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Abstract

Background: Intermittent Preventive Treatment of malaria in infants using sulfadoxine-pyrimethamine (SP-IPTi) is
recommended by WHO for implementation in settings where resistance to SP is not high. Here we examine the relationship
between the protective efficacy of SP-IPTi and measures of SP resistance.

Methods and Results: We analysed the relationship between protective efficacy reported in the 7 SP-IPTi trials and
contemporaneous data from 6 in vivo efficacy studies using SP and 7 molecular studies reporting frequency of dhfr triple
and dhps double mutations within 50km of the trial sites. We found a borderline significant association between frequency
of the dhfr triple mutation and protective efficacy to 12 months of age of SP-IPTi. This association is significantly biased due
to differences between studies, namely number of doses of SP given and follow up times. However, fitting a simple
probabilistic model to determine the relationship between the frequency of the dhfr triple, dhps double and dhfr/dhps
quintuple mutations associated with resistance to SP and protective efficacy, we found a significant inverse relationship
between the dhfr triple mutation frequency alone and the dhfr/dhps quintuple mutations and efficacy at 35 days post the 9
month dose and up to 12 months of age respectively.

Conclusions: A significant relationship was found between the frequency of the dhfr triple mutation and SP-IPTi protective
efficacy at 35 days post the 9 month dose. An association between the protective efficacy to 12 months of age and dhfr
triple and dhfr/dhps quintuple mutations was found but should be viewed with caution due to bias. It was not possible to
define a more definite relationship based on the data available from these trials.
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Introduction

Intermittent preventive treatment of malaria with sulfadoxine-

pyrimethamine (SP) in infants (SP- IPTi) reduced the incidence of

clinical malaria in areas of sub-Saharan Africa with low to

moderate SP resistance in sub-Saharan Africa [1–5] but had no

significant protective effect in one area of high SP resistance [6]

and one area of low transmission [7]. Based on the findings from

these 7 randomised trials, a technical Expert Group convened by

the World Health Organization (WHO) in 2009 recommended

SP-IPTi for use as a malaria control tool in sub-Saharan Africa

under certain conditions [8]. Firstly, it was recommended that

IPTi programmes be implemented only in areas with moderate to

high transmission (Annual Entomological Inoculation Rates (EIR)

greater than 10 infectious bites per person per year). Second, it was

recommended that programmes are not implemented in areas

where the degree of parasite resistance to SP is high. At that time

the relationship between the level of SP resistance and the likely

efficacy of SP-IPTi at any individual site was not well defined. The

aim of this study was to explore the relationship between

protective efficacy of SP-IPTi and measures of resistance to SP

in order to better define this relationship.

The most common method for estimating SP resistance is

measurement of the in vivo efficacy of SP in the treatment of

children between the ages of 6 and 59 months with uncomplicated

malaria using WHO standard methodology [9]. Over the past 10

years, the recommended follow-up time in these studies has

changed from 14 days to 42 days and in some cases to 63 days, to

account for late treatment failures and to demonstrate the

prophylactic effect of antimalarials. Since the WHO recommends
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treatment of uncomplicated malaria with an artimisinin-based

combination therapy (ACT), it is no longer acceptable in most

countries to carry out in vivo efficacy studies of SP used alone for

treatment of uncomplicated malaria in children.

In vitro methods for measuring antimalarial drug resistance are

being proposed to enable investigation of parasite resistance to the

individual components of ACTs [10] and will be a useful adjunct

to in vivo studies. However, these methods are only available in a

few centres and no data are available from the sites of the SP-IPTi

studies.

If in vivo studies cannot ethically be carried out and in vitro assays

are unavailable then assessment of the level of resistance must rely

on studies of the frequency of molecular markers of SP resistance.

