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Abstract: The growth of health care spending on older adults with chronic diseases faces major
concerns that require effective measures to be adopted worldwide. Among the main concerns is
whether recent technological advances now offer the possibility of providing remote health care
for the aging population. The benefits of suitable prevention and adequate monitoring of chronic
diseases by using emerging technological paradigms such as wearable devices and the Internet of
Things (IoT) can increase the detection rates of health risks to raise the quality of life for the elderly.
Specifically, on the subject of remote health monitoring in older adults, a first approach is required to
review devices, sensors, and wearables that serve as tools for obtaining and measuring physiological
parameters in order to identify progress, limitations, and areas of opportunity in the development of
health monitoring schemes. For these reasons, a review of articles on wearable devices was presented
in the first instance to identify whether the selected articles addressed the needs of aged adults.
Subsequently, the direct review of commercial and prototype wearable devices with the capability
to read physiological parameters was presented to identify whether they are optimal or usable for
health monitoring in older adults.

Keywords: elderly; healthcare; monitoring; sensors; wearables

1. Introduction

Health issues are of fundamental concern for any sector of the population. However,
despite the enormous efforts made to improve the detection, diagnosis, and treatment of
diseases, there are areas of opportunity in those efforts carried out specifically for the elderly.
Older adults are more susceptible to suffering from some type of chronic degenerative
disease. Of course, there is also the risk that they will suffer more consequences by
presenting non-chronic diseases considered milder for the rest of the population. It is
worth mentioning that older adults represent a significant population sector since, in the
last United Nations report on the aging of the world population in 2020, approximately
727 million people were aged 65 or over. Furthermore, it is expected that by the year 2050,
the population of older adults will increase to approximately 1.5 billion people [1], which
implies a significant economic impact on the public and personal finances of various sectors
of society. Of course, the growth in economic spending on health care for older adults has a
more significant impact in developing countries. In fact, in recent years, more people have
been increasingly affected by chronic disorders, mainly due to the increase in the elderly
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population [2]. Some diseases with the highest incidence within this population sector are
cardiovascular diseases, diabetes, cancer, and dementia [3].

According to the National Institute of Geriatrics of the Mexican Republic, the main
reason for the loss of years of healthy life in older adults is the suffering of chronic de-
generative diseases that are, in addition, the primary cause of death worldwide. In the
latest statistical report published by the National Institute of Geriatrics of Mexico [4], it
was estimated that the major causes of diseases in people aged 60 and over in the world
correspond to:

• Cardiovascular diseases (30.3 percent);
• Cancer (15.1 percent);
• Chronic lung diseases (9.5 percent);
• Musculoskeletal diseases (7.5 percent);
• Mental disorders and diseases of the nervous system (6.6 percent).

It is imperative to monitor the health conditions of people at risk of suffering or who
are already suffering from these diseases. The negative impact of these diseases is not
limited to affecting the physical integrity of patients but also causes a series of secondary
problems that affect the emotional and economic state of the patients themselves or even
their relatives. On the contrary, there are many cases where the patient’s life is put at
risk due to some side effects derived from any of the conditions. For example, there is a
percentage of deaths in older adults caused by falls, which in turn can be identified as a
collateral consequence of dementia or heart disease [5]. On the other hand, there is also the
risk that the disease puts the patient’s life at serious risk, such as cases of premature death
in the elderly associated with diabetes [6].

Although most of the ailments of older adults are caused by chronic diseases, the
study results presented here are equally valid in other sectors of the population with the
same ailments. Moreover, as older adults are a particularly vulnerable group with severe
physical and economic limitations that drastically reduce their self-sufficiency, paying
attention to this group is necessary because of their greater dependence on others such
as family and friends. Though humane relationships undoubtedly promote health, there
are also drawbacks such as the availability of sufficient time, knowledge, attention, and
discipline necessary to follow the medical treatment that includes monitoring relevant
physiological variables. For these reasons, it is crucial to determine whether the current
technology of wearable devices and IoT can help effectively and reliably reduce this de-
pendency while achieving better clinical quality in monitoring the patient’s biomedical
variables. In the literature, there are already works that have reviewed some IoT and
wearable devices that can monitor older adults. For example, in Wang et al. [7], three
categories of wearable technology for monitoring older adults were identified and ana-
lyzed: indoor positioning, real-time sign monitoring, and activity recognition. However,
the work specialized in identifying only wearable devices that allow the monitoring of
intramural positioning. Additionally, Leirós-Rodríguez et al. [8] focused on the review
of accelerometers that may be useful in diagnosing balance disorders in older adults, but
without considering other types of diseases for the overall population healthcare monitor-
ing. On the other hand, in Rucco et al. [9], devices for monitoring falls in older adults were
included and, unlike with this work, discarding those general health monitoring devices,
while in Stavropoulos et al. [10] and Tun et al. [11], a more extensive classification was
made of the types of reviews focused on monitoring some chronic diseases. Additionally, in
Tun et al. [11], a review was presented where the IoT technology was applied in the care of
older people. Although Stavropoulos et al. [10] identified wearable devices similar to those
described in this work, neither their operation nor their categorization into commercial
and research prototypes was raised in their work. In addition, Tun et al. [11] focused their
research not on wearable devices but on IoT technology, including devices for smart homes.
Most of these reviews focused on healthcare monitoring for older adults did not include
a detailed description of the devices identified, nor their grouping by diagnosed disease,
nor their classification into commercial and research prototypes. The main differences
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between our work and other research works are three: (1) by the diagnosed diseases con-
sidered, (2) by their stage of development reached, and (3) by their FDA-approval level
achieved, if any. To remark the differences, a brief comparison here is in order: (1) By
the diagnosed diseases considered, Leirós-Rodríguez et al. [8] focused on alterations in
balance, Rucco et al. [9] analyzed falls during static and dynamic tasks, and Wang et al. [7]
focused on indoor positioning, physical activity tracking, and real-time monitoring of
vital signs. Instead, this work considered cardiovascular diseases, respiratory diseases,
diabetes, sleep disorders, Parkinson’s disease, alcoholism, seizures, and osteoporosis. (2) By
the stage of development reached, no distinction between commercial and research pro-
totypes was even suggested in the works of Wang et al. [7], Leirós-Rodríguez et al. [8],
Rucco et al. [9], and Stavropoulos et al. [10]. The distinction is vital because only commer-
cial wearable devices can be afforded to provide healthcare to some extent for older adults.
(3) By the FDA-approval level achieved, if any, in the works presented by Wang et al. [7],
Leirós-Rodríguez et al. [8], Rucco et al. [9], Stavropoulos et al. [10], and Tun et al. [11], no
type of FDA approval was proposed. Likewise, others works have identified the mon-
itoring of patients with chronic degenerative diseases [12–16], wearables for promoting
physical activities (the deficiency of physical activity has been determined as a crucial
influence in developing chronic diseases) [17–19], movement disorders (e.g., Parkinson’s
disease, freezing of gait) [20–31], development of sensors and wearable technologies [32–36],
wearable device use evaluations [8,10,37–42], measurement of biomedical variables and
parameters [43–50], and other works have reviewed reviews related to wearables applied
to healthcare [51–54]. Therefore, FDA approval for wearable devices is important because
it ensures the maximum efficiency and reliability needed as the first step to providing
trustworthy healthcare outside the clinic facilities.

