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Abstract

Many studies have provided evidence for the existence of universal constraints on color categorization or naming in various
languages, but the biological basis of these constraints is unknown. A recent study of the pattern of color categorization
across numerous languages has suggested that these patterns tend to avoid straddling a region in color space at or near
the border between the English composite categories of ‘‘warm’’ and ‘‘cool’’. This fault line in color space represents a
fundamental constraint on color naming. Here we report that the two-way categorization along the fault line is correlated
with the sign of the L- versus M-cone contrast of a stimulus color. Moreover, we found that the sign of the L-M cone contrast
also accounted for the two-way clustering of the spatially distributed neural responses in small regions of the macaque
primary visual cortex, visualized with optical imaging. These small regions correspond to the hue maps, where our previous
study found a spatially organized representation of stimulus hue. Altogether, these results establish a direct link between a
universal constraint on color naming and the cone-specific information that is represented in the primate early visual
system.
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Introduction

Our perceptual color space is continuous. However, each

language partitions this space into a modest number of categories,

and assigns a basic color term for each category. Since the classic

work of Berlin and Kay (1969) [1], it has been intensely debated

whether there are universal constraints on how various languages

partition color space [2,3,4,5,6]. This debate has become one of

the central topics of a more general controversy in cognitive

science, concerning the relation between language and perception

[7]. Statistical analyses of the database of the World Color Survey

(WCS) have provided new evidence for the existence of universal

constraints on color naming [2,3,8], and recent theoretical work

has suggested perceptual, environmental, and social bases for these

constraints [9,10,11,12], but their biological basis remained

unknown.

In the WCS study [13], an informant was asked to name the

color of each one of the 320 selected Munsell color chips. These

chips formed a 2-D array representing forty equally spaced hues at

eight levels of lightness or Munsell Value, each at maximum

available saturation or Munsell Chroma. From these data, the

subset of color chips named by each of the basic color terms in the

given informant’s language was identified. These subsets are called

color-naming palettes below. The best example of each color term was

also identified. Since most informants were from pre-industrial

societies with unwritten languages, it is believed that the WCS

languages were largely uncontaminated by contact with industri-

alized cultures that possess English-like color lexicons. If there

were universal constrains on color naming across various

languages, the color-naming palettes should not be randomly

distributed in color space. Statistical analysis of the palette

centroids and best examples upheld this prediction [2,3].

However, the above analysis was focused on the palette

centroids and best examples, without examining the full pattern

of each palette. To address this issue, Lindsey and Brown [8]

represented each color term of an informant with a vector that had

320 elements, one for every chromatic chip. These vectors are

called color-naming vectors below. Each element in a color-

naming vector has a value of 1 or 0, depending on whether the

corresponding chip was included in the corresponding color-

naming palette of the particular informant. The collection of these

color-naming vectors was subjected to a k-means cluster analysis,

in which all vectors were assigned to k clusters based on the

Pearson correlation-based similarity between vectors.

When k = 2 was used, one cluster corresponded to a group of

colors that largely fall into the English composite color category

‘‘warm’’, while the other cluster corresponded to the category

‘‘cool’’. This border also manifested itself when k = 3 to 10 was

used in the cluster analysis. All the resulting clusters were

encompassed by either the ‘‘warm’’ or the ‘‘cool’’ clusters

described above, and none of their represented color regions

straddled the ‘‘warm/cool’’ border. Considering that the cluster
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operations at different k values were independent of each other,

the persistence of the ‘‘warm/cool’’ border in their results suggests

that this border region is special in color space.

In addition, the same study found that the ‘‘warm/cool’’ border

largely coincided with the region in color space where the

concordance for color naming was the lowest. The concordance

was measured among individuals speaking the same language, and

then averaged across all languages tested. Since disagreements on

color naming tend to be more frequently for colors that are near

the edge of a color-naming palette than for those well inside a

palette, the concordance value of a test chip reflects the chance of

that chip being located well inside a palette across the database.

Taken together, the results of this study suggest that, on average

across the WSC languages, the ‘‘warm/cool’’ border region in

color space is less likely to pass through the interior of a color-

naming palette as compared with other regions. In other words,

the ‘‘warm/cool’’ border tends to be a ‘‘barrier’’ or a ‘‘fault line’’

for color-naming palettes [8]. Therefore, this border or the

associated two-way categorization of colors imposes a universal

constraint on how the palettes of a particular language are

distributed in color space.

To determine the biological basis of this universal constraint, we

first related the two-way categorization of color chips to the cone

excitation they elicit. Specifically, we examined the influence of the

two cone-opponent channels in the retinogeniculate pathway, one

encoding L- versus M-cone contrast (L2M), and the other

encoding S- versus (L+M)- cone contrast (S-(L+M)) [14,15,16,17].

We found that the two-way categorization predominantly followed

the sign of the L2M contrast, with only negligible influence from

the S-(L+M) contrast. We then examined cortical responses to

color in the macaque primary visual cortex (V1), using imaging of

intrinsic optical signals [18]. Our analysis suggest that the two-way

categorization of the cortical responses to color stimuli also follows

the sign of the stimulus L2M contrast.

Results

Two-way categorization of colors and cone excitation
In the study by Lindsey and Brown (2006), k-means cluster

analysis (k = 2) assigned all color-naming palettes in the WCS to

either ‘‘warm’’ or ‘‘cool’’ clusters. Since each tested Munsell color

chip is present in many color-naming palettes, the above analysis

generated a pair of numbers for each color chip, representing the

number of times that the given chip was present in a ‘‘warm’’ or

‘‘cool’’ palette. In the following analysis, we denote this pair of

numbers as Nw and Nc, respectively. The entire set of Nw and Nc

were generously provided to us by Lindsey and Brown.