The mechanism of action of SP is well documented and point

mutations at codons 16, 50, 51, 59, 108 and 164 in the dhfr gene

[11,12] confer resistance to pyrimethamine while mutations at

codons 436, 437, 540, 581 and 613 of the dhps gene [13,14] confer

resistance to sulfadoxine. There is a non-linear relationship

between the number of mutations and resistance. However, the

presence of three dhfr mutations (dhfr triple: N51I, C59R, S108N)

and two dhps mutations (dhps double: A437G, K540E) in

Plasmodium falciparum parasites studied prior to treatment is a

significant predictor of SP treatment failure [15,16,17]. A recent

meta analysis of SP in vivo studies and mutations showed a

significant increase in the risk of therapeutic failure associated with

the dhfr triple mutation (Day 28 OR 3.1 95% CI: 2.0–4.9) and with

the dhfr-dhps quintuple mutation (Day 28 OR 5.2 95% CI 3.2–8.8)

[18].

In this paper we characterise the relationship between

protective efficacy of SP- IPTi, molecular markers of SP resistance

and estimates of SP resistance measured by in vivo efficacy studies.

By combining data from 7 randomised trials which evaluated the

efficacy of IPTi against clinical malaria with contemporaneous

data on resistance and the frequency of mutations in the dhfr and

dhps genes in the study areas, we provide estimates of SP-IPTi

protective efficacy at different levels of SP resistance with the aim

of providing evidence towards defining the level of resistance at

which SP-IPTi no longer provides a clinical protective effect.

Methods

a) Data Sources
Randomised placebo controlled (RCT) trials of IPTi were

identified by literature search using the strategy shown in

supplement file S1. Trials were only selected if they were RCT s,

all participants were infants (children ,1 year old) and SP treatment

doses were given at the time of vaccination. Seven SP-IPTi trials

were identified, all were undertaken in Sub-Saharan Africa between

1999 and 2008. The dates, locations and dosing strategies of these 7

studies are summarized in Table 1. There was substantial variability

in the study design of the 7 trials, 3 out of 7 giving doses at 3, 9 and

15 months of age [2,4,7], 2 giving doses at 2,3 and 9 months of age

[5,6] and 2 giving doses at 3,4 and 9 months of age [1,3] with one of

these giving a further dose at 12 months [1]. The number of

treatments with SP-IPTi given will affect protective efficacy up to 12

months of age. Thus, whilst these data are of clinical importance,

comparisons of 12 month efficacy between trials should be viewed

with caution. Although 12 month data are shown we attach more

weight to the relationships between the protective efficacy in the 35

day post dose prophylactic period following administration of the 3

and 9 month doses of SP-IPTi which were given in all trials. Because

only summary data were available, it was not possible to adjust our

estimates to properly account for variations in the exact age at the

time of administration of these doses or other factors such as ITN
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coverage between the studies. Summary data were supplied by the

Statistical Working Group of the IPTi consortium (www.IPTi-

malaria.org summarised in [19] ) and from a recently published

IPTi study [6]. Unadjusted protective efficacies (PE) were estimated

using the equation PE = 12(incidence in the intervention group/

incidence in the placebo group) and are shown in Table 2.

Study sites varied in transmission intensity, the lowest being in

Gabon [7] with an incidence of 0.22 cases of malaria per person

year at risk (PYAR) and the highest being Kumasi in Ghana [2] with

an incidence of 1.29 cases PYAR. Patterns of transmission also

varied between sites with 2 sites supporting perennial transmission

[2,5], 4 sites perennial with seasonal peaks [3–7] and one site with

highly seasonal transmission [1]. ITN coverage also varied between

sites (5 studies ,30% coverage [1–4,7], and 2 sites .60% [5,6]).

A literature review was undertaken to identify data for standard

in vivo efficacy studies of SP in children under the age of 5 years

and studies of mutations in dhfr and dhps genes conducted in

locations near to the above trials in time and place. Search terms

used in the review are shown in supplement file S1. Where no

publications were found, researchers in areas where SP-IPTi had

been conducted were contacted to acquire unpublished data. In

vivo efficacy and mutation data were included if they were sampled

within 2 years from the time of the SP-IPTi study and within a

50km radius. Variables extracted were study site, estimated

distance from IPTi study site, year of study, study design, number

of participants, day 14 and/or day 28 Adequate Clinical and

Parasitological Response (ACPR) where available and frequency

of mutations in dhps and dhfr genes (see tables 1 and 2).