Taking into consideration the preamble above and considering the importance of
healthcare in the population sector, especially that corresponding to the elderly, the objective
was to identify: (1) the physiological (medical) variables of the prevalent diseases in older
adults, (2) the characteristics of the wearable devices that best fit the monitoring needs for
the healthcare of older adults, and (3) the FDA assessment of wearable devices that are
commercially available in the market.

2. Physiological Variables of Prevalent Diseases in Older Adults

Once the types of diseases with the most incidents have been identified, it is possible
to focus technological development efforts (in remote health monitoring issues) on devices
that contain sensors capable of reading the physiological variables impacted by each type
of disease. It should be noted that, due to technological limitations, it is not possible to
read and monitor all the physiological variables and, therefore, all the identified diseases,
still leaving areas of opportunity in terms of monitoring the health status of patients, as
is the case of the state of health of cancer patients. Below, a list of the main physiological
variables is presented whose monitoring allows intensive observation of patients suffering
from some chronic disease. Figure 1 presents a visual representation of the same variables.

2.1. Heart Rate (HR)

The heartbeat frequency per minute determines heart rate. This physiological variable
is widely used as an indicator of cardiac activity in different physical conditions of the
human body, for example, in states of physical activity or inactivity. This variable is
increasingly common because it helps monitor users who suffer from health risk conditions
and is also used to measure physical performance caused by exercising [55]. HR is a
particularly useful parameter in monitoring patients suffering from some cardiovascular
disease within the health area. The standard technique to read HR consists of analyzing the
time interval between two consecutive R wave peaks detected (QRS complex). Other data
reading techniques that also consider the use of HR as a metric are ballistocardiography
(BCG), phonocardiography (PCG), and impedance cardiography (ICG) [15].
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Figure 1. Common physiological variables and the parts of the body to which their readings are
normally associated.

2.2. Heart Rate Variability (HRV)

HRV is considered a physiological parameter that corresponds to the variation in
the time interval between consecutive heartbeats in milliseconds and is a widely studied
variable in cardiovascular disease monitoring since it is associated with heart health.
Generally, high HRV values are associated with a healthy cardiac state, and, therefore,
lower probabilities of death are determined. However, HRV may be affected by the gender
and age of the patients. In addition, from electrocardiogram (ECG) measurements, the
HR and HRV metrics can be estimated as time series of the duration of the cardiac RR
intervals [56].

2.3. Pulse Rate Variability (PRV)

Verified in numerous studies due to the usefulness of HRV as a diagnostic and clinical
research tool, pulse cycle intervals are being used instead of RR intervals as they can be
obtained from photoplethysmography (PPG), which is a technique to monitor changes in
blood volume in the microvascular bed of tissue. It works from a beam of light (usually
green light (520 nm)) emitted by the light source (usually diode LED), which falls on
the tissue of the human body; most of the light is absorbed, while the rest is reflected.
The light reflected by the tissue is captured by the photosensor (receiver), which will
generate an electrical signal (voltage) depending on the blood volume variation of the
patient. The quality of the measurements provided by this technique depends mainly on
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the light emitter and receiver locations, the characteristics of the patient’s tissues, and the
quality of the amplifiers and filters. Its use represents a simplification in ambulatory HRV
monitoring [57].

2.4. Respiratory Rate (RR)/Breathing Rate (BR)

This physiological variable can be used to detect, diagnose or monitor patients affected
by chronic diseases such as anxiety, asthma, pneumonia, lung disease, congestive heart
failure, drug overdose, or narcotic use. A person’s RR is the number of breaths taken per
minute. Usually, in adults, an RR at rest between 12 and 20 breaths per minute is considered
normal, and an RR at rest is considered abnormal if it is less than 12 or greater than
25 breaths per minute. Some of the techniques under which RR recording is possible are
ECG and PPG [58]. The signals obtained by the ECG and PPG have particular characteristics,
such as amplitude, period, and frequency. The changes in these characteristics are used
to estimate the RR through modulation schemes, such as amplitude modulation (AM),
frequency modulation (FM), and baseline wander (BW). However, the presence of each
of these modulations depends on each individual. The modulations may appear and
disappear over time and vary depending on factors such as pre-existing health conditions,
cardiopulmonary system function, gender, age, and body position. For diagnostic and
monitoring purposes to provide the relevant information on the patient’s heart health,
the most accepted frequency range is from 0 (direct current component, DC) to 250 Hz.
However, some studies argue that it may be as high as 700 Hz [59].

2.5. Oxygen Saturation of the Blood (SpO2)

SpO2 refers to the amount of oxygen that is saturated in hemoglobin. Healthy adults’
good oxygen saturation value is 100%, but this can vary around 5% without considering a
health risk. Some conditions that affect oxygen saturation in the blood vary from circulation
problems and heart problems to respiratory problems, anemia, and congenital disabilities.
One of the most common ways to measure oxygen saturation is by pulse oximetry. The
readings of pulse oximetry reflect the percentage of oxygen present in the blood. Oximetry
tests generally use a sensor to read the wavelengths of light reflected from the blood [60].
Pulse oximeters emit two wavelengths of light, red (660 nm) and near-infrared (near-IR)
(940 nm), from a pair of small light-emitting diodes (LED) located in one arm of the finger
probe. Pulse oximetry functioning relies on O2Hb and HHb differentially absorbing red
and near-infrared (IR) light. It is fortuitous that O2Hb and HHb have significant differences
in absorption at red and near-IR light, because these two wavelengths penetrate tissues
well enough, whereas blue, green, yellow, and far-IR light are significantly absorbed by
non-vascular tissues and water [61,62]. The algorithm for calculating SpO2 is based on
using the Beer–Lambert law, which is the basis for estimating the percentage relationship
of SpO2 between the oxygenated component of hemoglobin and total hemoglobin (made
up of oxyhemoglobin and deoxyhemoglobin). The tissue is irradiated at two wavelengths
(red and near-IR), and the percentage ratio of SpO2 is calculated from the absorption
and reflection of the irradiated light. The calculations can be performed in the time and
frequency domain. In the time domain, the changes in amplitude are analyzed to determine
the SpO2. However, they are usually accompanied by random noise that causes erroneous
estimates. An improvement in the SpO2 calculations can be obtained in the frequency
domain, where the amplitudes of the relevant SpO2 signals stand out from the amplitudes
of the random noise. This technique obtains better SpO2 estimate readings from the
patient [63].
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2.6. Blood Pressure (BP)

Blood pressure is related to the force of blood exerted against the walls of the arteries.
Two numbers describe BP, as in 120/80 mm of mercury (mm Hg), where the first number,
called systolic pressure, measures the pressure in the arteries when the heart beats and
pushes blood in the body, whereas the second number, called diastolic pressure, measures
the pressure in the arteries when the heart rests between beats. The primary disorder
related to an increase in blood pressure is hypertension [64].

