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Combining the strength of flow cytometry with fluorescence
imaging and digital image analysis, imaging flow cytometry is a
powerful tool in diverse fields including cancer biology, immunol-
ogy, drug discovery, microbiology, and metabolic engineering. It
enables measurements and statistical analyses of chemical, struc-
tural, and morphological phenotypes of numerous living cells to
provide systematic insights into biological processes. However, its
utility is constrained by its requirement of fluorescent labeling for
phenotyping. Here we present label-free chemical imaging flow
cytometry to overcome the issue. It builds on a pulse pair-resolved
wavelength-switchable Stokes laser for the fastest-to-date multi-
color stimulated Raman scattering (SRS) microscopy of fast-
flowing cells on a 3D acoustic focusing microfluidic chip, enabling
an unprecedented throughput of up to ∼140 cells/s. To show its
broad utility, we use the SRS imaging flow cytometry with the aid
of deep learning to study the metabolic heterogeneity of micro-
algal cells and perform marker-free cancer detection in blood.

imaging flow cytometry | stimulated Raman scattering | metabolite
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Measurements and statistical analysis of chemical, structural,
and morphological phenotypes of numerous living cells are

essential for providing systematic insights into biological processes
in diverse fields including cancer biology (1, 2), immunology (3, 4),
drug discovery (5, 6), microbiology (7, 8), and metabolic engi-
neering (9, 10). By virtue of its ability to provide high-throughput
(much higher than automated microscopy for high-content screen-
ing [11]) and high-information content simultaneously, imaging
flow cytometry (7, 12–15) has become an established tool for
addressing the demand. The availability of high-content cellular
data (i.e., cell images) provided by imaging flow cytometry can form
a useful basis for highly accurate identification, characterization,
and classification of individual cells with emerging computa-
tional tools such as data mining and machine learning (16).
Imaging flow cytometry has been shown effective for studying the
intracellular localization of proteins (13), evaluating DNA damage
and repair (14), and analyzing cell–cell interaction and cell cycle (15).
Despite its excellent capabilities, imaging flow cytometry has a

fundamental drawback: its requirement of fluorescent labeling
for phenotyping, i.e., discriminating between physically or
chemically different cells. Fluorescent probes often come with
cytotoxicity, nonspecific binding, and interference with natural
cellular functions (17). Also, they are not available to all types of

cells and molecules (17). Furthermore, fluorescent labeling is not
applicable to cell types whose surface antigens often vary, such as
circulating tumor cells (18, 19). Development of a high-
throughput analytical technology for providing both the physi-
cally and chemically rich information of numerous single cells
without the need for fluorescent labeling has been an important
but challenging goal in the field of biotechnology and biomedical
engineering. In fact, previously demonstrated high-throughput
imaging flow cytometry based on nonspectroscopic measure-
ments only meets this goal partly (20, 21).
In this article, we present label-free chemical imaging flow

cytometry by high-speed multicolor stimulated Raman scat-
tering (SRS) microscopy on a microfluidic platform to over-
come the limitation. It is based on a fast pulse pair-resolved
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wavelength-switchable Stokes laser with a synchronized pump
pulse laser and a galvanometric scanner for SRS imaging of
acoustically 3D-focused single cells flowing in a microfluidic chan-
nel. It achieves motion artifact-free chemical imaging of fast-flowing
cells at a record high flow speed of 2 cm/s and a record high image
acquisition speed of 24 klines/s with a pixel dwell time of 0.2 μs for
4-color SRS signal acquisition, which is >10 times faster than
previous >3-color SRS techniques (22–26). Specifically, this pixel
acquisition time of 0.2 μs for 4 colors is much shorter than the
previously reported shortest value of 5 μs in single-point multiplex
SRS flow cytometry (26) and even faster than that of 0.5 μs in 2-
color SRS signal acquisition (27). To show its biological and
medical utility, we demonstrate SRS imaging flow cytometry of
microalgal, hematological, and cancer cells in practical settings at
an unprecedented throughput of up to 140 cells/s. Using the
multicolor SRS images of each single cell in a large heterogeneous
population (n = ∼10,000) with the help of deep learning, we
achieved high-precision characterization and classification of the
cells without the need for fluorescent labeling.