b) Statistical Methods
Univariate exploratory analyses of the relationship between the

protective efficacy as measured in the trials and the measure of

resistance (day 14 ACPR, frequency of triple dhfr mutation,

frequency of dhps double mutation and their combination in a

quintuple mutation) were first undertaken using non-parametric

methods (Spearman’s rank correlation) using Stata v10.1. However,

these only assess the crude relationship between summary measures,

and they will tend to under-estimate the strength of the association

when the outcome measures have not been estimated precisely. In

addition, they cannot easily be extended to predict protective

efficacy at sites with different resistance profiles. To do this, we

developed a simple non-linear probabilistic model of the relation-

ship between mutation frequencies in the dhfr and dhps genes and the

protective efficacy of SP-IPTi. The details of the development of the

model are shown in supplement file S2. Briefly, the model takes into

account the effect of each combination of mutations on PE, i.e. the

effect of wild type parasites, the effect of the mutant haplotypes in

the dhfr and dhps genes independently and when they are combined

in the quintuple genotype.

To calculate the length of protection of SP-IPTi we used the two

full data sets available (Navrongo, Ghana and Korogwe,

Tanzania) [1,6]. We examined the relationship between duration

of protection after a dose of SP-IPTi and markers of SP resistance.

The methodology used has been previously published [20,21]. In

short, person-time at risk after a particular dose of IPTi was

divided into strata to allow calculation of protective efficacy in

discrete time periods after IPTi. Random-effects Poisson regres-

sion was used to calculate protective efficacy in each time stratum.

In this analysis we use a shorter time period (21 days vs 28 days) in

order to demonstrate differences in the period of prophylaxis.

Results

Six studies measuring in vivo efficacy of SP in children under the

age of 5 years were found which met the inclusion criteria

(Table 1). One site, Kumasi in Ghana, had no contemporaneous

data on SP efficacy. ACPR was reported for the day 14 endpoint

in all 6 studies and for day 28 in 4 of the 6 studies. Molecular PCR

correction for re-infection and recrudescence was carried out in 3

of the 6 studies (Table 1).

Seven studies which met the inclusion criteria and tested for dhfr

and dhps mutations were found (Table 1). All seven studies were

undertaken within 50km of the IPTi studies and 5 of the 7 took

place at the same site. Two were community cross sectional

studies, 1 was from a study of clinical cases in an IPTi study and 4

were obtained at enrolment into standard in vivo efficacy studies.

All studies reported results on the following codons; dhfr codons 51,

59 and 108 and for dhps codons 436, 437 and 540, and these were

therefore used for further analyses. Six studies reported on

Table 2. Protective efficacy of IPTi with SP, in vivo efficacy of SP in under 5 year olds and frequency of genetic markers of SP
resistance at the seven study sites.

IPTi efficacy (95% CI) In vivo efficacy Frequency of mutations

Trial Site

35 day post dose
prophylactic effect
after 3 month dose, %

35 day post dose
prophylactic effect
after 9 month dose, %

Up to 12
months of
age, %

Day 14
ACPR, %

Day 28
ACPR, %

DHFR
triple, %

DHPS
double, %

Quintuple,
%

Ifakara, Tanzania [5] 77.8 (20, 100)* 91.1 (74, 100) 57.5 (43, 69) 68.9 59.8 24.4 8.2 3.6

Manhica,
Mozambique [3]

57.5 (22, 80) 65.2 (39, 83) 15.4 (2, 27) 78.6 Not
reported

81 56 52.9

Navrongo, Ghana [1] 75.8 (56, 89) 79.0 (70, 86) 30.0 (22, 37) 77.6 Not
reported

44 1 0

Lambaréné, Gabon [7] 74.8 (251, 100)** 71.5 (225, 100)**** 22.5 (217, 50) 79 46 98 4 4

Kumasi, Ghana [2] 82.0 (66, 94) 47.6 (19, 68) 20.7 (8, 31) 61 1 1.3

Tamale, Ghana [4] 65.7 (19, 91) 83.4 (66, 95) 32.1 (20, 42) 86 72.2 47 1 0.8

Korogwe, Tanzania [6] 1*** (2397, 100) 69.6 (15, 95) 210.2 (252, 20) 38.8 17.7 96.4 90 89.2

*9 cases in placebo group,
**4 cases in placebo group,
***3 cases in placebo group,
****7 cases in placebo group.
doi:10.1371/journal.pone.0012618.t002
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mutations at codon 164 on the dhfr gene (none found mutations at

this codon) and 4 studies reported on mutations at codons 581 and

613 on the dhps gene.