For each color chip we calculated an index: Iwc = (Nw2Nc)/

(Nw+Nc). The sign of Iwc represents the classification of a chip into

the ‘‘warm’’ versus ‘‘cool’’ category, as deduced from the entire set

of color-naming palettes in the WCS. The value of Iwc represents

the level of consistency of this classification across various palettes.

To relate Iwc to activity in the retinogeniculate pathway, we

calculated the expected responses to each color chip in the two

cone-opponent channels that carry information about color. The

response of the L2M channel was given by RLM = 0.5CL20.5CM,

and the response of the S-(L+M) channel was given by

RY = 0.25CL+0.25CM20.5CS, where CL, CM, and Cs denote

the contrast of the respective cone excitation between a test chip

and a gray chip that was also included in the WCS test set. For

instance, CL = (L2L0)/L0, where L and L0 stand for the L-cone

excitations of the test and gray chips, respectively [19]. The

weights of various cone contrasts in RLM and RY were suggested

by a previous study on the lateral geniculate nucleus (LGN) [17].

According to that study, most cells that received opposing L- and

M-cone inputs had a weight of close to 0.5 for each of these two

cone contrasts. Most cells that received opposing S- and (L+M)-

cone inputs had a weight of close to 0.5 for the S-cone contrast.

The weights for L- and M-cone contrasts varied substantially

across the second group of cells, but were centered near (20.25,

20.25) or (0.25, 0.25) (Fig. 6 in ref [17]). Our choice of the cone

weights for the two cone-opponent channels is also consistent with

studies that related cone contrasts with the sensitivity of human

color perception or cortical activity [19,20].

In the following analysis, we used as a reference the gray chip

with a lightness value of 5. If we had used a different gray chip as

the reference, our results would have remained the same, since

different gray chips have nearly identical spectral reflectance,

which will scale various cone contrasts by the same factor without

altering their relative amplitudes.

Figures 1A and 1B show the value of Iwc as a function of RLM

and RY, respectively. In Fig. 1A, the vast majority of data points

(304/320, 95%) fell into the first and third quadrants, where the

signs of Iwc and RLM were the same. This suggests that the two-

way categorization of a color chip can be predicted largely by the

sign of the RLM that the given chip elicited. In contrast, in Fig. 1B

only 61% (196/320) data points fell into the first and third

quadrants, indicating that the sign of RY was a much poorer

predictor of the two-way categorization.

SVM analysis. To determine whether the two-way

categorization of colors can be better predicted by a linear

combination of RLM and RY, we used a linear Support Vector

Machine (SVM) classifier based on the sign of Iwc versus the values of

RLM and RY (Fig. 1C). Unlike other classification algorithms,

SVM is not based on any assumptions about the sample’s

probability distribution function, and therefore achieves better

classification when the probability distribution is unknown [21]. A

linear SVM classifier is represented by a hyperplane that separates

two classes of samples in a multi-dimensional space of the input

variables.

The SVM-derived hyperplane for our dataset is represented by:

RLMz0:021RY{0:002~0

With a 320-fold cross-validation, the accuracy of the linear

SVM classification was 95.9%. This high accuracy suggests that

the two-way categorization of colors can be approximated by a

linear process involving RLM and RY.

One way to determine the relative importance of different input

variables in a linear SVM classifier is to compare their w2, where w

denotes the weight of a variable in the equation that represents the

classifier’s hyperpane [22]. However, for this purpose, each

variable needs to be normalized before an SVM classifier is

trained. For the above classifier, the w2 for the normalized RLM

and RY were 1 and 0.0045, respectively. The large ratio between

these two numbers (221) indicates that this classifier was

predominantly based on RLM, with only a negligible influence of

RY. In addition, since the hyperplane intercepts with the RLM axis

at RLM = 0.002, which is below or close to our perceptual

threshold along the L2M direction [19,20], the SVM classifier

suggests that the two-way categorization of colors is predominantly

correlated with the sign of RLM.

To determine further the contribution of RY to the two-way

classification of colors, we compared the performance of the above

classifier with that of another one, which used RLM as the only

input variable. To this end, we calculated an information criterion,

SVMICb, that was developed by Claeskens et al. (2008) [23] to

Biological Basis of a Constraint on Color Naming
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select the input variables that contribute to SVM-based classifi-

cation. This creation of criterion was stimulated by the Bayesian

information criterion (BIC) that is widely used for model selection

[24]. Claeskens et al. (2008) have shown that excluding an input

variable that is uncorrelated with the classification tends to reduce

the value of SVMICb. But this value would increase if the

excluded variable were correlated with the classification, and this

correlation was not caused by the correlation between the given

variable and another one. Such an input variable is deemed to

contribute to the classification. A variable is deemed not to

contribute to the classification if it is uncorrelated with the

classification, or if such a correlation is caused by the correlation

between variables. By comparing the SVMICb values for our two

SVM classifiers, one using all input variables and the other

excluding only one variable, we can infer whether the excluded

variable contributes to the SVM classification.

The classifier with both RLM and RY as input variables had an

SVMICb value of 62.49, while the one with only RLM as the input

variable had an SVMICb value of 60.54. This reduction in the

SVMICb value with the exclusion of RY suggests that RY did not

contribute to the linear SVM classification. In contrast, the

classifier with only RY as the input variable had an SVMICb value

of 282.29. This substantial increase in the SVMICb value suggests

that RLM was a major contributor in the classifier that operated on

both RLM and RY, which is consistent with the relative importance

of RLM and RY as measured by their w2 in that classifier.

