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Abstract

Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia
nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and
copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered a-
synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may
have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent
stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of
the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display
pathological changes and impaired cellular function that would likely predispose them when differentiated to
neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both
under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a
role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial
morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance
especially when challenged by starvation or toxicant challenge. Knockdown of a-synuclein in the SNCA-Tri NPCs by stably
expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first
time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness,
accelerated aging, and increased neuronal cell loss. The observation of this ‘‘stem cell pathology’’ could have a great impact
on both quality and quantity of neuronal networks and could provide a powerful new tool for development of
neuroprotective strategies for PD.
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Introduction

Two of the most critical parameters determining cellular

functionality and health are energy generation and distribution,

because they are the driving force behind all biological processes

[1]. Mitochondria are at the center of cellular metabolism and

energy-dependent signaling processes [2], compartmentalizing

cellular bioenergetic pathways and linking cellular energy to gene

expression [3]. Thus, mitochondria are directly involved in

regulation of cell fate and neuroplasticity.

In the process of neuronal degeneration, mitochondria are

central regulators of cellular fate and apoptosis [4]. It is not

surprising then that impaired mitochondrial function has been

shown in several neurodegenerative disorders, including Parkin-

son’s disease (PD). Interestingly, mitochondrial dysfunction has

been implicated in various inherited forms of parkinsonism as well

(e.g. Parkin, PINK1, LRRK2, and SNCA genes) [5]. Apart from

gene defects, environmental toxicants directly affecting mitochon-

drial function have been identified as risk factors for PD etiology

[6].

The a-synuclein (SNCA) gene was the first gene linked to

familial PD [7], and genetic alterations at the SNCA locus are one

of the most significant genetic risk factors for development of

sporadic forms of the disease [4,8,9]. The SNCA triplication

(SNCA-Tri), resulting in an overexpression of wildtype a-synuclein

protein (a-syn) which leads to early onset progressive parkinson-
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ism, represents an ideal system to investigate synucleinopathy-

specific disease mechanisms [10,11].

a-syn is associated with mitochondria [12], and pathological a-

syn oligomers at mitochondrial membranes exhibit direct mito-

chondrial toxicity [13,14], affect mitochondrial dynamics [15,16]

and interaction with other organelles [17]. In skin fibroblasts from

the patient described in this study, we found significant changes in

ATP production, reduction in mitochondrial membrane potential

and complex I activity. The SNCA-tri fibroblasts were also more

sensitive to oxidative stressors. The phenotype could be partially

reversed by siRNA knockdown of a-syn which suggests a direct

causative role for increase concentrations of intracellular of a-syn

[18].

Mitochondrial integrity and functional metabolism are also

essential for stem cell proliferation [19,20] as well as differentiation

[21–23]. Until now, cell biology and metabolic properties of

human neural stem cells carrying PD mutations have not been

thoroughly investigated, and even less is known about the impact

of environmental factors on these cells.

Generating induced pluripotent stem cells (iPSCs) from patients

with PD and deriving differentiated progeny with PD-specific

phenotypes [24–27], now allows for in vitro modeling and

investigation of disease mechanisms at different developmental

stages [27–34].

In this study we take advantage of this new technology to

investigate the impact of excess intracellular concentrations of a-

syn (using tissue from our patient with a SNCA gene triplication

(SNCA-Tri)) on cellular and mitochondrial function of human

iPSC-derived neuronal precursor cells (NPCs). Using semi-

quantitative and high throughput screening (HTS) and high

content imaging (HCI) technologies in addition to biochemical

assays and conventional imaging, we observed that there are

profound effects on mitochondria function and energy production

in this novel model of PD. As iPSC-derived NPC populations can

give rise to a variety of neuronal cell types, our studies may

warrant further investigations on how decreased developmental

fitness, accelerated aging and increased susceptibility to stress

contribute to neurodegenerative processes that set the stage for to

neuronal cell loss in PD.

Materials and Methods

Generation of patient-derived induced pluripotent stem
cells (iPSC)

We generated multiple iPSC clones from fibroblasts from a

patient with parkinsonism carrying a SNCA triplication and a four

year older mutation-negative healthy female sibling [24]. Two

iPSC clones with normal karyotype were used for further analyses.

As an additional control, an iPSC line from a healthy age and sex-

matched mutation-negative individual was generated. The study

(protocol ECH-08-20) was approved by a local ethics committee

(El Camino Hospital, Mountain View, CA), reviewed annually,

and all participants signed informed consent.

NPC derivation and propagation
We used our published protocol for the generation of NPCs by

neuronal induction from embryoid bodies combined with dual

SMAD inhibition and PSA-NCAM magnetic-bead sorting [35].

Two iPSC-derived NPC clones from the SNCA-Triplication

patient (clones 1754-MIT; 1754-C7) were used for this study. In

addition to the sibling control (clone 1761-C1) the NPC clone

from a normal control (clone 1815-17-21) was used as an unrelated

control cell line. Briefly, NPCs (passage15–30) were seeded at

56103 cells/mm2 on 300 mg/ml Geltrex (Life Techn. #A10480-

02) and propagated in NPC growth medium (Life Technologies:

Neurobasal medium #21103; 2mM L-Glutamine #25030; 1X

NEAA #111400; 1X B27 #17504-044; and R&D systems:

20 ng/ml bFGF2 #PHG-0263) for up to 15 passages. Near

confluent NPC cultures in 6-well plates were passaged with

Accutase (Innovative Cell Technologies #AT104).

SNCA small hairpin RNA (shRNA) NPC line
To investigate potential phenotypical rescue by lentiviral SNCA

gene knock-down, the vector pLKO.1 puro (Sigma Aldrich

#SHC001) expressing the 59-CCGGACCAAAGAGCAAGTGA-

CAAATCTCGAGATTTGTCACTTGCTCTTTGGTTTTTT-

39 (clone ID: TRCN0000003736) was used to knock-down human

aSyn gene in NPCs. All cloned sequences were verified by

automated sequencing (StartSeq, Mainz, Germany). Lentivirus

infected cells were selected using puromycin.

NPC toxicant and inhibitor treatment
For standard microscopy, NPCs were seeded at 16104 cells/

mm2 on poly-ornithine/laminin (20 mg/ml/0.5 mg/ml, Sigma,

#P4957, #L2020) coated 13 mm coverslips (Thermo Fisher,

#10252961) or Lab-Tek chamber slides (Thermo Fisher Nunc

#177445) the day before the experiment. Similarly, 24-well plates

for flow cytometry experiments were seeded at 26104 cells/mm2

and 96-well plates (Greiner Cellcoat #655936, Perkin Elmer

ViewPlate #6005225) were seeded at 16104 cells/mm2 for HCI

microscopy and 26104 cells/mm2 for HTS plate reader analysis,

biochemistry and ELISA assays.

For experiments with toxicants and inhibitors, NPCs were

cultured under the following conditions for 18 hrs unless specified

differently in the experimental procedures:

Standard NPC growth medium as above (HG = high glucose),

HG plus 20 mM rotenone (Sigma #R8875) (HG+R) or modified

NPC growth medium without glucose (NG) (Life Techn.

Neurobasal-A, Formula 05-0128DJ). For experiments determining

Reactive oxygen species (ROS) generation, B27 was replaced with

the formulation without antioxidants (Life Tech, #1889-038).

Cells were treated for 1 hr before measurement with the

following ROS generators, apoptosis inducers and mitochondrial

inhibitors: 200 mM tert-butyl-hydroxy-peroxide (TBHP) (Sigma,

#458139) for 1 hr, 100 mM paraquat (PQ) (Fluka, #36541), 2 mM

oligomycin (O) (Sigma, #O4876) for 2 hrs, 1 mM ionomycin

(Iono) (Sigma #I0634) or 2 mM CCCP (Sigma, #C2759) for 1 hr.