2.7. Blood Glucose (BC)

BC is a crucial physiological variable that measures the glucose concentration in the
blood or plasma. Glucose is critical as a metabolic substrate for tissue energy production.
Pathological conditions that affect glucose production or utilization lead to hypoglycemia.
BC is considered normal if the glucose levels are between 70 and 100 mg/dl in the fasting
state and less than 140 mg/dl 2 h after each meal. For this reason, continuous and effective
monitoring of this variable is crucial since it must be interpreted within the clinical setting
and concerning counterregulatory hormonal responses and intermediate metabolites. The
leading disease related to blood glucose levels is diabetes [65].

2.8. Other Physiological Variables

The physiological variables analyzed in this work were restricted to only those detected
by commercially available wearables or by promising research prototypes that could be
introduced relatively soon into the market. Therefore, physiological variables (such as
lactate, vitamins, or uric acid) that the available wearable devices cannot measure were
excluded for analysis.

3. Methods

This paper is a review of sensor technologies from the IoT perspective to determine if
it is possible to monitor specific diseases using wearable devices and provide healthcare
to older adults. For this review, due to its clarity and methodological depth, the PRISMA
statement [66,67] was used only to organize and present the review more clearly.

Inclusion and exclusion criteria. A total of 24,615 results were obtained from all the
databases. A total of 23 records were removed within the 24,615 results obtained. However,
this search was refined to discard all of those published before 2010, leaving 24,592 papers.
Below, we describe the inclusion and exclusion criteria.

Inclusion criteria: Papers related to (1) healthcare in older adults, (2) deadly, chronic, or
degenerative disease, (3) commercial and non-commercial wearable devices, (4) healthcare
monitoring, (5) IoT wearable devices, and (6) FDA-approved medical devices published
from 2010 to 2021 were included.

Exclusion criteria: Papers that (1) were not written in English, (2) were not peer-
reviewed, (3) were letters and reports, and (4) not primary studies were excluded.

Information Sources. The keywords found in the research questions could be grouped
and classified according to their characteristics in the knowledge areas of healthcare and
computing technology. These areas determined the specialty of the scientific digital library
chosen as the source of information. For the area of healthcare, the digital scientific libraries
considered were PubMed, Medline Plus, Clinical Trials, and Nice.org.uk, whereas for the
area of computing technology, the digital libraries considered were IEEE Xplore, Science
Direct, Hindawi, MDPI, Springer Link, Wiley Online Library, and Inderscience. These
libraries were chosen because of the good results from pilot searches obtained from the
federated search engine Google Scholar. From these primary sources of information, the
relevant studies were extracted by submitting search queries to the corresponding search
engines of each digital library. The searches were performed from January to June 2021.
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Search Strategy. The search strategy combined keywords using Boolean-like connec-
tives to narrow the results. The search keywords were drawn from the key concepts shaping
the research questions. The search strategy derived a series of intermediate searches whose
application finally led to answering the research question. Intermediate searches were
ordered to find the search terms to be used in subsequent queries:

1. The main global deadly, chronic, or degenerative diseases for older people
2. The physiological variables used in diagnosed diseases
3. The sensors and biosensors that measure those physiological variables
4. The consumer wearable devices available in the market that use those sensors
5. The wearable devices that were available or not in the market
6. The FDA-approved commercial wearable devices available
7. The remote healthcare monitoring devices.

Queries 1 and 2 were applied to the medical databases. Query 1 led to the fol-
lowing search expression, which used adjacent search terms combined with AND and
OR connectives:

‘main global disease’ AND (‘deadly disease’ OR ‘chronic disease’ OR ‘degenera-
tive disease’) AND (‘older people’ OR ‘elderly people’ OR ‘aged population’)

The analysis of the results showed that the relevant search terms were the physiological
variables referred to in the older adults’ diagnosed diseases. Query 2 included these search
terms in a search expression whose execution produced new results related to physiological
variables. Similarly, as the results of each of the queries listed before produced new search
terms, the results were progressively expanded until reaching those that were relevant to
this study.

The results at the last stage comprised those wearable devices containing sensors
(biosensors) that can diagnose some major diseases in older people, including devices
that can be used for remote monitoring. The included wearable devices could be either
commercial or non-commercial, and in the former case, they could be either FDA-approved
or not.

Selection process. Relevant papers were selected by title and abstract for a thorough
analysis by three experts. The experts extracted the paper’s information in seven categories:
brand, model, target (disease), device type, functioning, sensors (used), and FDA status.
After concluding the analysis, 24241 papers were excluded.

By reviewing the research objectives and questions of the screened papers, it was
determined that 351 papers were of interest for a more detailed analysis of their content,
excluding 295 papers. In addition, due to their features and detailed reviews of wearables
useful for remote monitoring of health parameters in older adults, 56 articles were selected
to be included in this work. In Figure 2, a PRISMA diagram represents the search strategy
implemented to include the revisions presented in this document.

Finally, 56 articles were downloaded in total: IEEE (19), other sources (9), ScienceDirect
(7), Nice.org.uk (7), MDPI (6), Springer Link (4), and Wiley (4).

Data collection and analysis. Once the selection of the papers corresponding to the
primary studies concluded, the data contained in their texts were extracted and inserted
in structured tables for analysis. The collected data contained information about com-
mercial wearables and sensors for remote health monitoring. No randomized controlled
selection was performed, as the number of wearables found was small (56 items). Three
different researchers performed the extraction process. The characteristics of interest for the
data collected on the wearable devices were: brand, model, target (disease), device type,
functioning, sensors (used), and FDA status.
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Figure 2. PRISMA flow diagram of the search strategy.

4. Results
4.1. Study Selection

The records identified through the information sources totaled 24,615. Figure 2 shows
the composition of the results grouped by their source database. From this initial record set,
23 records were eliminated. Next, the resulting 24,592 records were screened for relevance
analysis of the title and abstract, and 24,241 records were excluded after the screening. The
remaining 351 records were assessed for eligibility by examining the relevance of their
full-text content. The assessment excluded 295 records from eligibility for several reasons:
(i) articles not written in English, (ii) articles focused in other diseases, or (iii) articles
not relevant to the research question’s aims and objectives. A total of 56 records were
finally included as the primary studies after applying the inclusion and exclusion criteria
for eligibility.

4.2. Study Characteristics

The devices identified were grouped into two large categories: commercial devices
and research devices. At the time of writing this paper, among the commercial devices
manufactured by technology companies, those already found on the market or with pre-
sale status were included. All devices in the prototype phase, reported in scientific and
research works but not manufactured yet, were classified as research devices. Below are
the reviews for each category of devices, including 24 commercial wearable devices and
32 non-commercial wearable devices.
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4.2.1. Commercial Wearable Devices

As previously mentioned, some companies have commercialized different wearable
devices whose functions allow monitoring physiological parameters that establish mon-
itoring metrics for one or more types of disease. For this reason, a search was made for
commercial devices whose characteristics allow health monitoring in older adults. It should
be mentioned that most of these devices do not limit their use to older people. However,
due to their capability to obtain data on physiological parameters of interest, they have
been classified as suitable for monitoring diseases identified in older adults. In Table 1, a
summary of the identified devices is displayed. The columns of this table correspond to
the device brand and model, the diagnosed disease, the device type and its operation, a
brief list of the sensors that each device uses, and the type of FDA approval.