A similar result was obtained when the test colors were

represented in the 3-dimensional cone-contrast space, where the

axes represent CL, CM, and CS, respectively. Operating in that

space, the SVM classification algorithm generated a separating

hyperplane given by:

CL{0:957CM{0:003CS{0:033~0

The accuracy of this classifier was 90.31% (based on a 320-fold

cross-validation). The weights in this equation also suggest that the

classification is predominantly based on the value of CL-0.957CM,

which approximates RLM. The SVMICb value of this classifier

was 124.79. This value was reduced to 118.64 when CS was

excluded from the classification, and the accuracy was increased to

90.63%, suggesting that the S-cone contrast did not contribute to

the two-way classification of colors. In contrast, the SVMICb

value was increased to 363.20 or 261.41 when either CL or CM

was excluded from the classification, consistent with the notion

that both L- and M-cone contrasts were major contributors in the

Figure 1. Two-way categorization and cone contrasts of the color chips used in the World Color Survey (WCS). A–B, Iwc as a function of
RLM and RY respectively. The sign of Iwc indicates the category that a chip was assigned to. The value of Iwc reflects the consistency of the
categorization across the WCS database. RLM and RY denote the L2M and (L+M)-S cone contrast, respectively. C, Scatter plot of RLM versus RY. The
chips in different categories are represented by symbols of different colors (red vs. black).
doi:10.1371/journal.pone.0024994.g001
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original classifier that operated in the 3-dimensional space of cone

contrasts.

Two-way clustering of cortical responses to color and
cone excitation

To determine whether the RLM-correlated two-way categoriza-

tion is reflected in cortical response to color, we reanalyzed the

color responses in macaque V1 that we imaged with intrinsic

optical signal and reported previously [18]. Unlike the previous

study [18], here we used an SVM-based method to derive cortical

responses to individual colors, or single-condition activation maps

[25]. Fig. 2A shows the single-condition map associated with a red

stimulus that was calculated with the conventional method of

subtraction and normalization [18]. The dark patches represent

regions that were activated by the red stimulus. Two of them are

indicated by the arrows.

Fig. 2B shows the corresponding map produced by the SVM-

based method. The usual artifacts associated with blood vessels in

Fig. 2A are largely absent in Fig. 2B, validating the superiority of

the new method [22] over the conventional one. Responses to the

nine colors that were presented in all experiments were used in this

study, and the activation maps associated with green and blue are

shown in Fig. 2C–D. The two arrows mark the same pair of

locations in all panels. The response patch indicated by the right

arrow is readily visible in all maps with slight difference in location

for different colors [18]. However, the patch indicated by the left

arrow is barely visible in Fig. 2C–D, indicating weak responses in

this region to green and blue stimuli. Consequently, the spatial

distribution of the responses to green and blue in this region

cannot be reliably extracted from the noise that is inherent in

optical imaging. It is therefore desirable to exclude from further

analysis weakly responsive regions like this one, along with the

nonresponsive regions.

To this end, we estimated the magnitude of noise in the

activation maps from a control map that is associated with the

control trials in which the display was maintained at the

adaptation gray. Based on the estimated noise magnitude, a

threshold of response was determined and was used to identify

cortical response patches where responses to more than half of the

color stimuli were above the noise magnitude (Fig. 2F, see

Methods for details on identifying response patches). In total we

analyzed 12 response patches from the hemisphere shown in Fig. 2,

and altogether 33 patches from 4 hemispheres. Some of these

patches corresponded to the regions where our previous study

found a spatially organized representation of hue, or hue maps [18]

(see Discussion).

For each response patch, the response to a color was

represented by a vector where each element is the value of a

pixel within that patch in the corresponding activation map. To

study the spatial distribution of the responses within a response patch

without considering their amplitude, each response vector was

normalized to have a zero mean and a unit standard deviation. At

Figure 2. V1 responses to spatially uniform colors. A, A conventional activation map in response to a red stimulus. B–D, The SVM-derived
activation maps in response to red, green, and blue stimuli, respectively. E, The SVM-derived activation map from trials without color stimulation
(gray screen). F, The patches responding significantly to the majority of the tested colors. Scale bar, 0.5 mm.
doi:10.1371/journal.pone.0024994.g002

Biological Basis of a Constraint on Color Naming
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each patch, the normalized response vectors associated with

different colors were divided into two clusters by the k-means

cluster analysis (k = 2). To determine whether this clustering is

related to RLM and/or RY, we calculated these values for all tested

colors. To compare the results across different response patches,

we defined the cluster of response vectors that included the blue-

associated one as the negative cluster, since blue had the most

negative values of RLM and RY among all tested colors (Fig. 3).

The other cluster of response vectors was defined as the positive

one. We then calculated an index for each tested color:

Ipn = (Np2Nn)/(Np+Nn), where Np denotes the number of

response patches where the response to the given color was

assigned to the positive cluster, and Nn denotes the corresponding

number for the negative cluster. A positive Ipn indicates that the

response to the given color was assigned to the positive cluster

more often than it was to the negative one, and the corresponding

color was classified as a positive color. A color with a negative Ipn

was classified as a negative color. The value of Ipn reflects the

consistency of clustering across all patches.

Figures 3A and 3B show Ipn as a function of RLM and RY,

respectively. Since the blue-associated response was, by definition,

always in the negative cluster, it was excluded from the following

statistical analysis.