Inducers of mitochondrial apoptosis: 4 mM staurosporine (SP)

(Sigma, S5921) for 1 or 4 hrs. Inhibitors of mitochondrial

apoptosis: 1 mM cyclosporine A (CsA) (Sigma #C3662) for

12 hrs. Inhibitor of the multi-drug resistance transporter: 25 mM

cyclosporine D (CsD) (SCBT, #sc-204702). All inducers and

inhibitors were from concentrated stock solutions prepared in

sterile DMSO or H2O.

Immunocytochemistry (ICC)
NPCs were fixed in 4% PFA (EMS, #RT15700) for 10 min at

room temperature (RT). Cells were permeabilized with 0.3%

Triton X-100 in PBS for 5 min, washed with PBS, blocked with

5% goat serum (Vector Labs #S1000) for 30 min at RT, and

incubated with primary antibodies in 3% goat serum for 2 hrs at

RT. Indirect immunofluorescence staining was performed with

(Life Techn., Alexa-350, -488 and -594 conjugated H+L

antibodies #A11059, #A11046, #11011). Cells were mounted

with Vectashield (Vector Labs #1400). For anti-a-syn ICC, cells

were fixed as above, blocked with PBS, 3% BSA, 0.1% Triton X-

100 for 1 hr and incubated in blocking solution containing the

polyclonal anti-a-syn antibody (Millipore AB5038, 1/100) at 4uC
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over night. After three washes in PBS, 1% BSA, 0.1% Triton X-

100, a-syn was detected using the above Alexa-488 conjugated

secondary antibody for 1 hr at RT. After three washes in PBS, cells

were mounted as described above.

Protein analysis
16106 NPCs (passages 19, 23 and 27 were lysed on ice in 250 ml

1x RIPA buffer (Sigma #R0278). Protein concentration was

determined with a BCA Assay (Pierce #23235). 30 mg protein was

resolved by SDS-PAGE on NuPAGE 4–12% Bis-Tris pre-cast gels

(Life Tech.), transferred onto Immobilon-FL 0.45 mm PVDF

membranes (Millipore, #IPFL10100) and detected with the Li-

COR Odyssey Western blotting Kit I or II (LI-COR Biosciences

P/N 926-31081/2). Immuno-reactive bands were detected and

quantified with the LI-COR ODYSSEY infrared imager. The

polyclonal anti-a-syn specific antibody (1/300) was from Millipore

(#AB5334P). HSP90 (#4874), b-tubulin (#2146) at and cyto-

chrome c (#4272) all used at 1/1000 were from Cell Signaling

Technologies.

Cell viability and survival
NPCs on Geltrex-coated 96-well plates were challenged as

described under method section: NPC toxicant and inhibitor

treatment, with the exception that 20 mM paraquat was applied.

Medium was changed daily and cells were imaged with Zeiss

Axiovert 25 microscope (with CP-Achromat 10x/0.25 Ph1

objective) and Canon EOS400 camera. Images were contrast

enhanced, converted to grayscale and number of cells per image

frame was analyzed with ImageJ [36].

High content imaging (HCI) and high throughput
screening (HTS)

Conventional fluorescence microscopy (Nikon Eclipse Ti, Nikon

Planfluor Objectives 10x/.03, 40x/0.75, 60x ELWD/0.7; Chroma

4900 series filtersets: ET-DAPI, -GFP/FITC, -CY3, -mCherry/

Texas Red) was confirmed/validated by high throughput/content

screening.

Plate reader HTS
For HTS plate reader analyses, several independent experi-

ments (as specified in results) with 3–4 replicates per cell line and

treatment regimen were conducted. Signals from 96-well plates

(integration time 1 sec) were acquired by bottom read in orbital

mode (8-spot measurements with 2 mm radius). Kinetic measure-

ments were recorded over 30 min with a sampling rate of 1 read/

min. Data analysis was performed with BMG Mars software.

HCI microscopy
HCI microscopy was performed with an ImageXpress Micro

System, Molecular Devices LLC and HTS was performed with a

multi-wavelength plate reader (Polarstar Omega, BMG) or by flow

cytometry (Accuri C6 with C-sampler, BD Biosciences). Images

from NPCs seeded in 96-well plates were acquired with 10x and

20x Plan Fluor objectives (4 replicates with 4 sites per well) using

Ex./Em. 346/480 nm, 490/530 nm and 535/585 nm filter sets

and then analyzed with the MetaXpress software and the following

modules: Cell Scoring (cell metrics), Granularity (endpoint analysis

of organelle and mitochondrial metrics) and Transfluor (co-

localization of two or more fluorophores).

Mitochondrial membrane potential (MMP)
Adherent NPCs in 96-well plates were washed twice with 200 ul

HBSS, incubated with 100 nM tetra-methyl-rhodamine methyl

ester (TMRM, Ex./Em. 535/580 nm) (Life Techn. #T-668) or

with 20 mM of the ratiomeric MMP probe JC10 (with 0.02%

Pluronic F-127, Life Techn. #P6867) in HBSSplus (HBSS

#14025-126, 2 mM L-glutamine #25030-081, 100 mM Na-

pyruvate #11360-070, all Life Techn.; 100 mM Na-succinate,

#S9637 SIGMA) for 45 min under standard growth conditions.

Five min before analysis, 1 mM Hoechst 33342 (Ex./Em. 350/461

nm) (Life Techn. #H3570) was added. Cells were washed twice

and covered with 100 ml HBSSplus for fluorescence acquisition at

Ex./Em. 544/590610 nm for TMRM, Ex./Em. 544/590610

nm and 488/535 nm for JC10, 355/460 nm for Hoechst 33342.

TMRM fluorescence intensities or JC10fluorescence ratios were

normalized to the Hoechst 33342 signal.

Reactive oxygen species (ROS)
Adherent NPCs in 96-well plates were washed twice with HBSS

and loaded with 15 mM 5-(and-6)-chloromethyl-29,79-dichlorodi-

hydrofluorescein diacetate, acetyl ester (CM-H2DCFDA, Ex./Em.

495/520 nm, Life Techn. #C6827) under in HBSSplus for 30 min

at 37uC with 1 mM Hoechst 33342 and 100 nM MitoTracker

CMXRos (Life Techn. M7512 Ex./Em. 579/599 nm). After two

washes in HBSSplus fluorescence signals for CM-H2DCFDA at

Ex./Em. 485/520 nm, MitoTracker at 544/590610 nm and

Hoechst 33342 were acquired. Relative CM-H2DCFDA fluores-

cence intensities were normalized to MitoTracker and Hoechst

33342.

Mitochondrial superoxide
Adherent NPCs in 96-well plates were incubated with 2 mM

MitoSOX (Ex./Em. 510/580 nm) (Life Techn. #M36008) in

HBSSplus for 10 min at 37uC in the dark. Cells were then washed,

MitoSOX fluorescence was detected at Ex./Em. 544/590610 nm

and normalized to cell number as under method section: ROS.

Mitochondrial permeability transition pore (MTP)
Adherent NPCs in 96-well plates were loaded for 15 min with

1 mM calcein AM (Life Techn. #C3099, Ex./Em. 494/517 nm),

1 mM CoCl2 (Sigma #C2644) in HBSSplus with Mitotracker and

Hoechst 33342 as described under ‘‘ROS’’. Cells were treated for

1 hr with either 700 nM TBHP or with 4 mM SP and analyzed as

described under section ROS, with calcein fluorescence acquired

at Ex/Em. 485/520 nm. 2 mM ionomycin (Iono) was used as

negative control.