Results
Schematic. As schematically illustrated in Fig. 1A (see SI Ap-
pendix, Fig. S1, for a complete schematic), our SRS imaging flow

cytometer consists of 1) pulse sources that generate the trains of
picosecond pump laser pulses and subharmonically synchro-
nized, pulse pair-resolved, wavelength-switched Stokes laser
pulses for the acquisition of 4-color SRS signals; 2) a microfluidic
chip (28) with a piezoelectric transducer for acoustic 3D focusing
(29, 30) of fast-flowing cells; 3) focusing optics with a resonant
galvanometric scanner for scanning the focal spot of the laser
pulses in the direction perpendicular to the cell flow for 2D SRS
imaging; and 4) a photodetector with a lock-in detection circuit
for detecting the SRS signal by demodulating the pump intensity
modulated by the SRS process. The cell flow is pumped by a
syringe pump at a volume rate of ∼24 μL/min to produce a
constant single stream of cells at a flow speed of 2 cm/s at the
center of the microchannel. The resonant galvanometric scanner
generates sinusoidal motion of the focal spot at 12 kHz, resulting
in the horizontal scan rate of 24 kHz.
The key component of the SRS imaging flow cytometer that

enables the high-speed multicolor SRS image acquisition is the
fast pulse pair-resolved wavelength-switchable laser, which is
used as the Stokes pulse source (Fig. 1B). Specifically, the laser
switches the wavelength of the pulses by every 2 pulses (every
52.5 ns) to achieve 4-color SRS signal acquisition at a period of
210 ns. The wavelength switching is realized by applying a time
gate with an intensity modulator that picks up every 2 pulses in a
sequence of 8 pulses from a homemade Yb fiber laser, separating
the spectrum into 4 wavelength components with a diffraction
grating, and applying time delays using fiber delay lines and
Faraday mirrors. The time-delayed spectral components are
partly amplified by bidirectional ytterbium-doped fiber ampli-
fiers (Bi-YDFAs) and recombined to generate a 4-color pulse
train. Compared with our previous galvanometric scanner-based
wavelength tuning technique (31, 32), the present nonmechanical
wavelength-switchable laser is 4 orders of magnitude faster, en-
abling multicolor SRS imaging of flowing cells.

Evaluation with Beads. To validate the capability of multicolor
SRS imaging in a high-speed flow, we characterized the SRS
imaging flow cytometer with polymer beads made of poly-
ethylene (PE), poly(methyl methacrylate) (PMMA), and poly-
styrene (PS) in the CH-stretching region between 2,800 and
3,100 cm−1 with an average throughput of ∼20 beads/s. As shown
in Fig. 2A, SRS images of the beads at 4 Raman wavenumbers
indicate their characteristic signatures at the different wave-
numbers. These 4-color Raman spectra show a good agreement
with those obtained by hyperspectral SRS microscopy (31, 32)
(Fig. 2B). By linearly decomposing the multicolor SRS images
with the 4-color Raman spectra (10), we obtained the decom-
posed images of the beads as shown in Fig. 2C, which show that
the different types of beads are distinguishable. Fig. 2D shows an
SRS image library of the beads, showing the ability to continu-
ously acquire SRS images of flowing beads.

