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A B S T R A C T   

Background: Brain Health Index (BHI) assimilates various MRI sequences, giving a quantitative measure of brain 
health. To date, BHI validation has been cross-sectional and limited to selected populations. Further large-scale 
validation and assessment of temporal change is required to understand its clinical utility. 
Aim: Assess 1) relationships between variables associated with cognitive decline and BHI 2) associations between 
BHI and measures of cognition and 3) longitudinal changes in BHI and relationship with cognitive function. 
Methods: BHI computation involved Gaussian mixture-model cluster analysis of T1, T2, T2*, and T2 FLAIR MRI 
data from participants within the European Prevention of Alzheimer’s Dementia (EPAD) cohort. Group differ-
ences (gender- and health-based) were evaluated using independent samples Welch’s t-tests. Relationships be-
tween BHI, age and cognitive tests used linear regression. Longitudinal analysis (12/24 months) utilised mixed 
linear regression models to examine BHI changes, and paired BHI/cognition associations. 
Results: Data from N = 1496 predominantly Caucasian participants (50–88 years old, 43.32% male) were used. 
BHI scores were lower in those with diabetes (p < 0.001, d = 0.419), hypertension (p < 0.001, d = 0.375), 
hypercholesterolemia (p < 0.001, d = 0.193) and stroke (p < 0.05, d = 0.512). APOE was not significantly related 
to BHI scores. After correction for age, cross-sectional BHI scores were significantly associated with all measures 
of cognitive function in males, but only the Four Mountains Test (4MT) in females. Longitudinal change in BHI 
and cognition were not consistently related. 
Conclusions: BHI is a valid marker of cognitive decline and relatively stable over 1-2 year follow-up periods. 
Further work should assess temporal changes over a longer duration and determine relationships between BHI 
and cognition in more diverse populations.   

1. Background 

Pathological changes in dementias tend to be a mix of both structural 

and neurovascular change [1–4] these represent promising targets for 
the assessment of brain health and disease. Many magnetic resonance 
imaging (MRI) approaches to prognostic biomarker development only 
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investigate one possible marker at a time, thereby losing informative 
data from other MRI sequences which have been collected. An auto-
mated image processing measure called the Brain Health Index (BHI) [5] 
combines T1, T2, T2* and T2 FLAIR sequences to create a single brain 
mask and provide a score of global brain health. Initial development 
found BHI to have stronger associations with Addenbrooke’s Cognitive 
Examination Revisited (ACER) than total small vessel disease (SVD) or 
white matter hyperintensities (WMH) ratings. 

Subsequent work by Watt et al. [6] established normative reference 
values for the BHI in UK Biobank participants (n = 2,990) aged 48-77 
years old. Findings also showed lower BHI scores in male participants, 
and those with known risk factors for brain health, including type 2 
diabetes mellitus, hypertension, and smokers, with higher scores for 
those with lower waist-to-hip ratios and lower pulse pressure. However, 
issues of generalisability of the UK Biobank are well described, and it 
remains unclear whether these associations differ in typical populations 
recruited into dementia-focused research. 

An important measure of validity of an imaging biomarker for de-
mentia is to assess relationship with cognitive test scores. These as-
sessments could describe associations with global ‘screening’ tests of 
cognition e.g. the Mini-Mental State Examination (MMSE) [7], tests that 
are sensitive to early cognitive change e.g. the, Four Mountains Test 
(4MT) [8], or more detailed multidomain neuropsychological assess-
ments e.g. the Repeatable Battery for the Assessment of Neuropsycho-
logical Status (RBANS) [9,10]. Many imaging biomarkers have been 
validated against cognitive scores in cross-sectional analyses only, this is 
unsatisfactory when the aim of the biomarker is to predict cognitive 
decline over time. Validation of a biomarker such as BHI must also 
demonstrate ability to detect neurodegenerative changes longitudinally. 

Thus, there is a need for further validation of BHI that includes a 
population typical of those seen in memory services or dementia 
research, that allows for comparison against various clinical features 
and cognitive assessments, and that can chart temporal relationships. 

Aims and hypotheses 

The primary aims were:  

1) To assess association of clinical and demographic features associated 
with cognitive decline against BHI scores.  

2) To describe the association of BHI with general cognitive screening 
tools, sensitive measure of early cognitive decline and data from 
multidomain neuropsychological assessments. 

3) To perform longitudinal assessments of change in BHI against tem-
poral change in cognitive test results. 