Caspase activation
Caspase activity was assayed from NPCs seeded in 96-well

plates with the EnzChek Caspase-3 Assay Kit (Life Techn. #E-

13183). Apoptosis was induced with 4 mM SP for 4 hrs. After cell

lysis, an aliquot was removed for protein (BCA-Assay) and 20 mM

Z-DEVD–AMC substrate (Ex./Em. 342/441 nm) was added.

After 30 min incubation at RT, fluorescence of the cleaved Z-

DEVD–AMC substrate was acquired (Ex./Em. 380/445 nm) and

normalized to AMC standard and protein content. Change in

caspase activity (D mM AMC/mg protein) in NPCs was measured

by detaching cells from substrate and permeabilization with

50 mg/ml digitonin (Sigma, #D5628) in HBSSplus for 10 min at

RT. After addition of caspase substrate, fluorescence was recorded

every 30 min for 4 hrs.

Metabolic flux analysis
Cellular response to specific mitochondrial inhibitors was

analyzed on a Seahorse XF24 by monitoring O2 consumption

(OCR) and extracellular acidification rates (ECAR). Three days
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before the assay 16105 cells were seeded on V7 24-well plates

(Seahorse Bioscience, #SEA100777004) pre-coated with 150 mg/

ml Geltrex. Culture medium was changed to Seahorse Assay

Medium (#SEA102353100) supplemented with 10 mM pyruvate

and 25 mM glucose one hour before starting the measurements.

The neurotoxin 6-hydroxydopamine (6-OHDA) at 250 mM final

concentration (f.c.) was added to half of the wells. OCR and

ECAR baselines were recorded three times before the consecutive

addition of (all f.c.): 1 mM oligomycin, 1.5 mM CCCP and 5 mM

rotenone (Rot) also containing 1 mM antimycin A (Ant). Control

wells without addition of drugs were recorded in every plate as a

viability reference for each cell line and used to correct the values

of spare respiratory capacity (OCRCCCP–OCRbasal) and proton

leakage (OCROligomycin–OCRRot+Ant).

Flow cytometry
NPCs were dissociated with Accutase and resuspended in PBS

at 1–26106 cells/ml. 16105 cells were spun down at 500 g for

5 min., resuspended in HBSSplus and transferred to 96 well U-

bottom plates (Corning #7007) before staining/labeling. Samples

were assayed on a BD Accuri C6 flow cytometer with 488 nm and

640 nm lasers and FL-1 533/30 nm, Fl-2 585/40 nm, FL-3 670LP

and FL-4 (675/25 nm) photomultipliers. Per sample, 16105 events

were collected and analyzed using BD Cflow analysis software.

For cell cycle analysis, cells fixed by drop-wise addition of 2

20uC absolute EtOH to a final concentration of ,70% were

collected at 750 g, resuspended in 3.8 mM Na-citrate, pH 7

(Sigma, #71498) and stained by addition of 50 mg/ml propidium

iodide (Life Techn. P-3566, Ex./Em. 535 nm/617 nm), 10 mg/ml

RNase A (Roche #11119915001) and 0.05% TX-100 (SIGMA

#T8787) for 60 min at RT before analysis.

For determination of metabolic activity, membrane asymmetry

and membrane permeability, NPCs were assayed with C12-

Resazurin [37] (Vega-Avila and Pugsley, 2011), APC-Annexin-V

[38] and SYTOX Green [39] (Life Techn. #V35114). NPCs were

washed in Annexin binding buffer (ABB: 100 mM HEPES, 140

mM NaCl, 25 mM CaCl2, pH 7.4) and resuspended in 100 ml

ABB containing 500 nM C12-Resazurin, 5 ul Alexa-Fluor 647

Annexin-V conjugated antibody (Ex./Em. 650/665 nm, Life

Techn. #A23204) and 10 nM SYTOX Green. After incubation

for 15 min at 37uC, cells were washed twice with ABB and assayed

at 530 nm (SYTOX Green, FL-1), 575 nm (C12-Resazurin, Fl-2)

and 660 nm (APC Annexin-V, FL-3).

ATP production
26104 cells/mm2 cells seeded in 96-well plates 48 hrs before the

experiment were treated as described under ‘‘NPC Treatment’’,

then lysed on ice and assayed with a coupled luciferin/luciferase

assay (ATPLite, Perkin Elmer, #6016941) according to the

manufacturer’s instructions. Plates were read on a VERITAS

Luminometer (Turner Biosystems #998-9100). ATP content as

determined by an ATP standard was then normalized to protein

content determined by BCA Assay.

Organelle-specific protein import
Adherent NPC cultures seeded in chamber slides and grown to

100% confluence were transduced with two baculoviral vectors

(Cell Light, BacMam 2.0 system, Life Techn.) targeted to either

the peroxisomal (CellLight Peroxisome-GFP, #C10604) or the

mitochondrial (CellLight Mitochondria-RFP, #C10601) compart-

ment according to the manufacturer’s instructions at M.O.I.s of

50. Development of organelle-specific fluorescent protein expres-

sion was evaluated in live cells by fluorescence microscopy.

Proteasome Activity
Protein aggregation in NPCs was assayed in adherent NPCs

cultured with 20 mM rotenone alone or with 10 mM of the

proteasome inhibitor MG132 (ProteoStat aggresome detection

Kit, Enzo Life Sciences #ENZ-51035-K100). NPCs, either on

slides (for fluorescence microscopy) or detached from substrate (for

flow cytometry) were fixed and permeabilized and then stained

with 5 mM of the aggresome/proteasome specific dye Bodipy

TMR-AHX3L3VS (Ex./Em. 500/600 nm) and Hoechst 33342

according to the manufacturer’s instructions. From flow cytometry

of NPCs, aggregesome propensity factors (APF) were calculated

from the mean RFU (MRFU) of Bodipy-TMR fluorescence:

APF = 1006[MRFU MG132 treated cells2MRFU untreated

cells]/MRFU MG132 treated cells.

Cytochrome c release
Subcellular fractionation of cultured NPCs was done as

previously described [40]. All steps were performed at 4uC.

16107 cells treated with 4 mM PQ for 1 hr were harvested and

resuspended in 500 ml of mitochondrial isolation buffer (250 mM

sucrose, 1 mM EDTA, 1 mM DTT, 10 mM HEPES, pH 7.5)

supplemented with protease inhibitor (Complete Ultra, Roche

#11836153001) and 1 mM DNase I (Roche #03724778103).

Cells were fractionated by 3 passages through a 30G needle,

centrifuged at 1000 g for 10 min. The supernatant was then spun

at 10.000 g for 15 min to collect cell organelles and the

supernatant was concentrated with a 3 kD Microcon filtration

unit (YM-3 Millipore #42420) at 14.000 g for 30 min. Protein

concentration was determined by BCA-Assay and 30 mg protein

were used for immunoblotting.

Statistical analysis
For individual experiments the mean 6 SD or mean 6 SEM

were plotted. Non-directional Student’s t test was used for direct

statistical comparisons. For multiple comparisons, multivariant

ANOVA was used. Where significant F-values were obtained, pair

wise comparisons were made using Wilcoxon–Mann/Whitney

post hoc analysis. Differences were considered statistically signif-

icant at p#0.05.

Results

Normal morphology but reduced proliferative capacity in
SNCA-Tri NPCs

Patient-derived NPC lines carrying the SNCA gene triplication

(SNCA-Tri), the SNCA-Tri shRNA knockdown line (SNCA-Tri

KD) and those from two unaffected controls (Ctrl) were

morphologically indistinguishable under normal, high glucose

growth conditions (HG) (Figure 1A) and did not show differences

in mitochondrial shape or content (Figure 1B). All three NPC

lines expressed neuronal stem cell markers Nestin and SOX1

(Figure 1C). Confluent cultures of SNCA-Tri NPCs expressed

twice as much a-syn compared to controls irrespective of passage

number, and SNCA shRNA knockdown resulted in a significant

reduction of SNCA expression levels in NPCs (n = 4, mean 6

SEM, SNCA-Tri/Ctrl: 12.4/5.9, SNCA-Tri KD: 8.3, ***p#
0.001, t-test) (Figure 1D). The differential a-syn expression levels

in NPCs were also observed by ICC, with the protein associated

with sub-cellular structures such as with mitochondria (Fig-
ure 1E/F).