Table 2 summarises the three measures of protective efficacy of

IPTi (namely the 35 day post dose prophylaxis effect of the 3 and 9

month doses of SP and the protective efficacy of SP IPTi to 12

months of age) for the seven trials, and the 14 and 28 day ACPR

and frequency of dhfr triple and dhps double mutations found in

studies conducted nearby in time and location.

Univariate associations between markers of resistance
and protective efficacy of SP-IPTi

Figure 1 shows the relationship between four measures of SP

resistance and the protective efficacy of SP-IPTi against incidence

of malaria during the 35 days after administration of the 3 and 9

months doses of SP-IPTi and up to 12 months of age. The

measures of SP resistance are: a) the day 14 failure rate from in vivo

efficacy studies; b) the frequency of the dhfr triple mutation; c) the

frequency of the dhps double mutation; and d) the frequency of the

quintuple dhfr/dhps mutation. There is some indication that as

resistance increases protective efficacy declines, as indicated by the

negative rank correlations in all comparisons and there is a

significant negative rank correlation between frequency of the

triple dhfr genotype and 12 month protective efficacy 20.75

(p = 0.05). It should be noted that the 12 month protective

efficacies are not directly comparable between trials due to

differences in both the timing and number of doses of IPTi

delivered as well as the length of follow-up.

Estimates of the relationship between mutation
frequency and protective efficacy

Figure 2 shows the fit of the model expressing the relationship

between mutation frequency and protective efficacy in each of the 7

sites for the 35 days after the 3- and 9-month doses and up to 12

months of age. For all outcomes there is close agreement between

the model and the data to which it is fitted, demonstrating that there

Figure 1. Relationship between protective efficacies of IPTi for the seven trial sites plotted against markers of resistance. (a) the 14
day ACPR (rank correlation = 0.03 (p = 0.96) for the 3 month dose, 0.09 (p = 0.87) for the 9 month dose and 0.26 (p = 0.62) over 12 months); (b) the
frequency of the dhfr triple mutation (rank correlation = 20.54 (p = 0.22) for the 3 month dose, 20.61 (p = 0.15) for the 9 month dose and 20.75
(p = 0.05) over 12 months); (c) the frequency of dhps double mutation (rank correlation = 20.46 (p = 0.29) for the 3 month dose, 20.32 (p = 0.48) for
the 9 month dose and 20.61 (p = 0.15) over 12 months); (d) the frequency of the dhfr/dhps quintuple (rank correlation = 20.66 (p = 0.16) for the 3
month dose, 20.26 (p = 0.62) for the 9 month dose and 20.71 (p = 0.11) over 12 months).
doi:10.1371/journal.pone.0012618.g001
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is a strong relationship between protective efficacy and the

frequency of resistance mutations in the population. For the 3

month dose, the model-predicted efficacy is somewhat higher than

that observed in Korgowe, although the confidence interval for the

data estimate is wide and the observed protective efficacy is within

the 95% credible interval predicted by the model. There is greater

discrepancy for the 9 month estimates with higher observed

protective efficacies in Ifakara , Lambaréné and Tamale compared

to those predicted by the model and lower observed PE in Kumasi

than predicted by the model. For the 12 month outcome the model

predictions for the Ifakara and Lambaréné datasets are substantially

lower than that observed whereas the model predicted a higher

efficacy for the Korogwe site. Thus, for the 9 month dose and up to

12 months of age data it appears that factors other than the

mutations investigated were influencing protective efficacy. This has

been explored in two modelling exercises [22,23].