The table shows that there are already available in the market devices for monitoring
physiological parameters needed for the care of patients with some diseases. There are
general health monitoring devices that only show basic information for more relaxed
health care, as is the case with smartwatches that are functional at a basic-intermediate
level. It is necessary to mention that a large share of the devices developed especially for
the monitoring of chronic degenerative diseases tend to meet the objective of providing
readings in real-time for a better diagnosis and control of symptoms related to the identified
diseases.

It is essential to mention that of those commercial devices that were reviewed through-
out this work, it was possible to identify, taking into account their characteristics and
physical mode of use, the category to which they belong. It should be noted that most of
the devices reviewed belonged to the watch category (25% of devices), while the categories
with the lowest numbers of devices were finger rings and foot insoles, among others (with
4% each). On the other hand, it is interesting that 13% of the devices were classified as
intradermal sensors, which shows a growing interest in developing sensors that can be
inserted into the human body. In addition, the portable sensor category (8%) refers to those
devices that cannot be categorized as a well-known wearable type such as those discussed
before. Moreover, portable sensors may fulfill their functionality in several body parts or
be used alone or integrated with other sensors. Figure 3 shows in detail the percentages
corresponding to the number of reviewed devices classified by category.

Figure 3. Percentage of reviewed devices classified by wearable category.



Biosensors 2022, 12, 73 10 of 31

Table 1. Commercial wearables and sensors for remote health monitoring.

Brand Model Target Device Type Functioning Sensors Used FDA Status

Abbot Libre 2 [68] Diabetes Patch Reading of blood glucose levels. Intradermal Glucose
Sensor Approved (2020)

AliveCor® KardiaMobile [69] Cardiology Phone attachment Reading the heart rate by positioning
the fingers on the sensors Electrodes Clear (2014)

Apple Watch 6 [70] General Purposes Smart Watch Reading the heart rate by positioning
the fingers on the sensors.

Oximeter, Electrical
Heart Rate Sensor,
Optical Heart Rate

Sensor, Accelerometer,
Gyroscope

ECG Approved
(2018)/Oximeter not

Approved

BACtrack® Skyn™ [71] Alcoholism Bracelet Measurement of alcohol levels. - Not Approved

Dexcom G5 Mobile [72] Diabetes Intradermal sensor

A sensor under the skin measures
glucose levels.
A transmitter attaches to the top of the
sensor and sends the data wirelessly to
a smart device.

Intradermal Glucose
Sensor Approved (2015)

Empatica Embrace 2 [73] Seizures Smart Watch
Use machine learning (ML) to detect
unusual patterns that are possibly
associated with seizures.

EDA Sensor, Peripheral
Temperature Sensor,
3-Axis accelerometer,

Gyroscope

Approved (2018)

Empatica E4 [74] General Purposes Bracelet

It enables researchers to record
physiological signals at home or in the
laboratory. After recording, they can
access the data for deep analysis.

PPG Sensor, 3-axis
Accelerometer, EDA
Sensor (GSR Sensor),
Infrared Thermopile

Not Approved

Fitbit Versa 2™ [75] General Purposes Smart Watch
It monitors the heart rate, physical
activity, sleep quality, oxygen
saturation, and body temperature.

3-axis accelerometer,
optical heart rate

monitor, altimeter,
ambient light sensor,
relative SpO2 sensor,
built-in microphone

ECG app cleared (2020)
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Table 1. Cont.

Brand Model Target Device Type Functioning Sensors Used FDA Status

Fitbit Versa 2™ [75] General Purposes Smart Watch
It monitors the heart rate, physical
activity, sleep quality, oxygen
saturation, and body temperature.

3-axis accelerometer,
optical heart rate

monitor, altimeter,
ambient light sensor,
relative SpO2 sensor,
built-in microphone

ECG app cleared (2020)

Fitbit Charge 4 [76] Cardiology Smart Watch
It monitors the heart rate, physical
activity, sleep quality, oxygen
saturation, and body temperature.

3-axis accelerometer,
optical heart rate
monitor, altimeter

Not Approved

Health Care
Originals ADAMM [77] Asthma Patch

It is worn discreetly under clothing.
Follow-up of cough, breathing patterns,
wheezing, heart rate, skin temperature,
and activity level.

Acoustic, HR,
temperature -

iRhythm Zio® [78] Cardiology Patch

The physiological data collected for a
predefined time interval is sent by mail
to the provider, who generates reports
for the patient and the doctor.

ECG Clear (2021)

Medtronic Sensor Enlite™ [79] Diabetes Intradermal sensor

The sensor is inserted under the skin
and captures glucose readings every 5
min, which it communicates wirelessly
to the MiniMed pump or its Guardian
system so that glucose levels can be
observed in real-time. After 6 days, it is
removed, discarded, and replaced with
a new sensor.

Intradermal glucose
sensing electrode Approved (2016)

Medtronic Guardian™ Sensor
3 [80] Diabetes Intradermal sensor

Once inserted, it remains under the
skin, capturing glucose readings every
5 min, sending them wirelessly to the
MiniMed pump or its Guardian system
so that glucose levels can be seen in
real-time. After 6 days, it is removed,
discarded, and replaced with a
new sensor.

Intradermal glucose
sensing electrode Approved (2018)
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Table 1. Cont.

Brand Model Target Device Type Functioning Sensors Used FDA Status

Orpyx® Orpyx SI [81] Diabetic foot Foot Insoles

Custom insoles incorporate sensors to
monitor pressure, step count, hours of
wear, and temperature. Provides
real-time audiovisual alerts and
flushing instructions when sustained
high-pressure levels occur.

Pressure sensors Registered

Oura Oura Ring [82] General Purposes Finger ring

It uses a monitoring technology that
collects the heart rate, heart rate
variability, temperature, activity, and
sleep quality from a non-invasive ring.

Body temperature sensor,
optical, infrared sensors,
and a 3D accelerometer

and gyroscope

Not Approved

Preventice BodyGuardian®

Heart [83]
Cardiology Patch

Small wireless monitor that adheres to
the chest via a disposable strip. The
strip can be repositioned as needed due
to its medical-grade adhesive and
electrode gel and should be replaced
periodically during the monitoring
period. The monitor is returned to the
service provider.

Accelerometer, ECG Clear (2012)

Sentio Solutions Feel [84] Emotional/mental
health Bracelet

A bracelet that monitors physiological
signals throughout the day and learns
to recognize emotional patterns.

EDA, PPG HR,
skin sensor -

Zoll® LifeVest® [85] Cardiology Vest

It is a portable cardioverter-defibrillator
used by patients at risk of sudden
cardiac death (SCD). It controls
dangerously fast heart rhythms by
applying an electric shock to the heart.
LifeVest WCD is used directly against
the patient’s skin.

Temperature sensor Approved (2018)

Xiaomi Mi Band 5 [86] General Purposes Bracelet
It monitors heart rate, physical activity,
sleep quality, oxygen saturation, body
temperature, menstrual cycle.