Changes in cell cycle have been observed in other progenitor

cell types used in models for neurodegeneration [41]. Under naı̈ve

conditions, cell cycle analysis showed a reduction in S-Phase DNA

content of SNCA-Tri NPCs (n = 3, mean 6 SD, 24.4%/15.7%,
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Figure 1. NPC characterization. A) Phase contrast microscopy of a-synuclein gene triplication (SNCA-Tri), control (Ctrl) and a-synuclein
knockdown (SNCA-Tri KD) iPSC-derived NPC lines (Scale bar: 50 mm) shows normal cell morphology. B) Mitochondrial and nuclear morphology
of NPCs visualized by fluorescence microscopy using Mitotracker Red CMX Ros (red) and Hoechst 33342 (blue) (Scale bar: 10 mm). C) Stem cell
marker expression. Immuno-cytochemistry on fixed NPCs detecting cytoplasmic Nestin expression pattern with secondary Alexa 588 conjugated
antibody (orange) by fluorescence microscopy (Scale bar: 100 mm). Insert: Immuno-cytochemistry for the nuclear stem cell marker SOX1, detected by
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*p = 0.047, t test), suggestive of a delay in G1/S–phase transition

at the G1 restriction point and resulting in reduced proliferative

capacity (Figure 2A).

To investigate the impact of starvation and toxicants on SNCA-

Tri NPC viability and stress resistance, we established protocols to

imitate general metabolic and specifically mitochondrial stress

conditions. We developed a starvation protocol that omitted

glucose from the culture medium and a toxicant stressor panel that

exposed NPCs to environmental toxins and toxicants such as

rotenone (R), paraquat (PQ), staurosporine (SP) and oligomycin

(O).

SNCA-Tri NPCs grown without glucose supplementation (NG)

and exposed to 20 mM Rot or 20 mM PQ showed progressive cell

death over the course of 4 days (% of surviving cells), that was

a secondary Alexa-488 conjugated antibody (green) (Scale bar: 20 mm). Nuclear counter stain by Hoechst 33342 (blue). D) Representative a-
synuclein protein expression patterns (left) by immunoblot of protein lysates from a control line (Ctrl), the SNCA-Tri NPC line and the
corresponding a-synuclein knock down line (SNCA-Tri KD) with b-actin serving as loading control. Right: Quantification of b-actin normalized a-
synuclein expression levels (n = 4, mean 6 SEM, Ctrl/SNCA-Tri/SNCA-Tri KD: 12.4/5.9/8.3, ***p#0.001, t-test; from two independent experiments). E)
ICC of a-synuclein protein expression in adherent NPCs detected by a polyclonal a-syn antibody and visualized by Alexa-488 conjugated
secondary antibody (green). DAPI nuclear counterstain (blue); (Scale bar 20 mm). Insert: Higher magnification image (Scale bar: 10 mm). F)
Colocalization of subcellular a-synuclein distribution with mitochondria in adherent NPCs labeled with Mitotracker Red CMX Ros (red) and
probed for a-syn as under E) (Scale bar: 5 mm).
doi:10.1371/journal.pone.0112413.g001

Figure 2. NPC viability. A) Cell cycle analysis by propidium-iodine (PI) staining and flow cytometry analysis of Ctrl and SNCA-Tri NPCs with
staining grouped by cell cycle phase (G0/1, S and G2/M), showing a reduced percentage of SNCA-Tri NPCs in the S phase (n = 3, mean 6 SD,
*p=0.047). B) Survival under nutritional and toxicant stress. NPCs propagated in medium without glucose (NG) untreated or treated with
20 mM rotenone (R) or 20 mM paraquat (PQ). Survival curves (every 12 hours) for the Ctrl, SNCA-Tri and SNCA-Tri KD cell lines after analysis of adherent
cell count (ImageJ). Percentage of surviving cells with time (hrs) (n = 3, mean 6 SEM). C) Cell viability assayed by plate reader based high
throughput screen (HTS) of NPCs untreated (HG), treated with 20 mM rotenone (HG+R) or without glucose (NG) for 18 hrs. Live cells were stained
with 1 mM of the RedOx indicator C12-Resazurin/Alamar Blue for 15 min before analysis. Graphed are endpoint fluorescence units (RFU) normalized to
total cellular protein/well (ug protein) (n = 3, mean 6 SEM, *p#0.05). D) Cell viability assayed by flow cytometry evaluation of apoptosis and cell
death in live NPCs treated as under A). Cells stained with C12-Resazurin for cell viability and with Sytox-Green. Graphed are percentages of metabolic
active NPCs, determined by Resarufin (Ex./Em. 563/587 nm) fluorescence (viable), apoptotic cells (cell membrane asymmetry detected by an Annexin-
V Alexa-660 nm conjugated antibody) (n = 3, mean 6 SD, Ctrl/SNCA-Tri: 5.3%/24.4%, *p= 0.027) or cell death (nuclear fragmentation, detected by
Sytox-Green, Ex./Em. 488/530 nm) (n = 3, mean 6 SD, Ctrl/SNCA-Tri: 5.3%/24.4%, **p= 0.004).
doi:10.1371/journal.pone.0112413.g002
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attenuated in the SNCA-Tri KD NPCs (Figure 2B) (n = 3 from 2

clones for Ctrl and SNCA-Tri, mean 6 SEM). When analyzing

viability of these cell lines by HTS using the fluorescent RedOx

indicator Resazurin/Resarufin, SNCA-Tri clones showed signif-

icantly reduced viability under all treatment conditions (n = 3,

mean 6 SEM, HG: 12.7/9.2, HG+R: 10.4/5.3, NG: 11.8/4.0,

*p#0.05). Knockdown of a-syn in the SNCA-Tri KD NPCs,

resulted in significantly improved viability under stress conditions

(SNCA-Tri/SNCA-Tri KD: HG+R: 5.3/8.3, NG: 4.0/7.5)

(Figure 2C). These results were confirmed by flow cytometry

analysis of Ctrl and SNCA-Tri NPCs, simultaneously assaying the

number of viable, apoptotic (membrane inversion detected by

Annexin-V) and dead (Sytox positive) NPCs. A significant higher

percentage of SNCA-Tri NPCs displayed apoptotic behavior

under rotenone stress (n = 3, mean 6 SD, Ctrl/SNCA-Tri: 5.3%/

24.4%, *p= 0.027). Under glucose starvation (NG) conditions,

significantly increased cell death was observed in SNCA-Tri NPCs

(n = 3, mean 6 SD, Ctrl/SNCA-Tri: 5.3%/24.4%, **p= 0.004)

(Figure 2D).