2. Methods 

2.1. Approvals and participant consents 

The European Prevention of Alzheimer’s Disease (EPAD) Longitu-
dinal Cohort Study (EPAD LCS) was the test dataset. EPAD LCS is 
registered at www.clinicaltrials.gov Identifier: NCT02804789. This 
project was secondary analysis of data held by EPAD, with permission 
given by EPAD via the Alzheimer’s Disease Workbench of the Alz-
heimer’s Disease Data Initiative (ADDI; EPAD ID: 200814_GLA_-
QUT_001). Before partaking in any study-related activities, written 
informed consent was obtained from either the participant or their le-
gally authorised representative. Reporting of findings followed the 
Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) guidelines [11]. 

2.2. Participant and data selection 

EPAD-LCS is a longitudinal, multi-centre, pan-European cohort 
study, which recruited participants predominantly from various parent 

cohorts, with the intention of creating a cohort of individuals covering 
the full range of anticipated likelihood of Alzheimer’s disease develop-
ment. This subject selection process is described at length elsewhere 
[12]. 

The current study used the EPAD-LCS-v.IMI dataset (doi: 10.34688/ 
epadlcs_v.imi_20.10.30), which was released in October 2020 and 
accessed via the Alzheimer’s Disease Data Initiative (ADDI) workbench 
portal: https://portal.addi.ad-datainitiative.org/ after approval of a 
data access request (www.ep-ad.org/open-access-data/overview). The 
EPAD LCS was launched in 2015 as a public-private partnership. The 
primary research goal of the EPAD LCS is to provide a well-phenotyped 
probability-spectrum population for developing and continuously 
improving disease models for Alzheimer’s disease in individuals without 
dementia. 

The full v.IMI dataset was considered for both cross-sectional and 
longitudinal aspects of the current study, with slightly different criteria. 
For the cross-sectional cohort, participants were required to have the full 
complement of necessary MRI scans (T1, T2, T2 star and FLAIR), core 
demographic information (age and gender), and RBANS, MMSE and 
4MT scores at their baseline visit. The cohort for longitudinal analysis 
was determined on which participants had the required complement of 
MRI scans at the first, second and third MRI visits (baseline, 12, and 24 
months), as well as all previously mentioned requirements. This selec-
tion process is summarised in Fig. A1. 

The MRI sequences available include a full complement of scans for 
BHI computation, as per the work of Dickie et al. [5] – T1, T2, T2 star 
and T2 FLAIR [13]. The richness of the EPAD cohort additionally en-
ables exploration of lifestyle, genetic and socio-demographic factors 
which may contribute to BHI scores, thereby further validating the BHI. 
The genetic data available within EPAD also allows for investigation of 
the relationship between the APOE e4 allele – the strongest genetic risk 
factor for dementia [14] – for the first time. 

2.3. Derivation of the Brain Health Index 

The current study utilised the core sequences from the MRI protocol: 
T1, FLAIR, T2 and T2*, across three vendors – GE Healthcare, Siemens, 
and Philips. Vendor-specific parameters for the sequences used are given 
in Table A1, based on a Table in Lorenzini et al. [13]. 

Prior to BHI computation, images were registered within-participant 
using Advanced Normalization Tools (ANTs v2.3.5) [15]. The T1 image 
underwent rigid body registration to the MNI152 1mm template, and 
subsequently, the T2 FLAIR, T2, and T2* images were independently 
aligned to this standardised T1 image using affine registration with 12 
points. The resulting images underwent bias field correction using the 
nonparametric nonuniform intensity normalisation algorithm (N4 Bias 
Field Correction) [16]. 

Intracranial volume masks were required for further BHI computa-
tion, and the process for their creation is described at length in Watt 
et al. [6]. In short, to produce custom individual ICV masks for each 
participant, a generic ICV mask was first created in Mango (Version 4.1, 
1531). This generic mask was then used to create custom masks for each 
participant using diffeomorphic registration in ANTs [15], which were 
then used to restrict voxels included in BHI computation and avoid in-
clusion of any skull. 

The BHI - described in detail in [5,6] - uses Gaussian mixture model 
cluster analysis to categorise the ICV voxels of co-registered sequences 
as either (1)likely normal brain tissue, or (2)likely abnormal tissue or 
cerebrospinal fluid (CSF). The four co-registered sequences were T1, T2, 
T2* and FLAIR, and each voxel within the ICV mask is given a value from 
each sequence. The expectation-maximization algorithm then uses these 
voxel values to compute the posterior probability of a given voxel being 
likely either (1) or (2), across all included sequences.(Fig. 1) 

To assess quality of the computed BHI, participant-specific multi- 
slice PNG images were created for both ICV and BHI masks using 
MATLAB 2022a. The ICV mask was overlaid on the participant-specific 
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image and visually assessed for adequate brain coverage without skull 
inclusion. The BHI mask was overlaid on the participant-specific, bias 
field-corrected T1 image and visually checked to ensure that it was 
computed properly and also covered the brain as expected. 

