738), ‘regulation 
of response to water deprivation’ (GO:2000070) and ‘cellu-
lar response to hormone stimulus’ (GO:0032870). However, 
more specific tissue-specific GO terms like ‘photosynthesis and 
dark reaction’ (GO:0019685, FDR = 3.15E-02), ‘gluconeoge-
nesis’ (GO:0006094, FDR = 3.60E-03) and ‘cellular response 
to nitrogen levels’ (GO:0043562, FDR = 4.21E-05) for the 
shoot tissue and ‘cellular response to reactive oxygen species’ 
(GO:0034614, FDR = 3.57E-02) and ‘fatty acid oxidation’ 
(GO:0019395, FDR = 5.41E-03). for the root tissue were 
noted. Another major difference in the ‘Neighbourhood View’ 
of these genes in root and shoot tissues is the presence of 
down-regulated genes in the shoot network as compared to 
the root network and the gradual activation/repression of 
these genes in the shoot network (Figure 11A–D) in con-
trast to the root network (Figure 8A and B). The down-
regulated genes in shoot (21 genes) majorly belong to the 
‘Blue’ module (Figure 10B) with at least 6 genes annotated 
to be involved in photosynthesis, indicating that this pro-
cess is preferentially switched off in the green tissues under 
drought stress. Further exploration of the ‘Blue’ module of the 
shoot HRR network using the ‘Browse Module Wise’ page in 
NetREx (https://bioinf.iiit.ac.in/netrex/module.html) revealed 
several interesting shoot-specific GO terms like ‘photosystem 
II repair’ (GO:0010206, FDR = 9.62E-04), ‘photosystem II 
assembly’ (GO:0010207, FDR = 4.41E-03) and ‘regulation of 
photosynthesis, light reaction’ (GO:0042548, FDR = 3.80e-
03). Adverse effects of abiotic stress conditions like drought 
on the photosynthetic machinery with harmful effects on the 
overall growth and yield of the crop are well documented 
(60, 61). This confidently explains the functional differences 
of the root and shoot subnetworks from the extended ABA 
signalosome analysis discussed earlier. Moreover, the expres-
sion profiles of the genes across time points and their corre-
sponding tissue-specific network connectivities enable one to 
confidently explore the temporal and functional space of the 
genes and arrive at relevant conclusions.

Conclusion
NetREx is a freely accessible web server for biologists to con-
veniently explore the global rank-based stress networks in 
a tissue-specific manner. The resource has been constructed 
using high-quality RNA-seq data from the TENOR database 
generated using homogeneous experimental protocols. In 
NetREx, substantial emphasis has been given to explore 
the networks through various perspectives such as explor-
ing gene expression profiles (Expression Viewer heatmaps and 
Network Viewer in a time point–specific manner), network 
connectivity (Network Viewer and Neighbourhood Viewer), 
identification of novel stress-responsive candidates (Neigh-
bourhood Viewer), functional analysis of genes (browsing 
NetREx by modules and pathways) and comparative analy-
sis across stress conditions (supported in the Network Viewer 
mode). The gene attributes displayed in the different modules 
have been extensively cross-linked to various other resources 
to provide additional information to the users. Our analysis 
indicates that the rank-based networks in NetREx are bio-
logically relevant wherein the tissue and stress-specific infor-
mation is effectively retained. Network-based subnetwork 
analysis and gene prioritization using NetREx will there-
fore be a significant resource to study complex phenotypes 
associated with the stress response in rice.
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