Altered cellular energy balance and decreased
mitochondrial function in SNCA-Tri NPCs

We next investigated energy status and metabolism in SNCA-

Tri NPCs. When SNCA-Tri NPCs challenged with rotenone and

loaded with tetramethylrhodamine (TMRM) were examined by

fluorescence microscopy, they showed reduced mitochondrial

membrane potential (MMP) (Figure 3A). We then quantified

MMP by HTS fluorescence plate reader analysis using the

ratiometric fluorescent dye JC-10. MMP in SNCA-Tri NPCs was

significantly more impaired by rotenone and glucose withdrawal

compared to controls, and knockdown of a-syn reinstated normal

MMP levels in SNCA-Tri KD NPCS (n = 8, mean 6 SEM, Ctrl/

SNCA-Tri/SNCA-Tri KD for HG+R: 202/29/194 (x104), *p#

0.05; for NG: 92/30/118 (x103) **p#0.006) (Figure 3B). In

addition, when monitoring MMP over time, SNCA-Tri NPCs lost

their MMP significantly faster than Ctrl NPCs when exposed to

stress by extended HTS analysis (1 hr), which was compounded by

rotenone stress and glucose withdrawal and could be returned to

rates in Ctrl by knockdown of a-syn (n = 8, mean 6 SEM, Ctrl/

SNCA-Tri/SNCA-Tri KD: HG: 20.02/20.06/20.01, *p#0.05;

HG+R: 20.17/20.07/20.22 ***p,0.001, NG: 20.08/2

0.33/20.04, *p#0.05) (Figure 3C).

Cellular ATP content in SNCA-Tri cells compared to controls

was reduced both under normal growth conditions and under

glucose starvation, indicating a metabolic deficit in SNCA-Tri

NPCs that could be ameliorated by knockdown of a-syn in the

SNCA-Tri KD NPCs (n = 8, mean 6 SD nM ATP/ug protein in:

Ctrl/SNCA-Tri/SNCA-Tri KD: HG: 1.66/0.75/1.37,

**p = 0.003; NG: 0.69/0.45/0.51, *p = 0.04 (Figure 3D).

To investigate mitochondrial function in live NPCs we

measured cell respiratory control in live NPCs (Figure 3E).

SNCA-Tri NPCs showed altered O2 consumption rates and non-

mitochondrial respiration (Ctrl/SNCA-Tri: 24%/8%), and OCR

was sensitive to the neurotoxin 6-hydroxy-dopamine (6-OHDA).

Relevant for mitochondrial function, spare respiratory capacity,

representing the ability of mitochondria to respond to an increase

in energy demand (expressed as the quantitative difference

between basal OCR and maximal uncontrolled OCR) by addition

of the uncoupler CCCP was reduced from 57% in control NPCs

to 34% in SNCA-Tri NPCs (n$17, mean 6 SEM, (#p,0.05).

When NPCs were exposed to the neurotoxin 6-OHDA their spare

respiratory capacity was further decreased, with the difference

between Ctrl and SNCA-Tri NPCs being preserved (37%/14%).

Mitochondrial proton leak, represented by the reduction of OCR

in presence of oligomycin and indicative of mitochondrial

uncoupling from respiration, was significantly higher in SNCA-

Tri NPCs (OCR Ctrl/SNCA-Tri: 48%/32%), supporting the

observations of decreased coupling efficiency and less stable MMP

in SNCA-Tri NPCs.

The glycolytic activity of both lines (measured by medium

acidification and graphed as extracellular acidification rate

(ECAR)) (Figure 3F) was similar in Ctrl and SNCA-Tri NPCs,

as indicated by comparable levels of lactic acid formation after

inhibition of mitochondrial ATP production, but ECARs in

SNCA-Tri cells stressed by 6-OHDA were significantly decreased,

confirming the findings from the plate reader based HTS screen

for ATP levels.

Delayed protein import and increased protein
aggregation in SNCA-Tri NPCs

Protein biosynthesis and import into cellular organelles are

essential for cellular anabolic metabolism [42]. When we

transduced adherent NPCs with viral BacMam vectors encoding

mitochondrial- and peroxisomal-targeted fluorescent proteins, we

observed both delayed appearance and reduced levels of

organelle-specific fluorescence in SNCA-Tri NPCs (Figure 4A/
B).

On the catabolic side, dysfunction of the mechanisms to repair

and remove abnormal proteins, such as impaired unfolded protein

response and proteasome function, have been shown to play a

pivotal role in PD disease progression [43,44]. When we analyzed

cytoplasmic protein aggregates (aggresomes) in proteasome-inhib-

itor treated SNCA-Tri and Ctrl NPCs by microscopy and semi-

quantitative flow cytometry (Figure 4C, D), we observed a

significant increase in aggresome formation in rotenone and

proteasome inhibitor-treated SNCA-Tri cells ( = 3, mean 6 SD,

APF Ctrl/SNCA-Tri: 51/120, *p= 0.041), suggesting increased

activity of the cellular proteasome system.

Increased cellular stress and reactive oxygen species
(ROS) in SNCA-Tri NPCs

ROS have been shown to play an important role in PD disease

progression [24,25,45]. By fluorescence microscopy, SNCA-Tri

NPCs loaded with ROS indicator CM-H2DCFDA showed

elevated basal ROS levels that were more prominent when cells

were treated with the ROS generator tert-butyl-hydroxy-peroxide

(TBHP) (Figure 5A). We confirmed the increased ROS burden

on SNCA-Tri NPCs by semi-quantitative HTS analysis of ROS

steady state levels (Figure 5B) and the rate of ROS generation in

adherent NPCs (Figure 5C). Both the basal ROS levels (n = 12,

mean 6 SEM, Ctrl/SNCA-Tri/: HG: 0.5/1 **p= 0.002, HG+R:

0.7/1.3 **p= 0.046, NG: 0.4/1.1 ***p#0.001) and ROS produc-

tion rates (n = 12, mean 6 SEM, Ctrl/SNCA-Tri HG: 22/75

*p= 0.010, HG+R: 177/367 **p= 0.002, NG: 80/353 ***p#
0.001) in SNCA-Tri NPCs were significant elevated when

compared to Ctrl. When a-syn expression was knocked down,

NPCs displayed significantly reduced ROS steady state (n = 12,

mean 6 SEM, SNCA-Tri/SNCA-Tri KD: HG: 1.0/0.75

*p= 0.002, HG+R: 1.3/0.6, *= 0.046) and ROS production rates

(n = 12, mean 6 SEM, SNCA-Tri/SNCA-Tri KD: HG+R: 367/

178 **p= 0.007, NG: 353/184, *p= 0.015).

Increased cellular superoxide production has also been impli-

cated in PD pathology [46]. HTS analysis of NPCs labeled with a

mitochondria-specific fluorescent superoxide indicator showed

increased superoxide levels in SNCA-Tri NPCs that was

compounded by exposure to cellular stress and was reduced by

knockdown of a-syn (n = 4, mean 6 SD, Ctrl/SNCA-Tri/SNCA-

Role of Alpha-Synuclein in Neuronal Precursor Cells

PLOS ONE | www.plosone.org 7 November 2014 | Volume 9 | Issue 11 | e112413



Figure 3. Mitochondrial membrane potential (MMP) and energy balance. A) Fluorescence microscopy of MMP in live NPCs from patient
(SNCA-Tri) and control (Ctrl) loaded with 100 nM TMRM in normal growth medium (HG), medium plus 20 mM Rotenone (HG+R) or with 1 mM of the
ionophore CCCP (HG+CCCP) as negative control (Scale bar: 10 mm). B) Plate reader based high throughput screen (HTS) of MMP in live NPCs
loaded with 20 mM JC-10 for 45 min. Cells were also treated with medium w/o glucose (NG). Shown are log ratios of reduced (Ex./Em. 540 nm/590
nm) to oxidized JC-10 (Ex./Em. 488 nm/520 nm) normalized to Hoechst 33342 (Log Norm. JC-10 Ratio) after 60 min. (n = 8, mean 6 SEM, Ctrl/SNCA-
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Tri KD: HG: 0.28/1.2/0.3, HG+R: 2.1/5.5/3.7, NG: 2.3/5.2/

0.8, *p#0.038, **p#0.007) (Figure 5D). The higher mitochon-

drial superoxide levels were also confirmed by flow cytometry

analysis using the same exposure conditions (data not shown).