2.4. Lifestyle, socio-demographic and genetic information 

Socio-demographic data were self-reported at the baseline visit then 
at each study visit. Physical activity and smoking status were self- 
reported, with alcohol consumption reported as part of the Healthy 
Ageing through Internet Counselling in the Elderly (HATICE) ques-
tionnaire [17]. 

TaqMan Genotyping of participant blood samples was used to 
determine APOE status, with carriers of APOE e defined as those having 
at least one e4 allele present. Analysis was carried out in a single labo-
ratory at the University of Edinburgh using QuantStudio 12KL Flex. 
There are separate variables pertaining to biological sex (determined by 
genetic testing) and gender (self-described) in EPAD. In the full EPAD- 
LCS-v.IMI dataset – prior to participant identification for the current 
study – no participant differs across these variables. The gender variable 
is also more complete in responses. As such, this variable was used in our 
current work. 

2.5. Cognitive testing 

To enable a comprehensive and holistic understanding of cognition, 
three cognitive tests were chosen for comparison with the BHI, differing 
in their complexity and sensitivity to change. 

Firstly, the MMSE, a 30-point questionnaire which assesses various 
aspects of cognition, including attention, calculation, repetition, com-
plex commands, time and place orientation, and recall [7,18]. The 
MMSE is currently used extensively within the clinic and research, as it 
is quick to administer, assessing multiple aspects of memory. However, 
it is not a suitable stand-alone test for the assessment of those who may 
develop dementia [19]. 

The 4MT is a specialist test designed to assess hippocampal function 
(i.e. visuospatial memory) by testing the capacity of an individual to 
recognise a location from a novel viewpoint. Specifically, it comprises a 
computer-generated landscape of four hills, surrounded by a mountain 
range in the distance. These four hills are of different shapes and sizes. 

The image is shown for 10 seconds, after which four alternative images 
are immediately shown, and the participant must select the image 
matching that which they were just shown. Transient local features – for 
example weather, lighting, vegetation – vary throughout, and cannot be 
relied on to identify the correct image [8]. The 4MT is scored out of 15 
attempts, with a score of ≤ 8/15 associated with MCI [20]. The 4MT is 
thought to have greater utility for subtle and early changes, reflecting 
the function of the hippocampus by using different configurations of 
computer-generated mountain scenes to assess allocentric spatial 
memory. As the hippocampus has been shown to be affected early in 
dementia [21], determination of any relationship between this test and 
the BHI would provide further support for its clinical utility. 

RBANS was used as our multidomain neuropsychological assess-
ment. It comprises twelve subtests, assessing the following five domains: 
attention, language, immediate and delayed memory, and visuospatial/ 
constructional function [9,10]. Scores can range from 40 to 160, with 
lower scoring reflective of greater cognitive impairment. Two aspects of 
RBANS were considered – the total score, which considered the scores 
from all tests in an overall score, and the the Delayed Memory Index 
(DMI), which is thought to be most impaired in those with MCI [22]. The 
RBANS is widely used for the longitudinal tracking of dementia pro-
gression and is useful in depicting cognitive variance in those considered 
cognitively healthy. The DMI section of RBANS has been shown to be 
that of greatest impairment for individuals with mild cognitive impair-
ment (MCI) [22]. 

2.6. Statistical analysis 

Statistical analyses were performed using various libraries in Python 
3 – NumPy [23], SciPy [24], pandas [25], Matplotlib [26], scikit-learn 
[27] and statsmodels [28] - via Jupyter Notebooks [29]. Analysis was 
carried out within the Aridhia Workspace (https://www.aridhia.com/). 
In the cross-sectional cohort, two-tailed independent samples Welch’s 
t-tests were employed to assess possible differences in BHI scores related 
to gender, and key health conditions reported as part of participants’ 
medical histories – diabetes, hypertension, hypercholesterolaemia, 
stroke, head injury, depression, and anxiety. Anxiety, generalised anx-
iety disorder, and anxiety disorder were grouped together under the 
umbrella of ‘anxiety’ for the purpose of this analysis, due to small cohort 
numbers. Linear regression analyses were used to determine 

Fig. 1. Flow diagram of the processes involved in the computation of the Brain Health Index.  
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relationships between BHI scores and age, and various cognitive test 
scores (MMSE, 4MT, RBANS total, RBANS DMI). For longitudinal ana-
lyses, repeated measure ANOVAs and post-hoc Tukey’s and Scheffe’s 
tests were used to assess the change in each cognitive test at all time-
points, as well as BHI at these timepoints. Linear regressions were used 
to determine the uncorrected relationships between BHI and each 
cognitive test score. Subsequent mixed linear regression models were 
used to assess the same relationships, corrected for age and gender, to 
determine if any significant relationships between given cognitive tests 
and the BHI remained. 