ECG Not Approved
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Table 1. Cont.

Brand Model Target Device Type Functioning Sensors Used FDA Status

Withings Move ECG [87] Cardiology Analog watch

In 30 s, a medical-grade ECG is ready
by simply pressing the side button and
placing a finger on the bezel. It can
record an ECG with or without a phone
nearby, as the data can be stored on the
watch until the next sync.

Heart rate sensor, 3-axis
accelerometer, 3-axis

gyroscope
Not Approved

Huawei Band 6 [88] General Purposes Smart Watch

Measurement of oxygen levels in the
blood through the use of LED clusters
and photodiodes. Heart rate
measurement. Sleep
quality monitoring.

Accelerometer, three
electrodes, ECG,

barometric altimeter
Not Approved

Holter Stat-On™ [89] Parkinson’s Portable sensor
It is a non-invasive device worn on a
belt that records the user’s motor status
at all times of the day.

- -

Gyenno Gyenno Spoon [90] Parkinson’s Spoon

By detecting involuntary hand
movements, sensors activate internal
motors that keep the spoon stable,
helping the person eat normally.

Accelerometer -

Secmotic Muvone [91] Osteoporosis Portable sensor

A device that checks if the activity
carried out is appropriate to help
strengthen bones or how much sun is
needed to assimilate adequate amounts
of Vitamin D.

- -
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Another type of classification is that made from the FDA status of the reviewed devices.
For this classification, six statuses were considered: approved, partially approved, clear,
partially clear, not approved, and registered. It is worth mentioning that many commercial
devices do not have public information regarding their FDA status. It should be noted
that 54% of devices have some FDA approval, while 25% are on the market without some
registration or approval. On the other hand, it was not possible to find official information
on the status of at least 21% of the commercial devices reviewed. Figure 4 shows the
percentages corresponding to each group of devices according to their FDA status.

Figure 4. Percentage of reviewed devices classified by their FDA status.

Likewise, it is also essential to identify the diseases for which each device is useful. A
count was made of the valuable devices for each identified disease, considering whether or
not they have some FDA registration. It should be mentioned that there are devices that
can read physiological parameters that allow monitoring more than one type of disease
condition. Therefore, some devices appear repeatedly in two or more diseases for cases
that meet this condition. Table 2 presents the diseases identified for each device.

The total number of devices for each disease. Figure 5 shows their percentages.
As shown in Figure 5, the development and commercialization of devices are focused

on cardiovascular diseases. Thanks to the development of sensors and algorithms that
allow reading parameters such as the oxygenation level in the blood and the heart rate,
it is possible to design more and better wearable devices at a lower price for this disease
category. However, other diseases are more challenging for researchers due to the difficulty
of obtaining the necessary readings. An example of this situation is the case of osteoporosis,
which needs constant monitoring of a patient’s bones, requiring that the relevant sensors to
be implanted at the bone level. Sensor implants complicate not only device development
but also device placement and maintenance.
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Table 2. The number of reviewed devices that can be used for a given disease.

Disease for Which It Can Be Used FDA Devices Non-FDA Devices Total

Cardiovascular Diseases 6 7 13
General Body Tracking 2 5 7

Diabetes 5 0 5
Sleep Disorders 1 4 5

Parkinson’s 0 2 2
Alcoholism 1 0 1

Seizures 1 0 1
Osteoporosis 0 1 1

Respiratory Diseases 0 1 1

Figure 5. Percentage of reviewed devices useful for a particular disease.

4.2.2. Non-Commercial Wearable Devices

As mentioned previously, the technologies in wearable devices that allow the moni-
toring of physiological parameters are in constant development. Some devices are still in
development, while some others are in the prototype phase. Table 3, shown next, presents
the non-commercial devices reported in research articles, whose applicability to monitoring
physiological parameters makes them a viable option for follow-up and monitoring of the
health status of older adults. The table is organized in columns that describe crucial aspects
for health monitoring:

• Target refers to the physiological parameter that the described device can measure.
• Device Type describes the device’s category (i.e., watch and bracelet) and the year

of publication.
• Functioning is a brief description of how the device works.
• Sensors Used shows the sensors found as part of the device.
• Real-Time Monitoring indicates if the device can monitor the physiological parameter

in real-time.
• Elderly User Ready indicates if the device in its proposed version has the optimal

characteristics and ease of use for elderly users.
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Table 3. Research wearables and sensors for health monitoring.

Target Device Type (Year of
Publication) Functioning Sensors Used Real-Time

Monitoring
Elderly User

Ready

Glucose Monitoring
Non-invasive

intravascular glucose
measuring sensor (2017)

It consists of ultra-thin skin-like biosensors on a flexible
biocompatible paper battery. The battery generates
subcutaneous electrochemical channels (ETC) by binding to the
skin; the sensors act through the penetration of hyaluronic acid
into the anode channel, the refiltration of intravascular blood
glucose from the vessels, and the reverse iontophoresis of
glucose to the skin surface [92].

Ultrathin skin-like
biosensors No Yes

Glucose Monitoring
Wearable-band type
visible-near infrared

optical biosensor (2019)

It is a highly portable blood glucose sensor with a data
acquisition time window that enables long-term, non-invasive
continuous blood glucose monitoring (CGM). The biosensor
exploits information from the pulsatile components that
continuously measure the arterial blood volume in the wrist
tissue during the change in blood glucose concentration [93].

Multi-chip sensor
package of SFH7060

(OSRAM Semiconductor
Inc., Regensburg,

Germany)

Yes Yes

Glucose Monitoring Contact Lens (2018)
The human eye is read using a photon microstructure with a
periodicity of 1.6 µm on a selective glucose hydrogel film
functionalized with phenylboronic acid [94].

A photonic structure
glucose sensor Yes No

Glucose Monitoring Patch (2020)

It is a non-invasive, continuous, portable system, inspired by
the anatomy of the vasculature, based on electro-magnetism
(EM) for glycemic measurements. The structure of the sensor
mimics the vasculature anatomy. The multiple detection
system, depending on the patient’s characteristics, provides
personalized monitoring [95].

EM sensors Yes No

Glucose Monitoring Wearable-band
type (2017)

It is an autonomous and minimally invasive portable
microsystem for pseudo-continuous monitoring of blood
glucose. With a shape memory alloy (SMA) microactuator, the
microsystem pierces a slight wound in the skin and draws a
whole blood sample from the skin [96].

Shape memory alloy
(SMA)-based
microactuator

Pseudo Yes

Glucose Monitoring Patch (2017)
It is a disposable patch-type device that measures glucose
levels in sweat and automatically applies metformin, thanks to
a transdermal drug delivery device [97].

Extendable sensors
(humidity, glucose, pH,
and temperature) are

integrated in a
monolithic way.

Yes Yes
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Table 3. Cont.

Target Device Type (Year of
Publication) Functioning Sensors Used Real-Time

Monitoring
Elderly User

Ready

Glucose Monitoring Band (2017)

The system induces sweat with different excretion rates at
periodic intervals employing wirelessly programmable
iontophoresis. The induced sweat can be immediately
analyzed for glucose monitoring by integrating sensor
iontophoresis electrodes on the same substrate [98].