These results suggest defects in scavenging and clearing cellular

ROS and/or mitochondrial superoxide levels in SNCA-Tri NPCs,

or may indicate a more complex regulation and balance of ROS

and superoxide levels in neural progenitor cells [47].

Impaired mitochondrial integrity and permeability
transition in SNCA-Tri NPCs

Opening of the mitochondrial permeability transition pore

(MPT) results in mitochondrial depolarization, uncoupling of

oxidative phosphorylation, large-amplitude mitochondrial swelling

and ultimately apoptosis [23]. We monitored mitochondrial

integrity and MPT opening in live NPCs by loading mitochondria

with fluorescent calcein in presence of a cytoplasmic calcein

quencher and conducted both endpoint analysis of mitochondrial

calcein levels and kinetic studies on the rate of mitochondrial

calcein loss. HCI analysis revealed higher mitochondrial calcein

loading capacity in SNCA-Tri NPCs challenged with rotenone

(n = 8, mean 6 SD, Ctrl/SNCA-Tri: 3.4/4.9, *p= 0.039),

indicative of increased cellular and mitochondrial stress (Fig-
ure 6A). To investigate the mitochondrial resilience to toxin-

induced MPT opening, we analyzed mitochondrial calcein

fluorescence in NPCs after treatment with 4 mM staurosporine

by HCI. The SNCA-Tri NPC populations showed a significantly

reduced mitochondrial calcein signal, indicative of more pro-

nounced MPT opening compared to Ctrl NPCs (n = 3, mean 6

SD, Ctrl/SNCA-Tri, HG: 834/457, HG+R: 1425/1011, NG:

864/574, HG+Iono: 187/190, *p#0.01) under all experimental

conditions (Figure 6B, C).

HCI analysis of the rate of mitochondrial calcein loss revealed a

significantly faster loss of calcein signal in SNCA-Tri cells

regardless of treatment regimen (n = 8, mean 6 SD, Ctrl/

SNCA-Tri, HG: 20.06/20.12, HG+R: 20.17/20.28, HG+
Iono: 20.03/20.04, *p#0.01) that was concurrent with reduction

in TMRM signal (data not shown) (Figure 6D). Taken together,

these observations indicate both increased MPT opening and a

faster rate of mitochondrial permeabilization in SNCA-Tri NPCs.

To confirm the loss of mitochondrial outer membrane integrity

in toxicant exposed SNCA-Tri cells, we challenged NPCs with PQ

to induce acute cell death and then performed cytochrome c

immunocytochemistry. SNCA-Tri cells on average showed

significantly reduced cytochrome c signal, confirming outer

mitochondrial membrane permeabilization in these cells (Fig-
ure 6E). The increased mitochondrial cytochrome c loss in

SNCA-Tri NPCs under these conditions was also confirmed by

immunoblot analysis of cytochrome c content in cytosol- and

organelle-enriched sub-cellular fractions from PQ treated NPCs.

(Figure 6F).

Caspase activation and apoptosis
As we had observed significant deficiencies in cellular catabolic

and anabolic processes, energy metabolism and altered ROS levels

as well as increased membrane asymmetry and cell death in

challenged SNCA-Tri NPCs (see Figure 2D), we investigated the

mechanism of NPC cell death.

To determine the activity of effector caspase 3 in nutrient and

toxicant stressed NPCs we performed HTS studies using a

fluorescent caspase substrate. When comparing ratios of caspase

activation between Ctrl and SNCA-Tri NPCs, a-syn overexpres-

sion resulted in a significant increase in caspase activation under

all treatment conditions (Figure 7A) (n = 9, mean 6 SEM, Ctrl/

SNCA-Tri HG: 33/69 *p= 0.028, HG+R: 42/129 **p#0.0085,

NG: 55/138, **p= 0.0015). Knockdown of a-syn in the SNCA-

Tri NPCs resulted in significantly reduced activation of capase 3,

but activity did not return completely to the levels observed in

controls (n = 9, mean 6 SEM, SNCA-Tri/SNCA-Tri KD, HG:

69/42 *p= 0.050, HG+R: 129/87 **p= 0.0033, NG: 138/85

**p#0.0023).

To better resolve temporal caspase activation in NPCs, we

examined time resolved caspase 3 cleavage activity in permeabi-

lized NPCs after 15 min exposure to staurosporine (Figure 7B).

Under normal growth conditions (HG), both NPC lines showed

stable caspase 3 activation during the first 60 min., with the

SNCA-tri NPCs displaying higher levels of activation during this

time. Under rotenone stress, both cell lines, but particular the

SNCA-Tri NPCs displayed high caspase activation levels that

decreased more rapidly, suggesting accelerated loss of cellular

function compared to control and confirming the observations

about faster loss of viability in SNCA-Tri NPCs.

Discussion

The insight into molecular pathomechanisms responsible for

neurodegeneration of Mendelian forms of parkinsonism is

advancing rapidly, however little is known about the impact of

these genetic defects on function and fate of human stem or

neuronal precursor cells and their predisposition to nutritional and

environmental stress. A few reports showed an impairment of

embryonic neurogenesis in animal models for PD [48,49]. and in a

comprehensive screen in iPSC-derived neurons carrying mutations

in PD genes has shown convergence of cellular disease mecha-

nisms, such as increased cellular stress and mitochondrial

dysfunction in these neurons [25]. However, the impact of these

mutations on function, viability, and proliferative potential of

human NPCs has not yet been investigated.

In this study, we have used NPCs derived from iPSCs carrying a

triplication of the SNCA gene locus [10,11,24] to investigate the

impact of this gene defect on neuronal precursor cell biology and

specifically mitochondrial function and bioenergetics. To link the

SNCA gene multiplication to the observed phenotype, we also

Tri/SNCA-Tri KD for HG+R: 202/29/194 (xE04), *p#0.05; for NG: 92/30/118 (xE03) **p#0.006). C) Plate reader based HTS for MMP loss in live NPCs
prepared and analyzed as under B). Fluorescence measurements were acquired as under B) every 5 min for 10 cycles and loss of MMP with time
graphed as DRFU/min. (n = 8, mean 6 SEM, Ctrl/SNCA-Tri/SNCA-Tri KD: HG: 20.02/20.06/20.01, *p#0.05; HG+R: 20.17/20.70/20.22 ***p,0.001,
NG: 20.08/20.33/20.04, *p#0.05). D) Luminescence plate reader based HTS of ATP levels in Ctrl, SNCA-Tri and SNCA-Tri KD NPCs under the
above growth conditions (HG, HG+R, NG) assayed by a coupled luciferin/luciferase assay. Depicted are ATP contents in cells treated with 20 mM
rotenone (R) for 18 hrs. (n = 8, mean 6 SD nMATP/ug protein in: Ctrl/SNCA-Tri/SNCA-Tri KD: HG: 1.66/0.75/1.37, **p=0.003; NG: 0.69/0.45/0.51,
*p=0.04). E and F) Mitochondrial metabolic activity studied by Seahorse XF24 analysis. E) Oxygen Consumption Rate (OCR) and F) Extracellular
Acidification Rate (ECAR). Shown are relative OCR compared to basal values as a function of the sequential addition of mitochondrial inhibitors
Oligomycin (1 mM), CCCP (1.5 mM) and Rotenone (Rot, 5 mM) + Antimycin A (Ant, 1 mM). Significant changes compared to basal OCR rates (*p,0.05)
and differences between lines treated with and without 6-OHDA (250 mM) for 1 hr are indicated by # (#p,0.05, mean 6 SEM, n$17; from five
independent experiments).
doi:10.1371/journal.pone.0112413.g003
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Figure 4. Protein biosynthesis and proteasome function. A) Mitochondrial protein biosynthesis and protein import. Fluorescent
protein expression patterns in confluent adherent NPC cultures (PC: Phase Contrast) transduced with two baculoviral vectors expressing fluorescent
proteins targeted to either the peroxisomal (Perox.; Green) or the mitochondrial (Mito.; Red) compartment. Shown are fluorescent protein expression
patterns in live confluent Ctrl and SNCA-Tri cell lines grown under normal growth conditions (HG) and evaluated 20 hrs post transduction (Scale bar:
200 mm, 5 mm). B) Time resolved peroxisomal and mitochondrial protein biosynthesis. Fluorescent protein expression patterns as under A),
but imaged at 8 and 18 hrs post viral transduction. C) Proteasome activity measured by fluorescence microscopy of adherent NPCs cultured
with 20 mM rotenone alone or with 10 mM of the proteasome inhibitor MG132. Depicted are fixed cells stained with 5 mM of the aggresome/
proteasome specific dye Bodipy TMR-AHX3L3VS (red). Hoechst 33342 was used as nuclear counter stain (blue) (Scale bar: 20 mm). D) Proteasome
activity measured by flow cytometry evaluation of cells treated and stained as under B). Charted are the aggresome propensity factors (APF) of
NPCs calculated from the mean RFU (MRFU) of Bodipy-TMR fluorescence (APF= 1006[MRFU MG132 treated2MRFU untreated]/MRFU MG132 treated
(n = 3, mean 6 SD, APF Ctrl/SNCA-Tri: 51/120, *p=0.041).
doi:10.1371/journal.pone.0112413.g004
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generated a stable SNCA shRNA knock down NPC line to correct