3. Results 

Cohort identification and participant attrition for the cross-sectional 
and longitudinal cohorts are described in Fig. A1. The final cross- 
sectional cohort is comprised of 1496 participants, and the longitudi-
nal of 197 participants. The demographics of both these cohorts are 
given in Table 1. 

3.1. Cross-sectional analyses 

3.1.1. Demographic and clinical differences 
Linear regressions assessing the relationship between age and BHI 

were computed for both male and female participants and are sum-
marised in Fig. 2(A). Higher age was associated with lower (i.e. worse) 
BHI scores in the full cross-sectional cohort (R2=0.347, F(1,1494)=
793.7, standardised beta= 4.77×10− 4, p < 0.001). When gender was 
considered separately, lower scores with older age were found in males – 
R2=0.348, F(1 646)=344.2, standardised beta=-4.89×10− 4, p < 0.001. 
This was also the case for female participants – R2=0.322, F(1,848) 

=403.7, standardised beta=-4.55×10− 4, p < 0.001. Results of an inde-
pendent samples Welch’s t-test showed that females had higher BHI 
scores than males – t=6.968, p < 0.001, Cohen’s d = 0.368 (Fig. 2(B)). 

The relationship between years of education and the BHI was not 
significant for males (p=0.335) or females (p=0.294; Fig. 2. (C)). 
However, when this analysis was repeated with age additionally 
controlled for, this relationship was significant for both males and fe-
males. An increase of one year of education corresponds with a decrease 
of 0.0008 units of the BHI for males (p = 0.036) and a decrease of 0.0007 
for females (p = 0.031). The influence of all possible APOE statuses on 
BHI score was investigated using a one-way ANOVA, which found no 
difference (F=0.236, p=0.947). Further analysis compared BHI scores 
across APOE e4 carriers and non-carriers (excluding those with e2/e4 
status, due to the protective/deleterious effect) using a Welch’s t-test 
and found no difference (p=0.8; Fig. 2(D)). 

Cognition in this cohort is summarised in Table 2. Participants with 
MCI were compared with those who did not using an independent 
samples Welch’s t-test and were found to be higher in those without MCI 
(t =3.88, p < 0.001, Cohen’s d = 0.565; Fig. 3). 

Relationships between the BHI and key physiological and morpho-
logical measures were also assessed. Summary health and lifestyle in-
formation is given in Table A2 for the cross-sectional cohort, and 
Table A3 for the longitudinal cohort. 

Prior to correction for age, male participants showed an increase in 
BHI score with an increase in BMI (R2=0.01, F(1, 643) = 6.433, p <
0.05), however these were not significantly related within the female 
cohort. After correction, the relationship between BMI and BHI is no 
longer significant in male participants (p = 0.767), and remains insig-
nificant for females (p = 0.77). WHR was not associated with the BHI in 
either males or females (p > 0.05 for both). After correction, this remains 
true for males (p = 0.4) and females (p = 0.65). Higher pulse pressure 
was associated with lower BHI scores for both males (R2=0.107, F(1, 
643) =77.4, standardised beta=-6.8×10− 5, p < 0.001) and females 
(R2=0.058, F(1, 841) =51.38, standardised beta=-4.1×10− 5, p <
0.001). This remains true for male (p = 0.003) but not female (p =
0.941) participants after correction for age. 

The associations between certain reported medical histories and the 
BHI were also assessed using independent samples Welch’s t-tests. Par-
ticipants with diabetes (type 1 or 2) had lower BHI scores than those 
without diabetes (t=4.47, p < 0.001, Cohen’s d = 0.419). Those with 
hypertension also scored lower on the BHI than those without (t=7.11, p 
< 0.001, Cohen’s d = 0.375), as did those with hypercholesterolaemia 
(t=3.68, p < 0.001, Cohen’s d = 0.193). Those who reported head in-
juries in their medical histories did not differ in BHI score than those 
who did not have a history of head injury (p=0.456), however those who 
had had a stroke had lower BHI scores than those who had not (t=2.738, 
p < 0.05, Cohen’s d = 0.512). 