In Fig. 3A, all data points fall into the first and third quadrants,

where the signs of the abscissa and ordinate values were the same.

This distribution of points between quadrants 1&3 versus 2&4 (9 vs.

0) was unlikely the result of a random process where each

quadrant has equal chance (P,0.005, binomial test). This result

suggests that the two-way clustering of the cortical responses was

correlated with the sign of the stimulus RLM.

In contrast, the distribution of points in quadrants 1&3 versus

2&4 in Fig. 3B (5 vs. 4) is not significantly different from a random

distribution (P = 1, binomial test), suggesting that the response

clustering was uncorrelated with the sign of the stimulus RY.

It is noteworthy that when the set of RLM in each experiment

was subjected to k-means analysis (k = 2), the positive and negative

RLM were grouped into separate clusters. This result raised the

possibility that the two-way clustering of the cortical responses was

simply a reflection of the two-way clustering of RLM. To test this

possibility, we performed the k-means analysis on RLM and cortical

responses after excluding one test color. For three experiments that

used the same set of stimuli, excluding any color did not affect the

clustering of RLM, and therefore the results cannot be used to test

the above hypothesis. But for the remaining experiment that used

a different color pink, excluding the color blue resulted in a two-

way clustering of RLM that did not follow the sign of RLM. The

color yellow that has a positive RLM was assigned to the cluster of

colors with negative RLM by the k-means analysis. However, the

cortical response to color yellow was still assigned to the group of

responses to positive RLM. In other words, the two-way clustering

of the cortical responses followed the sign of RLM, regardless of

how the set of RLM itself was clustered. These results suggest that

Figure 3. Two-way clustering of V1 responses to color. A–B, Ipn as a function of RLM and RY, respectively, averaged across all response patches.
The sign of Ipn indicates the cluster that a response was assigned to, and the value indicates the consistency of the assignment across the response
patches. C, The distribution of response patches with different number of outliers (Nd) according to the RLM-based clustering (black) or RY-based
clustering (striped).
doi:10.1371/journal.pone.0024994.g003
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the clustering of the cortical responses was not simply an artifact

caused by the clustering of the stimulus RLM.

Responses in individual cortical patches. The above

results regarding the averaged behavior of all response patches

support the notion that the two-way clustering of color responses

in V1 follows the sign of the stimulus RLM, and is unrelated to the

stimulus RY. This conclusion is further supported by an additional

analysis that relates the response clustering to stimulus RLM and

RY at individual response patches. At each patch, we counted how

many response vectors were inconsistent with the hypothesis that

the response clustering follows the sign of RLM or RY. We call this

the number of outliers (denoted by Nd) below, and it can

theoretically have a value from 0 to 8.

Fig. 3C shows the distributions of Nd for RLM -based clustering

(Black) and RY -based clustering (striped). While the vast majority

of patches (27/33, 82%) contained 2 or fewer outliers of the RLM-

based clustering, only a minority of patches (11/33, 33%) did so

with respect to the RY-based clustering. On average, each

response patch contained 1.61+/20.32 (Mean+/2s.e.m.) outliers

of the RLM-based clustering, which was significantly less than the

outliers of the RY-based clustering (2.97+/20.24, P,0.001, one-

tail, Student’s t-test, n = 33).

Discussion

Two-way categorization of colors and perceptual color
temperature

A quantitative analysis of the WCS data by Lindsey and Brown

(2006) suggested that the two-way categorization of color

represents a universal constraint on color naming across various

languages. Our analysis of their results suggests that this

categorization is predominantly correlated with the sign of the

L2M cone contrast of a stimulus. Moreover, we found that

responses of V1 to various colors were clustered according to the

sign of the L2M contrast as well. Taken together, our results

suggest that the sign of the L2M contrast imposes a fundamental

constraint on color naming by grouping the responses of V1 to

color.

Although Lindsey and Brown (2006) labeled the two categories

as ‘‘warm’’ and ‘‘cool’’ based on the authors’ personal experience,

the relationship between this dichotomy and the perceptual color

temperature is uncertain for the following reasons. First, the color

temperature of the WCS chips has not been determined

experimentally; Second, the perceptual temperature of a color

may vary substantially between individual, as suggested by the

disagreement among artists over whether orange-red or yellow is

the warmest color; Third, in the original publication that

introduced the concept of perceptual color temperature, purple

was assigned to the ‘‘cool’’ category [26]. However, in the two-way

categorization derived from Lindsey and Brown’s analysis, purple

was grouped with typical ‘‘warm’’ colors. Therefore, although our

results established a link between the L2M cone contrast and the

WCS-derived dichotomy, further investigation is needed to

determine the relationship between cone contrasts and the

perceptual color temperature.

Information criteria for variable selection in the SVM
classification

In our analysis of the WCS with SVM classification, we

calculated a information criterion, the SVMICb, that was

developed by Claeskens et al. (2008) [23] to select input variables

that contribute to a classification. Based on this criterion, we

concluded that neither RY nor CS contributed to the two-way

categorization of colors. In addition to this criterion, we calculated

another one, the SVMICa, that was also developed by Claeskens

et al. (2008). The SVMICa value was 113.49 for the classifier with

all cone contrasts as input variables, and 111.10 for the one that

excluded CS. This difference in SVMICa is consistent with that in

SVMICb, and corroborates the notion that CS did not contribute

to the two-way categorization.