the a-syn overexpression (SNCA-Tri KD).

SNCA-Tri and Ctrl NPCs as well as the engineered knockdown

line SNCA-Tri KD presented with normal cell morphology and

stem cell marker signatures. Also, SNCA-Tri NPCs expressed

twice the amount of a-syn protein, as expected from quantitative

RT-PCR analysis (data not shown), which was reduced to near

normal levels in the knock down cells.

SNCA-Tri NPCs show reduced viability and metabolic
capacity

To model the impact of nutritional and environmental

challenges on the cellular networks and particularly mitochondria,

we subjected NPCs to metabolic stress by exposure to the

mitochondrial toxicant rotenone, free radical generators such as

paraquat, or nutrient (glucose) deprivation. We observed slower

proliferative capacity, reduced viability and decreased cell survival

rates in SNCA-Tri NPCs under cellular stress conditions, which

was alleviated by SNCA shRNA knock down in these NPCs,

suggesting a direct impact of a-syn overexpression on cell cycle

progression, cell survival, metabolic fitness and stress resistance.

Cellular stress significantly affected cellular ATP content and

mitochondrial membrane potential (MMP) in SNCA-Tri NPCs,

suggesting a reduced capacity of these NPCs to mitigate metabolic

challenges and maintain mitochondrial functionality.

Metabolism in highly proliferative cells such as NPCs is tightly

regulated, with strong control of cytoplasmic glycolysis and

mitochondrial OXPHOS [50]. The observed changes in cellular

ATP content in SNCA-Tri NPCs together with mitochondrial

Figure 5. Reactive oxygen species (ROS) production. A) Fluorescence microscopy of live adherent NPCs untreated (HG) or treated with
100 mM TBHP (HG+TBHP), loaded with CM-H2DCFDA and imaged under controlled exposure conditions (10 sec fluorescent light exposure before
image acquisition). Hoechst 33342 was used as counter stain (Scale bar: 20 mm). B) Plate reader based HTS of ROS levels in adherent NPC in 96-
well plates and treated as under A). Relative CM-H2DCFDA fluorescence intensities (RFU) were normalized to Hoechst 33342 (H33342) (n = 12, mean6

SEM, Ctrl/SNCA-Tri/SNCA-Tri KD: HG: 0.5/1/0.75, HG+R: 0.7/1.3/0.6, NG: 0.4/1.1/0.7, *p#0.046, **p#0.009, ***#0.001). C) ROS production rates by
HTS plate reader analysis of CM-H2DCFDA fluorescence development over time (D RFU CM-H2DCFDA/sec + H33342) in cells exposed to TBHP as
under A), measured with normal medium (HG) with or without rotenone (R) and in medium without glucose (NG) (n = 12, mean6 SEM, Ctrl/SNCA-Tri/
SNCA-Tri KD: HG: 22/75/68, HG+R: 177/367/178, NG: 80/353/184, *p#0.010, **p#0.007, ***p#0.001). D) Mitochondrial superoxide production
rates assayed by HTS plate reader analysis of the mitochondrial targeted fluorescent superoxide indicator MitoSOX. Depicted are changes in relative
fluorescence units normalized to H33342) (D RFU MitoSOX/min + H33342) (n = 4, mean 6 SD, Ctrl/SNCA-Tri/SNCA-Tri KD: HG: 0.28/1.2/0.3, HG+R: 2.1/
5.5/3.7, NG: 2.3/5.2/0.8,*p#0.038, **p#0.007).
doi:10.1371/journal.pone.0112413.g005
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Figure 6. Mitochondrial integrity, MPT opening, and apoptosis. A) Mitochondrial calcein loading by fluorescent plate reader HTS of in
NPCs grown in 96 well micro plates. Relative fluorescent signal intensities (RFU) for calcein acquired after 30 min loading with Calcein AM and CoCl2
were normalized to mitochondrial content (Mitotracker) and to cell number by Hoechst 33342 (H33342). 1 mM ionomycin was added directly before
HTS analysis as negative control (Iono) (n = 8, mean 6 SD, Ctrl/SNCA-Tri: 3.4/4.9, *p=0.039). B) MPT-induced mitochondrial calcein loss in Ctrl
and SNCA-Tri NPCs after mitochondrial calcein–AM loading. Representative fluorescence microscopy images of Ctrl and SNCA-Tri NPCs loaded with
calcein (green), Mitotracker (red) and CoCl2 were assayed 1 hr. after treatment with 4 mM staurosporine under NG conditions. MPT opening results in
entry of CoCl2 into mitochondria and loss of calcein signal (nuclear counter stain: Hoechst 33342; scale bar: 100 mm). Inserts: Higher magnification
images obtained by conventional fluorescence microscopy (Scale bar: 10 mm). C) HCI automated fluorescence microscopy analysis of MPT in
NPCs treated with 4 mM staurosporine as under B). Images (see B) were analyzed using MetaXpress image processing software. Depicted are data of
cellular calcein signal intensities normalized to mitochondrial content (Norm. RFU Calcein/RFU Mitotracker) from two replicate wells with four image
sites/well per treatment condition (n = 16, mean 6 SD, Ctrl/SNCA-Tri, HG: 834/457, HG+R: 1425/1011, NG: 864/574, HG+Iono: 187/190, *p#0.01). D)
Kinetic evaluation of MPT opening and loss of mitochondrial calcein signal after induction of MTP using fluorescence plate reader based HTS

Role of Alpha-Synuclein in Neuronal Precursor Cells

PLOS ONE | www.plosone.org 12 November 2014 | Volume 9 | Issue 11 | e112413



functional abnormalities point to disturbed coordination of cellular

bioenergetics in these stem cells.

Metabolic flux analysis, measuring oxygen consumption rate

and extracellular acidification, confirmed the mitochondrial

membrane instability. The observed media acidification suggest

changes in glycolytic flux in these NPCs, possibly leading to an

imbalance of pyruvate and lactate and resulting in metabolic

acidosis [51].

Taken together, these results point to de-synchronization of

glycolytic and mitochondrial energy metabolism, resulting in

reduced viability and proliferative capacity, supporting our

previous findings in skin fibroblast cultures of this patient (Mak

et al., 2011).