Iontophoresis and sweat
sensing electrodes for

detection of Na +
and Cl−

Yes yes

Glucose Monitoring Patch and Smart Band
(2018)

It is a multifunctional wearable health management system
that analyzes sweat glucose levels using a disposable
sweat-based glucose detector strip and a wearable smart
band [99]. It also continuously monitors vital signs (i.e., heart
rate, blood oxygen saturation level, and activity).

Sensors for light-based
photoplethysmography,

accelerometer-based
activity monitoring, and

sweat-based
electrochemical analysis

Yes No

HR Monitoring Bracelet (2020)

It is an IoT-based wearable HR monitoring smart sports
bracelet. IoT technology enables real-time monitoring, storage,
and analysis of data transmitted to a PC or mobile phone. After
data processing and analysis, abnormal data will receive an
alarm in time to track the health status [100].

heart rate sensor son7015
and step acceleration
sensor mma9555lr1

Yes Yes

HR Monitoring Belt (2018)

It is a multifunctional portable electrical impedance
tomography (EIT) system based on a high-performance
application-specific integrated circuit (ASIC) active electrode
that can record heart rate signals and measure humidity and
ambient temperature [101].

ECG, accelerometers Yes No

HRV Leg belt (2017)

It is a portable ECG sensor system that captures vital patient
skin data from amplified signals detected by patched
electrodes. These modules are capable of collecting 6 ECG lead
signals [102].

ECG, accelerometers Yes yes

HR Monitoring Bracelet (2019)

It integrates an HR measurement device using an optics-based
pulse sensor and a Bluetooth-based communication module. In
addition, an Android-based smartphone application receives
and processes the sensor data [103].

Optical based
pulse sensor Yes Yes

HR Monitoring Finger case (2017)

A portable heart rate monitoring system that uses
photoplethysmography (PPG). Based on the detection of the
cardiovascular pulse, this method presents the analysis of light
variations in biological tissues [104].

Pulse sensors Yes Yes
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Table 3. Cont.

Target Device Type (Year of
Publication) Functioning Sensors Used Real-Time

Monitoring
Elderly User

Ready

HR Monitoring Smartwatch (2018)

It is a prototype that allows monitoring of the heart rate and
the intervals between beats for some subjects. This prototype
was made using the Samsung Gear S3 Smartwatch, with
WebSocket library, nodejs, and JavaScript [105].

Samsung Gear S3 sensors Yes No

HRV Armband (2019)
The device consists of a cuff designed to fit on the upper left
arm that provides 3 ECG channels based on three pairs of dry
electrodes (without hydrogel) [106].

ECG Yes Yes

HRV Ear wear (2019)

It is a lightweight, portable device that continuously monitors
stress in daily life by measuring electrocardiograms (ECG) and
EEG. The system can be easily worn by hanging it from both
ears [107].

ECG No No

PRV (2019)

It is a portable device that collects PRV values in real-time. The
device includes an amplifier and filter for signal accuracy. An
accelerometer is used to eliminate noise due to motion. This
device can transmit the acquired PPG signal wirelessly with
the use of Wi-Fi technology [108].

Pulse sensors Yes

PRV Wristband (2017)

A small portable device worn on the wrist detects and records
gestures, arm movements, and biometric information such as
skin temperature and pulse rate during sports activities using
an inertial measurement unit [109].

6DOF motion sensor,
temperature sensor, pulse

rate sensor
Yes No

PRV Wristband (2018)

A portable sensing device capable of continuously monitoring
cardiac movements and parameters on the wrist by using
impedance plethysmography (IPG) technology. The sensor’s
design consistently allows getting high-resolution
measurements for up to 48 h [110].

- Yes Yes

PRV Wristband (2018)

A handheld cuffless integrated system utilizes a piezoresistive
tunneling sensor, achieving ultra-high sensitivity to detect
slight wrist artery pressure. After the read, a circuit amplifies
and converts the pulse pressure-induced signal to be wirelessly
transmitted to the cloud for its storage [111].

Tunneling piezoresistive
sensor Yes No
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Table 3. Cont.

Target Device Type (Year of
Publication) Functioning Sensors Used Real-Time

Monitoring
Elderly User

Ready

Respiratory Rate Fabric (2018) It is a smart textile based on a piezoresistive sensor element for
respiratory monitoring [112].

Silver-plated nylon
knitted fabric Yes No

Respiratory Rate Stretchable sensor (2019)

It is an easy-to-use, low-cost, stretchable, and portable RR
sensor that measures respiratory volumetric changes. The
sensor is manufactured using polydimethylsiloxane substrates
(PDMS) and a soft lithography technique for the stretchable
sensor body. An inkjet printing technology creates the
conductive circuit by depositing silver nanoparticles on top of
PDMS substrates that detect inductance fluctuations [113].

RR sensor Yes No

Respiratory Rate Armband (2018)

Respiratory rate is estimated from a cuff ECG using a method
based on variations in the slopes of the QRS and the angle of
the R wave. The estimates are compared with those obtained
from the respiration signal. The cuff includes a pair of dry
electrodes that record the ECG and is designed for long-term
monitoring. [114].

ECG Yes No

Oxygen saturation
of blood Finger case (2018)

The device connects to a cloud gateway to support IoT
applications using an MCU node as a data processor. The data
sent to the cloud can be later accessed online for detailed
analysis [115].

Photodetector Yes No

Oxygen saturation
of blood In-ear device (2020)

It is a device entered into the ear canal for real-time oxygen
saturation measurement in the blood using a
photoplethysmography sensor. It consists of green (537 nm),
red (660 nm), and infrared (880 nm) emitting diodes, as well as
a photodiode to measure reflected light [116].

Photoplethysmography
sensor Yes No

Oxygen saturation
of blood Patch (2018) It is a patch-type device that uses green light emitters to

calculate oxygen saturation levels in the blood [117].
Photoplethysmography

sensor Yes No
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Table 3. Cont.

Target Device Type (Year of
Publication) Functioning Sensors Used Real-Time

Monitoring
Elderly User

Ready

Oxygen saturation
of blood Neck device (2021)

An integrated PPG sensor (MAX30102 by MAXIM integrated)
housed in a PCB emits red light (650–670 nm) and IR (870–900
nm). Then, the PPG sensor coupled to a photodiode quantifies
light absorption. A three-axis linear accelerometer (LIS2DH12
by ST Electronics) assesses activity and eliminates motion
artifacts as necessary [118].

PPG sensor,
accelerometers Yes No

Oxygen saturation
of blood Finger case (2019)

It is a portable optical biosensor system that continuously
measures pulse oximetry and heart rate using a
reflectance-based probe [119].

Photodetector Yes No

Blood pressure Wrist-watch (2017)

It is a wristwatch blood pressure monitor to measure blood
pressure by holding the watch against the sternum wall to
detect micro-vibrations of the chest related to the heartbeat. As
the pulse wave travels from the heart to the wrist, an optical
sensor and an accelerometer in the watch allow estimating the
travel time (pulse transit time (PTT) to estimate BP [120].