However, these two information criteria seemed to deliver

opposite inferences regarding the role of RY. Compared to the

classifier with both RLM and RY as input variables, the one with

the exclusion of RY had a smaller value of SVMICb (62.49 versus

60.54), but a large value of SVMICa (54.95 versus 56.77). This

discrepancy was caused by the difference in the term of these

criteria that penalizes the number of input variables. This term in

the SVMICa and SVMICb is similar to that in the Akaike

information criterion (AIC) and Bayesian information criterion

(BIC), respectively. The simulation studies in Claeskens et al. (2008)

[23] suggested that the SVMICb performed much better than the

SVMICa in selecting the correct set of variables that contributed

to the classification. Although the former presented a small chance

of underfitting, namely discarding a contributing variable, the

latter presented a much larger chance of overfitting, namely

selecting a non-contributing variable as a contributing one.

Therefore, we put more weight on the SVMICb-based selection.

The perceptual and physiological basis of universal
constraints on color naming

The major controversy over color categorization is whether

there are universal constraints on the location and pattern of each

category in color space, in addition to the widely accepted

constraint of connectedness, namely, each category must cover a

contiguous region of color space [7].

Statistical analyses of the WCS data demonstrated that color

categories of most languages are centered around a modest set of

locations in color space [2,3], and thus provided strong evidence

for the existence of universal constraints. Computer simulations

suggested that this non-random distribution of color categories can

be accounted for by the wavelength discrimination function of

humans [27]. Since the wavelength discrimination function seems

to be partially attributed to the characteristics of the L2M and S-

(L+M) channels in the lateral geniculate nucleus [28], that

simulation study implies a link between the universal constraints

and the functional characteristics of the retinogeniculate pathway.

A model-based study of the WCS data has related the universal

constraints to the perceptual distance between colors that is

embodied in the CIELAB color space [9]. It suggested that the

perceptual distance-based clustering of colors may partially shape

all color-naming systems. However, as the authors pointed out,

there are many color-naming systems that significantly deviate

from the model’s prediction, which leaves open the possibility that

factors other than the universal constraints are also involved in the

formation of color categories of a particular language. Because of

these additional factors, such as linguistic convention [4,6], a

universal constraint may only manifest itself in measures that

characterize the average properties across many languages.

Therefore, while the ‘‘warm/cool’’ border tends to be a barrier

in color space for color-naming palettes of most of the WCS

languages, as suggested by the results of Lindsey and Brown

(2006), some languages may have palettes that cross or straddle

this border to a substantial extent.

Although our results point to a prominent role of the L2M

contrast in shaping the lexical coding of color, they do not exclude

the possibility that the S-(L+M) contrast could play a role in this

process under some circumstance, such as in generating the green

and blue categories by splitting the ‘‘grue’’ category that is

Biological Basis of a Constraint on Color Naming
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preserved in some languages [29,30]. Moreover, many universal

constraints other than the ‘‘fault line’’ are likely to be caused by

mechanisms beyond the early visual system, as suggested by the

aforementioned model-based study [9].

We note that 5% of the data points in Fig. 1A fell into the

second and forth quadrants, which is inconsistent with the

prediction of our hypothesis. However, their corresponding color

chips all had low L2M cone contrast (,0.055). These low

contrasts could be assigned with wrong signs by our calculation

because the calculation was based on the assumption that each

WCS experiment was carried out under the CIE standard

illuminant D65. While D65 is a good estimate of the average

daylight the actual daylight during any WCS experiment was

slightly different depending on the time of the day, season of the

year, geographic location, and atmospheric conditions [31]. This

slight difference in illuminant wavelength is less likely to lead to a

miscalculation of the sign of higher contrasts, which may explain

why the outliers in Fig. 1A all had low L2M contrast.

L2M cone opponency and red/green color opponency
According to one popular theory, our color perception is

defined by two opponencies: red vs. green, and blue vs. yellow

[32,33,34]. It is now known that the perceptual color opponency is

different from the cone opponency expressed in the retinogenicu-

late pathway [35]. Since the red-green axis is close to the L2M

axis in color space [35], and the former is much more salient than

the latter, one may wonder whether the two-way categorization

intrinsic to color-naming systems might reflect the red-green color

opponency or the L2M cone opponency.

To address this issue, we compared the direction of the red/

green border in the isoluminant color plane with that of the

‘‘warm/cool’’ border. The isoluminant plane is defined by two

cardinal axes [17], one representing the L2M cone contrast, the

other representing the S cone contrast. Fig. 3 of De Valois et al.

(1997) [35] showed that the red/green borders deviated from the S

axis by various degrees, depending on the subject and the polarity

of the S cone contrast. From that figure, we estimated that, for an

average subject and with either polarity of S cone contrast, a

straight line that would optimally separate the reddish and

greenish colors deviates from the S axis by ,9.6 degrees. This

estimate was calculated after rescaling the two axes to match their

contrasts. By contrast, the corresponding deviation of the ‘‘warm/

cool’’ border is 0.75 degrees, as estimated by SVM analysis on the

WCS data when they are represented in the color space formed by

the above cardinal axes and a luminance axis. Accordingly, the

‘‘warm/cool’’ border is 12 times closer to the S axis than it is to the

red/green border. Therefore, this border is more likely to coincide

with the S axis, which corresponds to the reversal in the sign of the

L2M contrast, than with the red/green border.