Table 3 shows the estimated protective efficacy for 35 days

following the 3 and 9 month doses and up to 12 months of age for

wild type (no mutations) and each of the three mutation

combinations. The estimates for the dhps double mutation alone

are uncertain (as demonstrated by the wide credible intervals) since

almost all samples which contained the double mutation also

contained the triple dhfr mutation. However, because the

frequency of the double dhps mutation alone is low, this

uncertainty has little impact on the predicted efficacies for each

site. Our parameter estimates suggest that IPTi will be significantly

less efficacious in a population with 100% prevalence of the triple

dhfr mutation than in one where there are no mutations, with the

difference between the protective efficacy in the latter and former

cases estimated as 20.08 (95% credible interval (CrI): 20.53, 0.45)

after the 3 month dose, 0.42 (95% CrI: 0.03, 0.65) following the

Figure 2. Observed and fitted protective efficacies of IPTi for the seven trial sites. a) during 35 days after a dose at 3 months; b) during 35
days aftera dose at 9 months; and c) up to 12 months of age. Model predictions are based only on the frequency of the dhfr triple mutation, dhps
double mutation and combined dhfr and dhps quintuple mutation and do not adjust for any other differences between the trials or the trial sites.
doi:10.1371/journal.pone.0012618.g002

Table 3. Estimated protective efficacy against malaria for 35
days post 3 and 9 month dose (posterior median and 95%
credible interval) and up to 12 months of age of SP IPTi when
the parasite population has no resistance mutations, all carry
the dhfr triple mutation, all carry the dhps double mutation or
all carry the quintuple mutation (both the dhfr triple and dhps
double mutations).

Mutations
present

Estimated
PE (%) 95% CrI

After dose at 3 months None 73.0 41.8 97.4

Just dhfr triple 80.5 48.2 98.6

Just dhps
double

38.0 241.0 97.1

Both 31.8 222.5 73.5

After dose at 9 months None 94.2 74.8 99.8

Just dhfr triple 52.6 32.5 74.0

Just dhps
double

50.1 234.4 97.9

Both 67.8 30.1 91.5

Up to 12 months of age None 60.0 34.3 87.8

Just dhfr triple 0.1 226.3 25.5

Just dhps double 67.5 219.4 98.7

Both 1.8 220.6 23.4

doi:10.1371/journal.pone.0012618.t003
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dose at 9 months and 0.60 (95% CrI 0.11, 1.12) up to 12 months

of age. It was not possible from these data to provide sensible

estimates of the relative efficacy with the double mutation

compared to either no mutations, or to the triple mutation, or

with the quintuple mutation compared to the triple alone, because

of a lack of power and hence precision.

Figures 3, 4 and 5 show the expected 35 day protective efficacy

of doses of SP-IPTi given at 3 and 9 months of age and up to 12

months of age respectively for different levels of frequency of both

dhfr triple and dhps double mutations. There is little observable

relationship between protective efficacy and the frequency of the

dhfr triple mutation following the 3 month dose regardless of the

frequency of the dhps double mutations (Figure 3), most likely due

to a lack of power given the small number of events in this period.

However, there is a significant decrease in protective efficacy after

the 9 month dose with increasing frequency of the dhfr triple

mutation at low frequencies of the dhps double mutation (Figure 4

a and b, 0% and 10% frequency respectively). For higher

frequencies in the double dhps mutation, the relationship between

the dhfr triple frequency and protective efficacy is less apparent

(Figure 4 c–e). However, this is most likely due to the imprecision

of these estimates (as shown by the wider credible intervals) as in

Figure 3. Expected protective efficacy of SP- IPTi of the 3 month dose at different frequencies of the dhfr triple mutation in settings
of different frequencies of the dhps double mutation. (a) 0%, (b) 10%, (c) 50%, (d) 90% and (e) 100% frequency of the dhps double mutation.
doi:10.1371/journal.pone.0012618.g003
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practice the dhps double mutation is almost always accompanied

by a high frequency in the dhfr triple mutation. The predicted

protective efficacy up to 12 months shows a decrease for all

frequencies of the dhps double mutation (Figure 5), although again

the relationship is uncertain for higher dhps double frequencies,

and as noted the relationship for the 12 month outcome may be

biased due to variations in study design.

Results of length of protection analysis
In Navrongo Ghana, where P. falciparum resistance to SP is low,

the period of protection post IPTi dose extended to 42 days. In

contrast, in the high resistance setting of Korogwe, Tanzania, the

period of protection was reduced to 21 days with an increased risk

of malaria, shown by a non-significant negative protective efficacy

during the second 21 day period (Figure 6 a and b).