Respiratory chain function has consistently been found

impaired in PD and in association with a-syn pathophysiology

[15], and the observed association of a-syn with subcellular lipid

bilayers suggests a general effect of overexpression on mitochon-

drial protein import and possibly respiratory chain functionality.

This hypothesis is supported by the delayed appearance of

transgenic fluorescent protein in SNCA-Tri NPC mitochondria,

suggestive of altered mitochondrial protein import and assembly

that could be a contributing factor to mitochondrial respiratory

chain dysfunction.

SNCA-Tri NPCs display increased cellular stress and ROS
susceptibility

The ubiquitin proteasome system (UPS) is recycling dysfunc-

tional cellular proteins [52], and impairment of this system plays

an important role in neurodegenerative processes associated with

PD [43]. Increased aggresome formation in toxicant-treated

SNCA-Tri NPCs suggests that the UPS and proteasome activity

may be heavily used, thus taxing the cellular catabolic systems.

These data are also supported by the strong activity of peroxisomal

matrix protein import observed in these NPCs.

Disturbed mitochondrial respiratory chain assembly and

function result in increased ROS and superoxide production

[53]. Similarly, altered protein transport and turnover result in

increased oxidative stress in iPS-derived neuronal cultures [24,26].

Increased ROS levels are consistently reported in PD pathophys-

iology [13], and we observed both higher steady state ROS levels

and increased ROS production in SNCA-Tri NPCs; under normal

growth conditions, under toxicant exposure, and nutrient depri-

vation. Our findings point towards increased ROS formation as

consequence of the physiological changes observed in SNCA-Tri

NPCs. In addition to the above direct ROS effects on

mitochondrial function, the increased a-syn levels in SNCA-Tri

NPCs could also impair intracellular ROS regulation by affecting

mitochondrial anti-oxidant defense mechanisms, cellular RedOx

balance and cell signaling [54].

Our data support a model where a-syn overexpression-initiated

changes impair regulation and efficiency of cellular energy

generation. These changes then lead to increased cellular stress,

increased cellular ROS production and altered RedOx balance

that could also affect NPC growth and differentiation.

analysis. NPCs treated and prepared as under B) were loaded with 4 mM stauropsporine and changes in calcein signal normalized to cell number and
mitochondrial content (D Norm. RFU) were recorded every 1 min for 20 min (n = 8, mean 6 SD, Ctrl/SNCA-Tri, HG: 20.06/20.12, HG+R: 20.17/20.28,
HG+Iono: 20.03/20.04, *p#0.01). E) Cytochrome c immuno-cytochemistry in Ctrl and SNCA-tri NPCs challenged with 200 mM paraquat (PQ) 15
min. before fixation. Shown are permeabilized cells probed with cytochrome c antibody, detected by an Alexa-488 nm labeled secondary antibody
(green). Cells were counter stained with Hoechst 33342 (blue) (Scale bar: 100 mm, insert: 10 mm). F) Immunoblot analysis of cytochrome c levels
in sub-cellular fractions containing either cellular organelles (containing bound cytochrome c) or cytosolic proteins (with soluble cytochrome c) from
NPC cell lysates (Ctrl and SNCA-Tri) treated with paraquat (PQ) as under E). Cytochrome c (14 kDa) and GAPDH (40 kDa) specific antibodies were
detected by a secondary IR-dye conjugate.
doi:10.1371/journal.pone.0112413.g006

Figure 7. Apoptosis sensitivity and caspase activation. A) Caspase 3 activity in cell lysates from adherent NPCs either left untreated or
treated with 20 mM rotenone (R) for 18 hrs and then exposed to 1 uM staurosporine for 120 min before analysis. HTS analysis for caspase 3 activity
from cell lysates was by activation of the fluorescent caspase substrate 7-amino-4-methylcoumarin (AMC) (Ex./Em. 340/440 nm) (n = 9, mean 6 SEM,
Ctrl/SNCA-Tri/SNCA-Tri KD, HG: 33/69/42, HG+R: 42/129/87, NG: 55/138/85, *p#0.050, **p#0.0035; from three independent experiments). B)
Kinetics of caspase 3/7 activity in permeabilized NPCs pretreated as described under B) and assayed 15 min after staurosporine treatment.
Changes in caspase 3 activity are depicted as DmM AMC fluorescence/min + mg cellular protein (detected by Bradford protein assay) (n = 9, mean 6
SEM).
doi:10.1371/journal.pone.0112413.g007
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Increased mitochondrial apoptosis sensitivity of SNCA-Tri
NPCs

Cellular stress is ascribed to induce transient or irreversible

MTP opening, with the latter leading to initiation of mitochon-

dria-mediated apoptosis. Under acute cellular stress, SNCA-Tri

mitochondria showed hyperpolarization and increased mitochon-

drial calcein loading (indicative of increased calcium levels), which

resulted in more rapid MTP opening. Mitochondria in connection

with the endoplasmic reticulum are important components of

cellular Ca2+ regulation [55], and dysregulation of this system has

been shown to be part of the molecular pathomechanism in PD

[56]. A-syn has been shown to increase mitochondrial Ca2+ uptake

and impairs mitochondrial function [17], ultimately resulting in

Ca2+ mediated mitochondrial apoptosis [57].

Mitochondrial toxicants such as rotenone raise mitochondrial

ROS levels and increase mitochondrial Ca2+ stress [58]. In cell

signaling, Ca2+ and Ca2+-dependent pathways regulate compo-

nents of ROS/RedOx homeostasis [59], mitochondrial metabolic

rate and ROS generation [60]. The higher cellular ROS burden,

lower energy levels and higher propensity for MTP opening in

connection with Ca2+ stress demonstrate the increased apoptosis

sensitivity in SNCA-Tri NPCs [2]. As stem cells have a decreased

capacity to mediate larger Ca2+ fluctuations and require tight

control of ROS/RedOx during the onset of differentiation [61],

abnormal Ca2+ homeostasis may also impact proliferation and

differentiation of SNCA-Tri stem cells [62].

Caspase Activation
Caspases have an important role both in the initiation of

apoptotic events [63,64], but also in sensitizing and priming cells

to developmental changes [65]. When cultured under starvation

conditions, SNCA-Tri NPCs displayed greater loss of viability and

cell membrane integrity in response to mitochondrial toxicant

treatment. Investigation of caspase activation patterns in toxicant

and ROS challenged NPCs, showed significantly higher caspase

activation in SNCA-Tri NPCs with functionally impaired mito-

chondria. In this context, our results also demonstrate the

mitochondrial control of apoptosis initiation in NPCs. In

unaffected NPCs, general and mitochondrial stress can be

compensated by activation of effective anti-apoptotic mechanisms,

whereas in SNCA-Tri cells with impaired metabolism and stress

resistance, these challenges result in an accelerated induction of

cell death. Considered the role of caspases in development, the

altered caspase expression patterns in challenged SNCA-Tri NPCs

could also affect regulation of NPC differentiation.

Conclusion and Outlook
In ‘‘a-synucleinopathic’’ stem cells, a-synuclein overexpression

affects cellular and metabolic plasticity, increases oxidative stress,

lowers the reserve energy capacity and results in greater sensitivity

for apoptosis and increased caspase activation under cellular stress.

Our studies also suggest the existence of a stress threshold in

NPCs, with insults and challenges (such as starvation and toxicant

exposure) exceeding this threshold in SNCA-Tri NPCs at an lower

concentrations and resulting in the manifestation of a ‘‘stem cell

pathology’’ [66]. Our findings also raise new questions about the

role of a-synuclein in regulation of mitochondrial activity in

neuronal stem cells [67]. As the modulation of energy metabolism

and metabolic signaling processes are essential for cell plasticity

and cell fate decisions, our observations may have implications

concerning the ability of PD-patient derived NPCs to form fully

functional neuronal networks.
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