SRS Imaging Flow Cytometry for Studying the Metabolic Heterogeneity
of Microalgal Cells. To demonstrate the diverse utility of the SRS
imaging flow cytometer, we first used it to characterize the meta-
bolic heterogeneity of microalgae as a practical application for
highly efficient metabolic engineering (9, 10), which is an important
research area for achieving the Sustainable Development Goals
(SDGs) of the United Nations (33). Specifically, we evaluated the
intracellular metabolites of each single cell of Euglena gracilis, which
is a microalgal species of unicellular photosynthetic eukaryotes. E.
gracilis is known to produce metabolites such as paramylon (a type
of polysaccharides similar to starch) and lipids, which are useful for
food supplements and biofuels, respectively (10). For an efficient
production of these biomaterials, chemically specific analysis of cell-
to-cell variations in a heterogeneous population of live E. gracilis
cells is crucial for a better understanding of their biodiversity,
which is more prominent under environmental perturbations
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Fig. 1. Schematic of the SRS imaging flow cytometer. (A) Schematic of the
SRS imaging flow cytometer. It consists of 1) pulse sources that generate
synchronized trains of pump pulses at a repetition rate of 76 MHz and
subharmonically synchronized, pulse pair-resolved, wavelength-switchable
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(9). A careful examination and linear decomposition of the 4-
color SRS images of E. gracilis cells (10) allowed us to identify
3 distinct spectra that correspond to paramylon, lipids, and
chlorophyll (SI Appendix, Fig. S2). Fig. 3A shows an SRS image
library of nitrogen-sufficient and nitrogen-deficient E. gracilis
cells (n = 5,008 for nitrogen-sufficient cells, 60,854 for 10-d
nitrogen-deficient cells, and 20,524 for 58-d nitrogen-deficient
cells) imaged at a flow speed of 2 cm/s with average throughputs
of 35 cells/s (for nitrogen-sufficient cells), 71 cells/s (for 10-d
nitrogen-deficient cells), and 18 cells/s (for 58-d nitrogen-deficient
cells). Here nitrogen deficiency was used as a stress condition
to promote the intracellular accumulation of paramylon and
lipids (34). The information-rich images show the intracellular dis-
tribution of the metabolites in each living cell as well as its mor-
phological features. The numerous cell images also allowed us to
quantify the chemical constituents with single-cell resolution in a
matrix of scatterplots and histograms (Fig. 3B). It exhibits large cell-
to-cell differences in the quantity of the chemical constituents, a
decreased amount of chlorophyll and an increased amount of
paramylon after 10 d of the nitrogen-deficiency stress, which agrees
with previous reports (10, 34). After 58 d of the stress, the amounts
of paramylon and lipids exhibit smaller variances, suggesting that the
cells became slightly homogeneous. Furthermore, the availability of
the large number of single-cell images enabled us to employ a
convolutional neural network (CNN) to identify and classify the
different cultures. Specifically, we employed the well-known neural
network structure, VGG-16 (35), with 5 convolution segments to
extract 4,096 features from each image, followed by a fully connected
classifier to provide the classification result (see SI Appendix, Deep
Learning with CNNs, for details). A scatterplot of the cells shown in
Fig. 3C generated by the extracted features through t-distributed
stochastic neighbor embedding (t-SNE) indicates a clear

separation between the different cultures. Furthermore,
SRS images of each cluster shown in Fig. 3 C, Inset, resemble
those shown in Fig. 3A. The classification result shown in the
confusion matrix (Fig. 3D) exhibits an excellent accuracy of >99%
for all of the cultures. These results can help us develop and op-
timize culture or genetic transformation conditions under which
the cells change their metabolism by modifying their biosynthetic
pathways toward the formulation and accumulation of their
intracellular metabolites.

SRS Imaging Flow Cytometry for Marker-Free Detection of Cancer
Cells in Blood. To show another practical application of the SRS
imaging flow cytometer, we employed it to demonstrate simu-
lated marker-free detection of circulating tumor cells (CTCs) in
human blood. CTCs are cells that have entered blood vessels
from a primary tumor and circulate in the body and are con-
sidered to be precursors to cancer metastasis (18). Detection of
CTCs is effective for monitoring of cancer progression and de-
termining a therapeutic strategy. Although the expression of the
cell surface marker, epithelial cell adhesion molecule (EpCAM),
is usually assayed in the detection of CTCs, this antigen can
disappear through the epithelial-to-mesenchymal transition (36).
Accordingly, it is important to accurately identify and enumerate
CTCs without fluorescent labeling in liquid biopsy. In fact, a
previous report shows promising results that coherent Raman
microscopy can detect lipid-rich CTCs with the aid of preen-
richment (19) but not with high throughput. For this purpose, we
first used the SRS imaging flow cytometer to obtain numerous
images of human whole blood cells (mostly red blood cells) (n =
12,438), peripheral blood mononuclear cells (PBMCs) (n =
18,385), human colon cancer (HT29) cells (n = 1,035), and hu-
man T lymphoma (Jurkat) cells (n = 1,437) separately to pro-
duce an image database with average throughputs of 123 cells/s
(for whole blood cells), 142 cells/s (PBMCs), 8 cells/s
(HT29 cells), and 113 cells/s (Jurkat cells). HT29 cells are used
as a model of CTCs, while Jurkat cells are considered as a model
of blood cancer cells. Fig. 4A shows an SRS image library of
chemically decomposed images of these cell types (SI Appendix,
Fig. S3), exhibiting a significant amount of lipid droplets (high-
lighted in pink) in HT29 cells but not in whole blood cells,
PBMCs, and Jurkat cells. While cell areas and 4-color SRS sig-
nals of these types of cells have significant overlaps (SI Appendix,
Fig. S4), a t-SNE plot (Fig. 4B) shows clusters of the 4 types of
cells with their SRS images in the insets which are similar to
those shown in Fig. 4A. Furthermore, a confusion matrix of these
cells based on a constructed and trained CNN show the SRS
imaging flow cytometer’s ability to identify and classify these cell
types with an excellent classification accuracy of >98% for whole
blood cells, >98% for PBMCs, >94% for Jurkat cells, and >93%
for HT29 cells without the need for fluorescent labeling (Fig.
4C). Next, we applied the validated CNN to a mixed sample of
HT29 cells spiked in PBMCs (with a mixing ratio of HT29/
PBMCs = 1 ± 0.15/16 and an average throughput of 63 cells/s)
that simulated lysed blood containing CTCs. Fig. 4D shows the
CNN-calculated probability of identifying each cell in its SRS
image as a red blood cell, PBMC, Jurkat cell, or HT29 cell. The
CNN-predicted classification ratio of HT29/PBMCs = 222/
3,387 = 1.05/16 is in good agreement with the mixing ratio of the
mixed sample, demonstrating the SRS imaging flow cytometer’s
potential capability of identifying CTCs in human blood. In
practice, preenrichment techniques (e.g., density gradient cen-
trifugation, lysis, and mechanical filtration) are required to re-
duce the total time duration of screening.