Discussion

Our results suggest that there is a reduction in the protective

efficacy of SP-IPTi with increasing molecular markers of SP

resistance in contrast to our previous analysis with fewer studies

that demonstrated no association between day 14 ACPR and

Figure 4. Expected protective efficacy of SP- IPTi after the 9 month dose at different frequencies of the dhfr triple mutation in settings
of different frequencies of the dhps double mutation. (a) 0%, (b) 10%, (c) 50%, (d) 90% and (e) 100% frequency of the dhps double mutation.
doi:10.1371/journal.pone.0012618.g004
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resistance [24]. We previously stated that the site with the highest

protective efficacy for SP-IPTi, Ifakara, also had the highest

resistance using ACPR as a measure of resistance [25]. This in vivo

study was carried out immediately prior to the IPTi study in the

same study site but did not collect molecular data. In our search

for data on molecular markers of resistance we found a study that

took place around the same time and was within 20km of the IPTi

study site. The results from this study show that the Ifakara site

had the lowest frequency of dhfr and dhps mutations. Explaining

these contrasting observations is difficult. One possibility is that the

IPTi and in vivo study were located in a semi-urban site which had

a higher density of drug shops than in the rural villages where the

molecular studies were done and easier access to the district

hospital thus resulting in greater drug pressure and higher

resistance levels as reflected by the high ACPR. Another possibility

is that the high failure rate seen in the in vivo study [25] was due to

re-infections. However, this is unlikely because the incidence rate

reported in the IPTi study was low-moderate (0.36 episodes

PYAR) [5] and, if the parasites were very sensitive as found with

the molecular data, then we would expect SP to have offered

prophylaxis beyond 28 days. Hence, it is unclear which data best

represent resistance levels for the Ifakara site.

Figure 5. Expected protective efficacy of SP- IPTi up to 12 months of age at different frequencies of the dhfr triple mutation in settings
of different frequencies of the dhps double mutation. (a) 0%, (b) 10%, (c) 50%, (d) 90% and (e) 100% frequency of the dhps double mutation.
doi:10.1371/journal.pone.0012618.g005
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We were able to only show a single, borderline statistically

significant association between the measures of resistance to SP

that we examined and protective efficacy of SP-IPTi using simple

exploratory analyses with the few data points available. However,

by fitting a simple probabilistic model of both dhfr triple and dhps

double mutations, which better represents the underlying

relationship between the mutations and protective efficacy, we

were able to obtain a reasonable fit to the data and thus

demonstrate a strong relationship between the level of resistance

mutations (notably dhfr triple mutation) and protective efficacy. For

low levels of the dhps double mutation, there was a significant

decrease in the efficacy of IPTi 35 days post the 9 month dose with

increasing frequency of the dhfr triple mutation. However, as the

frequency of the dhps double mutants increased the estimates of the

relationship between dhfr triple and protective efficacy became less

precise. This supports the biological plausibility of the model as

dhfr mutations first appear followed by dhps mutations. Once the

frequency of the dhfr/dhps quintuple mutation rises, selection for

more resistant haplotypes takes place, as in the case of Korogwe,

where the quintuple mutation reached saturation and there was a

high frequency of a sixth mutation, the dhps 581G mutation [26].

The analysis was limited by the scarcity of data points. In 3 of

the 7 studies there were fewer than 10 cases of malaria in the

placebo group during the 35-day period following the 3-month

dose and 1 of the 7 studies had simiarly few cases after the 9 month

dose. There was also a lack of variation in the frequency of

molecular mutations with only 2 sites having frequencies of the

dhfr/dhps quintuple mutation above 4%, and all sites with a high

frequency of the dhps double mutation also had a high frequency of

the dhfr triple mutation. Because of this, the model is unable to

provide sensible predictions of the protective efficacy for the

quintuple mutation, with the central estimate obtained being

higher than that for the dhfr triple and dhps double individually at

the 9 month dose. This is not consistent with our biological

understanding of the mechanism of resistance to SP or evidence

from in vivo studies [18] but simply reflects a lack of data rather

than an underlying problem with the model. This lack of data

meant that we were unable to undertake analyses of individual

mutations including analysis of additional mutations to the

quintuple, for example the dhps 581 G mutation found in more

than 50% of samples at the Korogwe site [26] that might make

parasites even more resistant to SP than those carrying the

quintuple mutation alone.