The representation of color in V1
Most studies of color representation in primate V1 found that

the majority of color-selective cells in V1 received mixed inputs

from the two cone-opponent channels in the retinogeniculate

pathway [36,37,38,39], although the input from the L2M channel

was dominant [40]. Consequently, compared to the lateral

geniculate nucleus [17], V1 contains a more even distribution of

cells that are tuned to various directions in color space. In studies

that reported slightly uneven distributions, the most populated

chromatic directions were between the L2M and S cardinal axes

in the isoluminant plane [37,38]. Consistent with these reports,

our previous analysis of the data that were used in the present

study has found a continuous systematic representation of color in

an array of small regions in V1. Some of these regions

corresponded to the response patches that were analyzed in the

present study [18]. These regions were called hue maps because

the response peaks within them were spatially organized according

the stimulus hue. These hue maps coincided with the so-called

color-preferring regions that responded preferentially to isolumi-

nant chromatic stimuli, compared with achromatic stimuli.

Because the color-preferring regions were found to be co-localized

with the cytochrome oxidase blobs [41,42,43], the hue maps we

found are likely to be co-localized with the blobs as well. The

existence of hue maps in V1 was confirmed by a recent study using

calcium-based two-photon microscopy [44]. That study found that

in some regions around the cytochrome oxidase blobs, neurons

were spatially organized according to their color tuning.

If there were no preference to the L2M axis among color

selective cells in V1, how did this particular color direction seem to

exert a stronger influence on color naming than did most of the

other directions? Our study provides a possible answer to this

question by demonstrating that the sign along the L2M axis is

likely to determine the two-way clustering of the population

responses in V1 hue maps. The cellular mechanism underlying

this behavior of hue maps is unclear. One possibility is that hue

maps are predominantly populated by the color-preferring cells

reported by Johnson et al. [40,45]. These cells are largely driven

by opposite and balanced inputs from L and M cones, with only

weak inputs from S cone [40]. Consequently, colors of opposite

L2M contrasts are likely to activate two complimentary groups of

color-preferring cells, which in turn produce two distinct clusters of

response pattern as reported here. The weaker S-cone input is

likely to have small influence on the response patterns without

changing their two-way clustering. Therefore, our current finding

is not at odds with our previous one regarding the spatially

organized representation of the full hue gamut. The L2M sign

and the hue of a stimulus can be decoded from the population

activity of a hue map by different read-out mechanisms. In fact, by

linking the response in hue maps with a fundamental constraint on

color naming, our study corroborates the proposition we put forth

in our previous report, namely, that hue maps play an important

role in the color perception.

A related issue concerns the nonlinearity of the cortical response

to color. Since many neurons in V1 combine cone inputs

nonlinearly [38,46], it seems surprising that both the two-way

categorization of colors in WCS and the clustering of cortical

responses in monkeys can be explained largely by a process that

combines L- and M-cone contrasts linearly. One possibility is that

the sign of the L2M cone contrast of a stimulus determines which

one of the two neuronal populations in V1 will respond, and the

magnitude of each neuron’s response is determined nonlinearly by

various cone contrasts. The two-way categorization or clustering

under study here may simply reflect the first process.

Our k-means cluster analysis was carried out on the normalized

optical signal instead of the raw one in the activation maps. The

normalization consists of two steps. First, the average pixel value

across a response patch in an activation map was subtracted from

each pixel in the given patch. The resulting pixel value measures

the relative signal across a response patch, instead of the absolute one

that is measured in the original activation maps; Second, each

pixel value was divided by the standard deviation of pixel values

across the given patch. We note that the first step of the

normalization is necessary for observing the reported relationship

between the cortical responses and cone contrasts, whereas

skipping the second step does not change our results qualitatively.

The necessity of the first step is consistent with a previous report

that the absolute optical signal in response to a stimulus comprises

the signal elicited by the stimulus and the one associated with
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ongoing spontaneous activity [47]. Since the ongoing activity is

coherent across an area that is larger than a typical hue map

(.0.5 mm versus 0.2 mm across), its influence on the relative signal

across a hue map is expected to be much smaller than that on the

absolute signal. Therefore, it is likely that the stimulus-elicited signal

is more correlated with the relative signal than it is with the absolute

one. Both findings reported in the current and previous studies

[18] were based on the analysis of the relative signal instead of the

absolute one.

Materials and Methods

Ethics Statement
In the present study we reanalyzed data from experiments that

have been reported previously [18]. All procedures were approved

by the local Institutional Animal Welfare Committee, and were in

full compliance with the NIH guidelines for the use of laboratory

animals. Animals were housed according to ‘‘Guide for the
Care and Use of Laboratory Animals’’ (Institute of

Laboratory Animal Resources, Commission on Life Sciences,

National Research Council, National Academy Press, Washing-

ton, D.C.). Details of the experimental procedures can be found in

ref. [18]. Briefly, area V1 of four hemispheres from four

anaesthetized macaque monkeys (m. fascicuaris) was studied with

imaging of intrinsic optical signals. General anesthesia was

induced by ketamine (10 mg/kg), and continued with a mixture

of propofol (4 mg/kg/h) and sufentanil citrate (0.05 mg/kg/h).

The depth of anesthesia was monitored by end-tidal CO2, blood

pressure, and EEG. A bolus (0.1–0.5 cc) of the propofol/suentanil

mixture was given whenever a sudden change in above measures

was detected, or when a peak at alpha or higher bands appeared in

the power spectrum of EEG.

Calculation of cone contrasts of Munsell color chips
The spectral reflectance of the glossy Munsell color chips that

were used in the WCS survey were downloaded from http://

spectral.joensuu.fi. The spectral power distribution (SPD) of the

reflected light from each chip was calculated by multiplying the

chip’s spectral reflectance with the spectrum of the CIE standard

illuminant D65, assuming that the WCS tests were carried out

under daylight.