Discussion
In this article, we have demonstrated label-free chemical imaging
flow cytometry on a microfluidic platform with a high throughput
of up to ∼140 cells/s enabled by high-speed 4-color SRS
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microscopy and acoustic 3D focusing. Its ability to provide nu-
merous motion artifact-free and blur-free SRS images allows the
accurate classification of cells based on the spatial distribution of
intracellular molecular vibrational signatures. To show the diverse
applicability of our SRS imaging flow cytometry, we employed it to
study the metabolic heterogeneity of microalgal cells and conduct
the marker-free detection of cancer cells in blood. Our results
indicate that the SRS imaging flow cytometry holds promise for
microbiology, cancer biology, and the SDGs.

The multicolor molecular vibrational image contrast provided
by our SRS imaging flow cytometry offers various possibilities as
follows. First, label-free phenotyping with SRS imaging will be
useful for the quality control of stem cells for regenerative
medicine (37, 38), where fluorescent labeling is not applicable
due to its potential cytotoxicity and interference with their dif-
ferentiation. Second, the molecular vibrational contrast allows
for analyzing certain types of biomolecules such as unsaturated
fatty acids (39) and polysaccharides (10), which are difficult to
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detect with fluorescent labeling. Third, SRS imaging is compat-
ible with stable isotope labeling based on deuterium (40) or 13C
(41) and with small Raman tags based on alkynes (42, 43), which
are effective for metabolic analysis of small biomolecules.
Fourth, SRS can be combined with labeling methods using

supermultiplex (>10 colors) Raman probes (44, 45), which paves
the way toward detailed analysis of intracellular constituents.
The capabilities of the SRS imaging flow cytometry can further

be improved in multiple directions. First, the number of colors
(i.e., molecular vibrational frequencies) is not limited to 4 and
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can be increased by adding more optical fibers and/or optical
modulators to the pulse pair-resolved wavelength-switchable laser
shown in Fig. 1B. Second, the wavelength-switched multicolor SRS
imaging method is compatible with line-focusing geometry (46),
which will further increase the SRS image acquisition speed. Third, a
cell sorting capability can be added to the SRS imaging flow
cytometry platform to isolate target cells from heterogeneous pop-
ulations (7). With these improvements, the SRS imaging flow
cytometry is expected to become a much more versatile tool and find
numerous applications in diverse fields in biology and medicine.