The use of the 12 month efficacy results for comparing sites

should be interpreted with caution as 3 out of the 7 studies gave

two treatments with SP during the first year of life whereas the

Figure 6. Length of protection of SP- IPTi in 2 settings. a) low resistance to SP and b) high resistance.
doi:10.1371/journal.pone.0012618.g006

IPTi and Drug Resistance

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12618



remaining 4 gave three doses. In addition, 4 of the 7 studies

provided 10 months of observation in the first year and 3 had only

9 months. Both these factors would have affected the protective

efficacy of SP-IPTi resulting in biased estimates of the association

between protective efficacy and resistance-conferring mutations.

The results using the 12 month endpoint show an apparent

association between protective efficacy and both the dhfr triple and

the dhfr/dhps quintuple mutations, and although this is biologically

plausible, this association suffers from bias. Thus, in an attempt to

compare like with like we chose to examine the post treatment

prophylactic periods. Whilst the 35-day post-dose protective

efficacy is meaningful in terms of comparing SP efficacy between

settings with different levels of resistance, for clinical practice a

longer period is more relevant. Unfortunately it is not straightfor-

ward to translate an expected protective efficacy at day 35 post 3

and 9 month dose predicted by the model at different frequencies

of mutations to an equivalent 12 month protective efficacy. For

example, in Korogwe, Tanzania the 35 day protective efficacy

after the 9 month dose was 70% but protective efficacy up to 12

months of age was 26% [6]. Thus further studies or modelling are

required to assess the relationship between the dhfr mutation

frequencies and protective efficacy over this longer period.

Our analysis of the length of the period of prophylaxis in the low

and high resistance settings of Navrongo, Ghana and Korogwe,

Tanzania respectively provide further insight into the mechanism

underlying the relationship between mutation frequency and

protective efficacy. In this analysis, we have shown that increasing

SP resistance shortens the period of prophylaxis. This is explained

biologically by parasites with mutations requiring greater mini-

mum inhibitory concentrations of SP to kill or suppress the

parasites [27]. Thus, SP can be efficacious while levels of SP

remain high in blood, evident from the high protective efficacy

(.55%) during 35 days after the 3 and 9 month doses in 6 out of

the 7 trial settings including those with high resistance to SP [3,6].

Observation of the length of prophylaxis in 4 of the 7 studies shows

there is a high level of protection in the 2–6 weeks after a dose of

SP-IPTi with protection declining as drug levels decrease in

settings of low resistance [20,28] and to a negative protective

efficacy in the very high resistance setting [21].