L-, M-, and S-cone excitations were given by the dot product of

the SPD and the cone fundamentals of Sharp and Stockman [48].

The L-cone fundamental was multiplied by a factor of 1.98 so that

the sum of L- and M-cone fundamentals approximates the

luminous efficiency function [49]. The cone contrasts of each chip

were given by comparing the cone excitations of the given chip

with those of the achromatic (gray) chip with a lightness value of 5.

Visual stimulation for imaging experiments
Visual stimuli were spatially uniform color fields subtending

36627u of visual angle. Nine to eleven isoluminant colors (9.5 cd/

m2) were presented in each experiment, alternating with a uniform

gray at the same luminance level as the tested colors. To compare

the results from different experiments, the current study focused

on nine stimulus colors that were used in all experiments. They

were red, pink, purple, blue, aqua, green, lime, yellow, and

orange. Their CIE1931-xy coordinates were (Fig. 4A): red (R)

(0.55, 0.33), orange (O) (0.54, 0.40), yellow (Y) (0.45, 0.47), lime (L)

(0.35, 0.54), green (G) (0.27, 0.49), aqua (A) (0.23, 0.36), blue (B)

(0.16, 0.08), purple (P) (0.23, 0.12), pink (K1) (0.43, 0.24) or (K2)

(0.38, 0.27), and gray (W) (0.32, 0.32) or (0.35, 0.32). Their

chromaticities were close to those of basic chromatic colors (except

for the color brown) in English, as identified by Berlin and Kay

(1969) and Boyton et al. [50,51]. With the additional colors lime

and aqua, the stimulus set comprises all perceptually salient hues.

The SPDs of the display’s phosphors were measured with a

spectroradiometer (PR-650, Photo Research, Inc., CA). The SPD

of each color (including the gray) was given by the dot product of

the phosphor’s SPDs and the phosphor intensity (gamma

corrected) of the color. Cone excitations of a color were given

by the dot product of its SPD and the cone fundamentals. The

cone contrasts of each color were determined by comparing its

cone excitations with those of the adapting gray.

Procedure of optical imaging and data analysis
Details of the imaging procedure can be found in ref. [18].

Briefly, the intrinsic optical signal was recorded using a CCD

camera with 6526492 pixels. The camera was focused 0–400 mm

below the cortical surface, and took 10 frames/second at a

resolution of 6.1 mm/pixel. The cortex was illuminated by 610 (+/

28) nm light from LEDs driven by a stabilized power supply.

During each imaging trial, 11 frames were taken before, 18 or

30 during, and 2 after the 1.8- or 3-second presentation of a

stimulus, followed by a rest period of 11–13 seconds, during which

the display presented a uniform gray (Fig. 4B). The animals were

adapted to the same uniform gray before each experiment. An

imaging block consisted of one imaging trial for each stimulus,

including a control trial without color stimulation, presented in a

pseudo-random order. Functional maps were derived from an

experiment consisting of 50–51 imaging blocks.

For each imaging trial, we calculated the average of 11 pre-

stimulation frames and the average of the last 7 frames (5 during-

stimulation frames and 2 after-stimulation ones). They are called pre-

Figure 4. Visual stimuli and temporal order of experiments.
A, CIE 1931-xy coordinates of the stimulus colors. R, red; O, Orange;
Y, Yellow; L, Lime; G, green; A, aqua; B, blue; P, purple; K, pink; W, gray.
B: Temporal sequence of stimulus presentation and data acquisition.
Each tick mark indicates the time at which a cortical image was
acquired. Adapted from ref [18] with permission.
doi:10.1371/journal.pone.0024994.g004
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stimulation frames and response frames, respectively. To reduce the

artifacts caused by brain movement, all these frames in an experiment

were spatially registered with the pre-stimulation frame of the first

trial during the experiment. The registration was achieved by

translating one frame relative the other until the Pearson correlation

between them was maximized. Due to this operation, the frame size

in the present study was reduced to 6126452 pixels.

To calculate a ‘single-condition’ activation map that represents

the change in surface reflectance elicited by a stimulus, we

compared the group of pre-stimulation frames with the group of

response frames that were associated with the given stimulus. In the

previous study [18], as well as most optical imaging studies, the

conventional method of subtraction and normalization was used to

derive the single-condition activation maps. In the present study,

the activation maps were derived with a new method that is based

on the statistical classification algorithm of the Support Vector

Machine (SVM) [21,25]. We have shown previously that this new

method removes most of the artifacts associated with blood vessels

and improves significantly the quality of the activation maps [25].

This improvement is evident when Fig. 2A and 2B are compared.

To identify cortical regions where response is greater than noise,

the magnitude of noise in these activation maps was estimated

from the map that was derived from the control trials in which the

display was maintained at the adaptation gray. The same

adaptation gray was also presented before and after color stimuli

in all other trials. There was no response patch in the control map

(Fig. 2E)– the variation in pixel value across the map is due to

noise since the display was not changed during the control trials.

Because response signal in intrinsic optical imaging is negative, we

used the most negative value in the control map as the threshold to

differentiate response signal from noise.