Materials and Methods
SRS Imaging Flow Cytometer. A detailed schematic of the SRS imaging flow
cytometer is shown in SI Appendix, Fig. S1. It is composed of a mode-locked
Ti:sapphire pulse laser (Coherent, Mira 900D) and a home-built mode-locked Yb
fiber pulse laser to generate synchronized pump and Stokes pulse trains at repe-
tition rates of 76 and 38 MHz, respectively. The pump laser has a center wave-
length of 790 nm and a spectral width of 0.2 nm, while the Yb fiber laser
generates broadband pulses at a wavelength of 1,030 nmwith a spectral width of
20 nm. The latter is used to generate 4-color wavelength-switched Stokes pulses as
described above. The pump laser and the Yb fiber laser are synchronized by using
a feedback loop. Specifically, the intensity cross-correlation between the pump
pulses and Yb fiber laser pulses is detected by a GaAsP photodiode (Hamamatsu,
G1115) via 2-photon absorption, such that its signal is used to control the intra-
cavity electro-optic modulator and a piezoelectric transducer in the Yb fiber laser.
The 2 laser beams are overlapped both spatially and temporally and are focused
inside the microchannel via the first objective lens (50×, NA = 0.65). The optical
power in the sample plane is<140mW for both the pump and Stokes laser beams.
The SRS process occurs in the focused volume of the combined beam inside the
target sample in the microchannel, resulting in the intensity modulation of the
pump beam at the repetition rate of the Stokes pulses. The transmitted pump
beam is detected by a Si photodetector (Hamamatsu, S3399) via the second ob-
jective lens (50×, NA = 0.65) while the transmitted Stokes beam is removed by an
optical short-pass filter. The photodetector is equipped with homemade electrical
band-pass filters with a center frequency of 38 MHz, band elimination filters at 76
MHz, and electrical amplifiers so as to extract the intensity modulation of the
pump pulses and to avoid unwanted saturation of electrical amplifiers. The pho-
todetector signal is demodulated by a homemade lock-in amplifier at 38 MHz to
obtain the SRS signal. The SRS signal is digitized with an 8-bit analog–digital
converter (Analog Devices, AD9287), whose output digital data are processed by
a FPGA (Xilinx, Spartan-6) to continuously send the data via Gigabit Ethernet to a
server computer. To perform SRS imaging of flowing beads or cells, we prepared a
solution of biological cells or polymer beads with a concentration of ∼5 × 105 mL−1

and injected the solution by a syringe pump (Harvard Apparatus) into the
microchannel whose cross-sectional area is 200 × 200 μm2. To align the beads or
cells at the center of the microchannel, a piezoelectric transducer attached to the
surface of the microfluidic chip is used to generate acoustic standing waves inside
the microchannel. To perform SRS imaging flow cytometry, the focal spot is
scanned in the direction perpendicular to the direction of the flow by a resonant
galvanometric scanner operating at 12 kHz such that 2D SRS images are obtained
by stacking the 1D SRS signals. The pixel dwell time for 4-color SRS images is 210 ns
with no pixel averaging used for image production. By changing the wavelength
of the Stokes laser with the fast wavelength-switched pulse laser and by digitally
mapping the Raman signal into a 3D matrix (x, y, λ), 4-color SRS images are pro-
duced. The 4-color SRS images are used to generate cell mask patterns as described
in the next section and are decomposed into images of several constituents by
using a Moore–Penrose pseudoinverse matrix. The decomposed images are then
combined to produce multicolor images, to which cell masks are applied to
highlight cell images. The concentration of the cells or beads was adjusted so that
the average spacing was ∼150 μm (which determined the throughput) to avoid
doublet formation, the probability of which is given as the ratio between the cell/
bead size and their average spacing according to Poisson statistics. The precision of
the flow rate was estimated to be ∼10% from the ellipticity of the bead images.

Generation of Cell Masks. To generate the cell masks for E. gracilis cells, we first
calculated the inner product between each pixel’s 4-color SRS spectrum dn, where n
represents the index of the image pixels, and the spectral basis si (i = 1, 2, 3) of lipid,
paramylon, and chlorophyll, given by cos θni =dn · si=jdnjjsi j. For each nth pixel, we
chose the largest value of cos θ among different i values. Using the generated cell
image of the maximum cos θ values among different spectra, we obtained a binary
cell image by applying a threshold value and then iteratively applied dilation and
erosion operations to connect the segmented areas within a cell. We then re-
moved unnaturally small objects in the binarized images to generate the cell
masks. To generate the cell masks for blood cells, we first applied a moving

average with a 2D Gaussian window to the λ3 images. Note that we used only λ3
(= 2,937 cm−1) images to generate cell masks because blood cells have strong
protein signals at this wavenumber. After the moving average, we generated
the cell masks by binarizing the image using a threshold value, followed by an
iterative use of dilation and erosion operations to connect the segmented areas
within a cell and removal of unnaturally small objects in the binarized images.