Is there a measure of SP resistance that we can use to determine

SP efficacy for IPTi? Our study suggests that an in vivo study in

asymptomatic infants specifically designed to look at the

prophylactic effect of antimalarials might be more informative if

it looked at the duration of the post dose prophylactic effect rather

than at the protective efficacy to a certain time point, such as 35

days post dose used in this analysis. If in vivo studies cannot be done

then an assessment of molecular markers should be made. Maps of

the occurrence of the key dhfr and dhps mutations across Africa

have recently been published [26,29,30] (also see www.drugresis-

tancemaps.org). These show that the highest rates of mutations of

dhfr and dhps genes are in East and Southern Africa where SP use

has been the highest. Thus, on the basis of our model we would

predict that that IPTi with SP would currently be more effective in

West and Central Africa than in East and Southern Africa where

both dhfr and dhps mutations are more frequent. However, future

expansion or contraction of SP resistance may alter this situation

and thus continued monitoring of drug resistance in malaria

endemic countries is essential. Where the frequency of the

quintuple mutation rises above 60% further resistant haplotypes

such as the dhfr 164 L in Uganda and Rwanda [30,31] and the

dhps 581 G in Tanzania, Uganda and Rwanda [26,30,31,32] are

selected. It is highly unlikely that SP- IPTi will have a significant

protective effect in areas in which these mutations are common, as

demonstrated in northern Tanzania [6]. Thus, additional

measurement of the frequency or prevalence of the quintuple

mutation alongside measurements of both the dhfr and dhps

mutations may guide policy makers in deciding where to

implement SP-IPTi. More recently, an additional Technical

Expert Group was convened by the WHO that reviewed data

on SP-IPTi protective efficacy and SP resistance that included

data from this paper. At this meeting a consensus was reached that

the cut-off for implementation for SP-IPTi should be a prevalence

of the quintuple dhfr/dhps mutation of 50%. As it is not always

possible to measure all mutations the recommendation was to use

the P falciparum dhps 540 mutation as a marker for the quintuple

mutation and where this was greater than 50% SP-IPTi should not

be implemented. In addition, the final WHO policy document

states that in situations where a National-scale implementation

may not be feasible due to varying levels of the dhps 540 mutation,

IPTi may be implemented at a Provincial or District scale,

targeting areas with dhps 540 mutation prevalence #50% [33].

Supporting Information

File S1 Literature search strategy

Found at: doi:10.1371/journal.pone.0012618.s001 (0.03 MB

DOC)

File S2 Development of the model. Development of a simple

probabilistic model to examine the relationship between mutations

in the dhfr and dhps genes and protective efficacy of SP-IPTi.

Found at: doi:10.1371/journal.pone.0012618.s002 (0.07 MB

DOC)

Acknowledgments

We are grateful for the support of the IPTi Consortium and Alfredo

Mayor, John Aponte and the reviewers for their comments on the

manuscript.

Author Contributions

Conceived and designed the experiments: JTG MEC ACG CR DS IC RN

MPG BG DC RDG. Performed the experiments: JTG MEC ACG CR DS

IC RN MPG BG DC RDG. Analyzed the data: JTG MEC ACG CR DS

IC RN MPG BG DC RDG. Contributed reagents/materials/analysis

tools: RDG. Wrote the paper: JTG MEC ACG CR DS IC RN MPG BG

DC RDG.

References

1. Chandramohan D, Owusu-Agyei S, Carneiro I, Awine T, Amponsa-Achiano K,

et al. (2005) Cluster randomised trial of intermittent preventive treatment for

malaria in infants in area of high, seasonal transmission in Ghana. Bmj 331:

727–733.

2. Kobbe R, Kreuzberg C, Adjei S, Thompson B, Langefeld I, et al. (2007) A

randomized controlled trial of extended intermittent preventive antimalarial

treatment in infants. Clin Infect Dis 45: 16–25.

3. Macete E, Aide P, Aponte JJ, Sanz S, Mandomando I, et al. (2006) Intermittent

preventive treatment for malaria control administered at the time of routine

vaccinations in Mozambican infants: a randomized, placebo-controlled trial.

J Infect Dis 194: 276–285.

4. Mockenhaupt FP, Reither K, Zanger P, Roepcke F, Danquah I, et al. (2007)

Intermittent preventive treatment in infants as a means of malaria control: a

randomized, double-blind, placebo-controlled trial in northern Ghana. Anti-

microb Agents Chemother 51: 3273–3281.

5. Schellenberg D, Menendez C, Kahigwa E, Aponte J, Vidal J, et al. (2001) Intermittent

treatment for malaria and anaemia control at time of routine vaccinations in

Tanzanian infants: a randomised, placebo-controlled trial. Lancet 357: 1471–1477.

6. Gosling RD, Gesase S, Mosha JF, Carneiro I, Hashim R, et al. (2009) Protective

efficacy and safety of three antimalarial regimens for intermittent preventive

treatment for malaria in infants: a randomised, double-blind, placebo-controlled

trial. Lancet 374: 1521–1532.

IPTi and Drug Resistance

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e12618



7. Grobusch MP, Lell B, Schwarz NG, Gabor J, Dornemann J, et al. (2007)

Intermittent preventive treatment against malaria in infants in Gabon–a
randomized, double-blind, placebo-controlled trial. J Infect Dis 196: 1595–1602.

8. WHO (2009) Technical Consultation on Intermittent Preventive Treatment of

Infants (IPTi). Geneva, Switzerland: WHO.
9. Vestergaard LS, Ringwald P (2007) Responding to the challenge of antimalarial

drug resistance by routine monitoring to update national malaria treatment
policies. Am J Trop Med Hyg 77: 153–159.
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