Optical based
pulse sensor Yes Yes

Blood pressure In-ear device (2019)

A device called eBP measures BP from inside the ear,
minimizing interference with the user’s everyday activities
while maximizing their comfort level. Three key components
provide this functionality: (1) a light-based pulse sensor
connected to an inflatable tube placed into the ear, (2) a digital
air pump with a controller, and (3) a BP calculation
algorithm [121].

Optical based
pulse sensor Yes No

Blood pressure
and HR Ear wear (2017)

ECG and PPG-based HR and BP monitor attachable to the ear
for greater usability. It is suggested to place the ECG and PPG
sensors at the back of the ears with the possibility of
integrating them into glasses or headphones [122].

ECG and PPG Yes No

Blood pressure
and HR Glasses (2017)

It is a portable device that monitors the HR at three points on
the user’s head. The lens prototype incorporates optical
sensors, processing, storage, and communication components.
The device continuously records the flow of reflected light
intensities from the bloodstream and the inertial measurements
of the wearer’s head [123].

Optical based pulse
sensor Yes Yes
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It is worth mentioning that all of the reviewed research devices were developed for
healthcare applications, and that more and more developers are choosing to include smaller
sensors that allow the construction of more comfortable and less invasive devices. Of
course, one of the primary interests in remote healthcare monitoring is to provide these
devices with a greater capacity to obtain more and better physiological data and in turn
communicate the data in real-time to the various health monitoring software applications
to which they are connected.

Additionally, in consideration of their characteristics and modes of use, the reviewed
research devices were classified into various wearable categories. Figure 6 shows the
percentages of devices assigned to each category.

Figure 6. Percentages of reviewed research devices classified by device type.

In turn, in Table 4, the percentages of reviewed devices and sensors that could carry
out real-time monitoring were identified. In this work, real-time monitoring devices were
identified as those that could transmit data on the body’s physiological variables to external
devices for processing when they read the data.

Table 4. The number of reviewed devices with real-time monitoring capability.

Real-Time Monitoring No. of Devices %

Yes 29 91%
No 3 9%

Finally, Table 5 lists the number and percentage of devices that could read some of the
most important physiological parameters. Some of the commercial devices were able to
measure multiple parameters.

Table 5. The number of devices capable of measuring a specific physiological parameter.

Parameter Target No. of Devices %

Glucose 8 24%
Heart Rate 7 21%

Oxygen Saturation of Blood 5 15%
Blood Pressure 4 12%

Pulse Rate Variability 4 12%
Heart Rate Variability 3 9%

Respiratory Rate 3 9%
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It is worth mentioning that some relevant points were identified as a subject for discus-
sion, mainly the fact that among the devices reviewed in this work, a trend of technological
development in commercial devices focused on types of cardiovascular diseases was noted,
possibly derived from the current state of sensors available for the measurement of physio-
logical parameters. For this reason, it was easier to measure parameters related to heart
conditions, unlike others such as osteoporosis. On the other hand, among the research
devices reviewed, it was noted that the most widely used physiological parameters had
to do with the measurement of glucose and the heart rate, again, possibly derived from
the general state of development of biomedical sensors. This allowed us to identify a
relationship between the technological advances in sensors, their target areas, and their
impact on trends in the development of manufactured and research devices.

Throughout the preparation of this work, it was possible to identify remarkable data
regarding remote health monitoring in older adults. First, it was possible to identify that,
of the commercial devices identified as “useful” for monitoring physiological parameters
related to diseases, 36% were mainly focused on cardiovascular diseases, 19% on general
body tracking, 14% on diabetes, 14% on sleep disorders, 6% on Parkinson’s, and finally,
3% each on alcoholism, seizures, osteoporosis, and respiratory diseases. Moreover, it was
found that glucose and blood saturation levels, heart and respiratory rates, pulse rate
and heart-rate variabilities, and blood pressure are some of the most useful physiological
parameters to determine the general user’s health condition.

5. Discussion
5.1. Challenges and Trends

Throughout this work, some challenges were identified due to various factors of tech-
nological development. It is important to mention that, despite the tremendous progress
that has taken place today in measuring physiological variables, there are still limitations
on what can be measured. We see this mainly exemplified by the current difficulties in
monitoring and measuring variables concerning difficult access areas such as the bones,
lungs, or even the brain. Some of these limitations derive from the size of the components
used, the methods for insertion/placement of the sensors inside the human body and their
subsequent extraction, and the sensor power supplies, among others. For these reasons,
there are still few control and monitoring devices available for many chronic degenerative
diseases such as osteoporosis, some types of cancer, and gastrointestinal diseases, among
others. These represent challenges to the development and manufacture of devices in three
main categories: (1) downsizing of components and sensors, (2) device power supplies,
and (3) communication/data transmission methods to access device readings.

The development and conceptualization of wearable devices that fulfill health moni-
toring functions is a topic of high interest within the scientific community and the business
setting. Their applications can range from health care areas in controlled environments
to monitoring vital signs and general body conditions with business and military appli-
cations in extreme environments. All of this has led to the exploration of new materials,
architectures, communication schemes, and other aspects that can change the presentation
of wearables and how they work. One of the clearest examples is the development of
smart fabrics that include sensors that allow measurements ranging from body temperature
to levels of electrical conductivity in the skin. On the other hand, new bio-measurement
variables are being explored, including sweat as a parameter to measure metabolites such as
lactate and uric acid. Likewise, the advantages of developing devices with “self-repairing”
characteristics that allow them to increase their service life or ensure their operation under
challenging conditions are also being investigated. Finally, we cannot fail to mention the
significant trend toward the development of increasingly compact devices with extended
battery life. Technological advances in wearable devices related to healthcare are presented
and discussed next.
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5.2. Emerging Solutions

Technological development never stops, and the same may be said for the development
and manufacture of wearable technology. Nowadays, some trends have been identified that
are gaining interest within the scientific community regarding technological development
applicable to the healthcare sector. Innovative technological paradigms such as IoT and
artificial intelligence are acquiring a fundamental role in the new development proposals
for sensors and mobile devices.

IoT is a technological paradigm associated with developing and improving commu-
nication schemes between devices that allows connecting devices that are increasingly
smaller. Of course, this has sparked interest in, rather than connecting complete wearable
devices that incorporate one or more sensors, directly connecting the individual sensors
to a communication scheme that allows the collection of physiological data in real-time.
Future sensors must be individually capable of transmitting large amounts of data, making
them available for more efficient and timely analysis. The increasing demand for sensors in
many applications, including healthcare, calls for developing smaller and more efficient
batteries so that these sensors can use them individually. In other words, the goal is to
achieve wireless communication from each sensor so that it is not entirely necessary for
the sensor to be part of a more complex device. Thus, the conceptualization of wearable
would change completely. However, achieving wireless communication with such small
devices involves other challenges such as energy consumption. Therefore, the development
of these independent sensors also depends on constructing more powerful batteries that
supply each device opportunely. In the same way, constructing smaller and more efficient
chips will allow more efficient energy use [124].