Deep Learning with CNNs. To analyze the images of E. gracilis and blood cells
acquired by our SRS imaging flow cytometer, we used the CNN structure (VGG-
16) to classify different cell types. For the training process in the E. gracilis
screening experiment, we randomly picked 10,000 cell images as the training
and validation dataset and 1,000 cell images as the test dataset from each E.
gracilis culture. As for the cancer detection experiment, we randomly picked
1,000 Jurkat cell images, 600 HT29 cell images, 18,000 PBMC images, and
12,500 whole blood cell images as the training and validation dataset and
500 cell images as the test dataset for each cell type. For each cell image, a total
number of 4,096 features were extracted from the 4-channel (λ1−λ4 signals) in-
put image through 5 convolution segments. Each convolution segment consists
of 2 or 3 convolutional layers for feature extraction and a maximum pooling
layer for the reduction of data volume. At last, a fully connected classifier was
used to downsize the 4,096 features to 1 dimension (probability values) to
provide a classification result. The CNN was trained for 100 epochs using cate-
gorical cross-entropy as the loss function and stochastic gradient descent with
standard parameters: 0.9 momentum, an initial learning rate of 0.0008, and a
slightly regularizing weight decay of 0.000001 as the optimizer. Training took
around 2 h and was stopped automatically by inspecting the validation accuracy.

t-SNE Plots. To better understand the features learned by the VGG-16 model, we
used the t-SNE implementation in Scikit-learn (47) to visualize the activations in the
final dense layer. The results were learned in an unsupervised way, meaning that
there was no label information on cell types in the 4,096 features learned by the
VGG-16 model. We identified clear clusters in the 2D t-SNE plots as shown in Figs.
3C and 4B, suggesting that the VGG-16 model effectively learned the important
information about the cell images but not the artificial noise.

Preparation of Jurkat Cells. Jurkat cells (ATCC, TIB-152) were obtained and
cultured in a medium with L-glutamine and sodium bicarbonate (Sigma-
Aldrich, R8758-500), 10% FBS (Biowest, S1780-500), 100 units/mL penicillin
and 100 μg/mL streptomycin (Wako, 168-23191) at 37 °C, and 5% CO2. The
cells were placed into 50-mL suspension culture flasks (Greiner Bio-One,
690195) and allowed to spread for 3–7 d.

Preparation of HT29 Cells. HT29 (human colorectal cancer, ATCC, HTB-38) cells
were cultured in Dulbecco’s Modified Eagle Medium (Gibco, 11995-065) sup-
plemented with 10% FBS (Gibco, 10437-028), 100 units/mL penicillin, and
100 μg/mL streptomycin (Wako, 168-23191) in a 100-mm tissue culture dish (Iwaki,
3020-100) until the cells became nearly confluent. The cells were detached
from the dish by incubating with 2 mL of 0.05% (W/V) trypsin-EDTA (Gibco,
15400-054) for 10 min at 37 °C, collected by centrifugation (Hitachi, CT6D) for
3 min, and resuspended in DMEM containing 10% FBS at 1 × 105 cells/mL.

Preparation of Whole Blood Cells and PBMCs. Theblood sampleswere taken from
healthy adult volunteers. Onemilliliter of whole blood was incubated with 5mL of
the hemolytic agent (BeckmanCoulter, Optilyse C) for 10min and additional 15min
after adding 10 mL of CellWash (BD Biosciences). Then, the samples were centri-
fuged at 430 g for 5 min. After the removal of the supernatants, the pellets were
suspended with 5 mL of CellWash and used as PBMCs. PBMCs and whole blood
cells were diluted with phosphate buffer saline to adjust a cell count of 107 cells/mL
and subjected to the SRS imaging flow cytometer within 5 h after the sample
preparation. This procedure was performed at room temperature (18–25 °C). This
study was approved by the Institutional Ethics Committee of Faculty of Medicine,
the University of Tokyo (No. 11049-5) and conducted according to the Declaration
of Helsinki. All volunteers provided written informed consent.

Data Availability. All data generated and analyzed during the current study
are available on Zenodo (DOI: 10.5281/zenodo.3269336).

Code Availability. All codes used in the data analysis are available on Zenodo
(DOI: 10.5281/zenodo.3269336).
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