The threshold was then applied to each of the nine activation

maps, to identify regions with response that was significantly above

the noise. Nine maps of response regions will be generated, in which

each pixel has a value 1 or 0 depending on whether or not the

corresponding pixel in the activation maps has a value exceeding

the threshold (for an example, see Fig. 5, the second column from

the left). The individual response regions in these binary maps were

then combined by the logic OR operation to form the composite

response patches (Fig. 5, the third column from the left). To

minimize the impact of noise, and maximize the number of the

composite response patches for further analysis, we focused on

composite response patches that are made of individual response

regions of five or more stimulus colors (Fig. 5, the rightmost

column). The composite patches consisting of less than five

individual response regions were excluded because more than half

of the stimuli failed to elicit above-noise response in the patch. Also

excluded were the patches that extended beyond the map borders,

due to incomplete information about their response distribution.

For each response patch of N pixels, the response to a color was

represented by a vector of N elements, where each element is the

value of a pixel within that patch in the corresponding activation

map. Nine response vectors were obtained for each response patch.

Each response vector was normalized to have zero mean and unit

standard deviation. These nine vectors were subjected to the k-

means cluster analysis (k = 2) [52,53]. This analysis was implement-

ed with the function kmeans in the Statistics Toolbox of Matlab

(version 7.2, Mathworks, MA), which uses a two-phase iterative

algorithm to minimize the sum of point-to-centroid Euclidean

distances, summed over two clusters. Each point here represents a

response vector in an N-dimension space. The centroid of a cluster is

calculated as the element-wise mean across all cluster members.

k-means cluster analysis
Details of the k-means algorithm can be found at http://www.

mathworks.com/help/toolbox/stats/kmeans.html. Briefly, in the

first phase, each iteration consists of reassigning points to their

nearest cluster centroid, all at once, followed by recalculation of

cluster centroids. Another iteration follows, based on the updated

centroids. Two randomly chosen points are used as the initial

Figure 5. Identification of response patches in V1. The first column from the left shows a part of the activation maps associated with different
stimulus colors. The three vertical dots stand for six more maps that are not shown due to space limitation. A threshold derived from the control map
was used to identify the individual response regions in each activation map. These response regions are shown as the white patches in the second
column from the left. The individual response regions elicited by various stimuli were combined to form the composite response patches, as shown
in the third column from the left. The rightmost column shows the kind of composite response patches that were analyzed in the current study. Each
of these patches meets both of the following criteria: 1) it encompasses individual response regions that are associated with five or more stimulus
colors; 2) it doesn’t extend to the map borders.
doi:10.1371/journal.pone.0024994.g005
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centroids of the two clusters, the so-called seeds. This phase stops

when additional iterations make no difference, and the outcome is

used as the starting point for the second phase.

In the second phase, points are individually reassigned if doing

so will reduce the sum of distances, and cluster centroids are

recomputed after each reassignment. Each iteration during this

phase consists of one pass through all the points. The second phase

could converge to a local minimum. To locate the global

minimum, we ran through the whole procedure with every

possible pair of vectors as the seeds, and chose the run with the

minimal sum of distances.

Support Vector Machines (SVM) classification algorithm
Let ci denote the group to which the vector Xi belongs. Each ci

has a value of either 1 or 21 for a two-way classification. A linear

SVM classifier derives a separating hyperplane in the form of

W :X{b~0 ð2Þ

The SVM algorithm defines two hyperplanes that are parallel to

the separating one (Eq. 2), one on each side of the separating

hyperplane with a equal distance (d) to the latter. Each of these two

parallel hyperplane passes at least one member vector of one

group, and ideally there is no vector between them. The SVM

algorithm searches for a specific hyperplane with associated

parallel hyperplanes that are maximally separated.

The weight vector W in Eq. 2 is orthogonal to the hyperplane,

and has a length of 1/d. Therefore W is derived by the following

optimization:

arg min
W,b

(
1

2
jjW jj2) ð3Þ

subject to the condition that

ci W :Xi{bð Þw~1 and 1v~iv~n,

where n is the total number of vectors:

This algorithm applies to cases where the two groups can be

completely separated by a hyperplane. Such cases are called

linearly separable.

If the two groups are not linearly separable, the weight vector W

is derived by the following optimization:

arg min
W,b,j

(
1

2
jjW jj2z

X

i

ji) ð4Þ

subject to the condition that

ci(W :Xi{b)w~1{ji,1v~iv~n, and jiw0:

The SVM classification was implemented with a Matlab

program provided by Chang and Lin (LIBSVM: a library for

support vector machines, 2001; available at http://www.csie.ntu.

edu.tw/,cjlin/libsvm/). In order to use the weight vector W to

rank the input variables by their importance in the classification

[22], and to use information criteria to select input variables that

contributed to a classification [23], each input variable in the

vector X was normalized to have a mean value of 0 and a unit

standard deviation before an SVM classification was performed.

The weights in the resultant classifier represented the weights of

the normalized variables. These weights were then converted to

represent the weights of the original variables. The intercept, b, of

the hyperplane was also converted to represent the value in the

space of the original variables. The converted values are reported

in the hyperplane equations of the Results section.

Cross-validation. The performance of the SVM

classification was evaluated by cross-validation. The entire

dataset was divided into n equal parts for n-fold cross-validation.

For each part, the data in the remaining n21 parts were used to

train the SVM classifier, and those in the given part were used to

test the performance of the classifier. The percentage of the correct

classifications across the test data, or the accuracy, was calculated.

These accuracies, one for each part of the data, were then

averaged to give the accuracy that was associated with the n-fold

cross-validation of the classification.

Two information criteria for an SVM classifier were calculated

according to Claeskens et al. (2008) [23]:

SVMICa~
X

i

jiz2S

SVMICb~
X

i

jizlog(n)S

where ji is determined by Eq. [4], S denotes the number of input

variables of the classifier, and n denotes the size of the training set.
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