On the other hand, improvements in memory capacity, processor speed and perfor-
mance, and communication throughput between sensors and applications will facilitate
adopting technological paradigms such as AI, which has already been gradually integrated
with wearable technology for some years. However, some solutions are still being de-
veloped to address the challenge of making individual sensors smarter to ensure that
they can self-adapt to the patient’s physiological conditions such that their calibration or
configuration does not need human intervention [125].

In addition, an increasing interest in developing more and better biosensors to measure
biosignals from the human body with a more “invasive” approach should also be noted.
This invasive approach allows one, among other things, to perform more reliable readings
of some physiological variables such as the level of glucose in the blood [126]. As already
mentioned, the idea of building increasingly smaller devices opens up a vast amount
of possibilities regarding the use of sensors that can be placed or inserted in parts of
the human body without being uncomfortable or obstructive [127]. The development of
devices at the molecular level has already begun. It can be said that the combination of
all these trends will lead to the development of more efficient, comfortable, and reliable
monitoring schemes.

Many technological trends have been observed in the development of healthcare
devices, favoring their autonomy, interoperability, embedded intelligence, and usability.
However, these features will not be equally enhanced in all devices because their evolution
is closely related to their function and user interaction. For example, the ideal device in the
case of glucose control would be a stand-alone device, interoperable with data visualization
applications, with sufficient built-in intelligence to determine the exact amount of insulin to
be administered, and requiring no intervention in its use. Nevertheless, such a device can
hardly be built with currently available technology. Autonomy is compromised because it
requires incorporating both the insulin reservoir and the battery, which eventually run out.
Furthermore, interoperability will be limited by the communication protocols used to send
medical data, which are often rapidly rendered obsolete by new needs or new technological
developments. In addition, the built-in intelligence to identify glucose patterns rising to
critical levels will require increased storage, processing, and energy resources. Finally,
usability is fragmented by population preferences, including, for example, aspects such as
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device invasiveness. Invasive devices may be the least demanding of the user’s attention,
but they are generally not widely accepted, and their autonomy and interoperability are
difficult to achieve, as said before. In the future, each technological trend will have a
different impact on the design of each wearable device depending on its function and
human interaction.

5.3. Limitations

The presented review has several limitations:
1. No comparative studies were included regarding the efficacy and reliability of

healthcare for older people using FDA-approved wearable devices of clinical equipment
grade. Comparisons with FDA-approved devices would shorten the distance in provid-
ing the basic infrastructure needed to afford good quality healthcare outside clinic and
hospital facilities.

2. Among non-commercial devices, experimental prototypes based on biomarkers
were not included in the study. Infectious diseases and malignant neoplasms (cancer),
among others, can be diagnosed by biomarker detection. However, promising biomarker-
based biosensor technology is still in the experimental phase. Known as biomarkers,
biological molecules found in blood or tissues signal abnormal health conditions and can
be detected by immunofluorescence or standard ELISA tests.

3. No comparative studies were considered on the quality of life provided by com-
mercial wearables and clinical-grade scenarios. Although remote healthcare technology is
now available, many usability factors remain to be studied before the technology becomes
widely accepted. The lack of acceptance of advanced digital technologies by older people
and the skills required for their use are significant challenges.

4. No mobile apps were analyzed for healthcare self-management based on the wear-
able devices presented. The acquisition, processing, and exploration of data obtained from
wearables and the notification of relevant related events ultimately require an application
for analysis and decision-making. Medical data processing is an important aspect that
several wearable device manufacturers have addressed through a cloud storage scheme,
where specialized applications can later query the data. Furthermore, literature reviews on
cardiovascular diseases [128–133] and diabetes [134–141] have described apps designed
for specific diseases that were not addressed here, as they were outside the scope of
this research.

5. No studies on the acceptance and skills needed for the appropriate usage of the
wearables were considered.

6. No updated FDA-approval information for many wearable devices was readily
available online from the manufacturers.

Among the limitations, the lack of FDA-approval grade wearable devices may impede
achieving high-quality remote healthcare comparable to the care achieved with correspond-
ing clinical equipment currently available.

6. Conclusions

In this work, it was found that, for wearable devices for remote healthcare monitoring
for older adults, each biosensor obtains an accurate measurement of the relevant biomedi-
cal variables for the timely detection of a particular disease. The most critical biomedical
variables identified were glucose, heart rate, oxygen saturation of blood, blood pressure,
pulse rate variability, heart rate variability, and respiratory rate. Their importance was
determined by the number of wearable devices with sensors and biosensors integrated to
detect the corresponding biomedical signals of those diseases. Consequently, only those
wearable devices with suitable sensors coordinated by computer applications will allow the
extraction of crucial medical information that can be used to adequately monitor specific
diseases. Moreover, the characteristics of wearable devices that fit the monitoring needs for
the healthcare of older adults were given by their type, which directly influences device
usability. In the distribution of wearable devices, the five most frequently cited types in
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the reviewed literature were watches (25%), bracelets (17%), patches (17%), intradermal
sensors (13%), and portable sensors (8%). The question then arises as to whether biosensors
integrated into wearable devices can be developed to detect lethal diseases such as malig-
nant neoplasms (various types of cancer) in time, in which case, their state of development
as final products for use across broad sectors of society will need to be determined.

In addition, after carrying out the analysis proposed in this work, it should be pointed
out that not all major diseases (both due to mortality and morbidity) can be remotely
monitored. In general, it can be said that most chronic degenerative diseases can be
remotely monitored due to the market availability of devices, including those approved
by the FDA. Regarding their medical-grade precision and reliability, the degree of user
acceptance of a wearable device was determined by an FDA evaluation. The distribution
of wearable devices in the market with an FDA evaluation was as follows: 29% approved,
4% partially approved, 13% clear, 4% partially clear, 4% registered, 25% not approved, and
21% with unknown status. However, for deadly diseases such as cancer that are difficult to
detect in their early stages, both due to their diversity and complexity, only research allows
the identification of biochemical markers that reveal the presence of cancer cells. As has
been the case with drugs, whose successful approval by the FDA attests to their reliability
and efficacy, this prospect of trust will eventually extend to wearable devices. In other
words, those devices with FDA approval will eventually gain greater market acceptance
because of the high standards of quality in their development that assured their approval.

The scope of this research was limited to wearable biomedical devices that allow
obtaining valuable data in the follow-up, monitoring, and management of the health status
of older adults. However, devices that can measure other physiological parameters, such as
hormonal parameters, were left out. Finally, the main findings in this work were as follows:

• Among the commercial devices reviewed, 25% belonged to the smartwatch category.
• Among the commercial devices, 54% had some FDA evaluation (approved, partially

approved, cleared, partially cleared, or registered).
• The diagnosed diseases that an FDA-approved wearable device can monitor were car-

diovascular diseases, diabetes, general body tracking, sleep disorders, and alcoholism.
• Most of the commercial devices reviewed were devoted to cardiovascular diseases

and general body tracking.
• Among the non-commercial wearable devices, those in the band, bracelet/watch, ear

wear, and patch category were the most used.
• The physiological parameters that non-commercial wearable devices could moni-

tor were glucose, heart rate, oxygen saturation of blood, blood pressure, pulse rate
variability, heart rate variability, and respiratory rate.
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