Those who reported a history of depression had higher BHI scores 
than those who did not (t=2.627, p < 0.01, Cohen’s d = -0.153), as did 
those who reported experiencing ‘anxiety’, ‘generalised anxiety disor-
der’ or ‘anxiety disorder’ (grouped together under the umbrella of 
‘anxiety’ for the purpose of this analysis) compared with those who did 
not (t=2.44, p < 0.05, Cohen’s d = -0.325). 

A one-way ANOVA assessed differences in BHI by merit of smoking 
status, with no difference found (p = 0.153). A one-way ANOVA 
assessing BHI scoring based on units of alcohol consumed highlighted a 
difference on this basis (F = 3.076, p < 0.005). A follow-up Tukey’s test 
clarified that this difference was only found between those who 
consumed 5 to 6 units per week, having higher scores than those who 
consumed 28 to 41 units per week (95% CI: 0.000 to 0.057, p < 0.05). 
Comparisons can be seen in Fig. 4. 

3.1.2. Cognitive testing 

For all cognitive test analyses in the cross-sectional cohort, partici-
pants were grouped by gender due to the finding of significant 

Table 1 
Participant demographics for cross-sectional and longitudinal cohorts.  

Variable Units Results N with available 
data 

Demographics of cross-sectional cohort 
Age Mean years (SD, 

range) 
65.5 (7.2, 50.1 – 
88.25) 

1496 

Gender M (%M) 648 (43.32%) 1496 
Ethnicity Caucasian (%)† 1181 (98.42%)‡ 1200 
Education Mean years (mean, 

SD) 
5 - 32 (14.43, 3.71) 1496 

APOE* Count (%)* e3/e3 – 762 
(52.23%) 
e3/e4 – 463 
(31.73%) 
e2/e3 - 124 (8.5%) 
e4/e4 – 65 (4.46%) 
e2/e4 – 41 (2.81%) 
e2/e2 – 4 (0.27%) 

1459 

Demographics of longitudinal cohort 
Age at baseline 

visit 
Mean years (SD, 
range) 

66.31 (6.28, 51.92 
– 86) 

197 

Gender M (%M) 99 (50.25%) 197 
Ethnicity Caucasian (%)† 134 (99.26%)§ 135 
Education Mean years (SD, 

range) 
13.9 (3.53, 7-25) 197 

APOE* Count (%)* E3/e3 – 103 
(52.6%) 
E3/e4 – 57 (29.1%) 
E2/e3 – 14 (7.1%) 

196 

Abbreviations: SD, standard deviation 
* Demographic variable that differs significantly between cross-sectional and 

longitudinal cohorts. 
† Percentages given do not include those for whom data was not available. 
‡ Of those who reported their ethnicity. Other self-described ethnicities 

(count): Asian (4); Black (1); British (1); Chinese (1); Hispanic (7); Latin 
American (2); Mixed Asian (1); Moroccan (1); South East Asian (1). 

§ Of those who reported their ethnicity. Other self-described ethnicities 
(count): Latin American (1). 
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differences in BHI scores between male and female participants. Results 
within the cross-sectional cohort are given in Table A4. 

BHI score increased with higher MMSE scores in both males (R2 

0.064, F(1,646)=44.04, standardised beta=4.615×10− 3, p < 0.001) and 
females (R2=0.019, F(1,846)=16.25, standardised beta=1.782×10− 3, p 
< 0.001). When corrected for age, this remains significant for males (p =
0.001), but not for females (p = 0.601). Linear regressions assessing the 
relationship between examiner-recorded 4MT scores and BHI found 
higher 4MT scores were associated with higher BHI scores in both male 
(R2=0.088, F(1, 632) =60.77, standardised beta=9.95×10− 4, p <
0.001) and female (R2=0.047, F(1,827) =40.55, standardised 
beta=7.9×10− 4, p < 0.001) participants. These remain significant after 
correcting for age (males: p < 0.001; females: p = 0.027). 

Increasing RBANS total score was associated with an increased BHI 
score for both male (R2=0.041, F(1,646) =27.38, standardised 
beta=4.1×10− 5, p < 0.001) and female participants (R2=0.02, F(1,846) 
=17.07, standardised beta=2.5×10− 5, p < 0.001). Results remain sig-
nificant for males (p = 0.001), but not for females (p = 0.095) after 

correcting for age. Linear regressions focusing specifically on the DMI 
score within RBANS were also carried out, and also found to be signif-
icant for males (R2=0.03, F(1,646) =20.28, standardised 
beta=2.7×10− 5, p < 0.001) and females (R2=0.019, F(1,846)=16.13, 
standardised beta=2.3×10− 5,p < 0.001). After correction for age, males 
remain significant (p = 0.004) but females do not (p = 0.082). Uncor-
rected findings are depicted in Fig. 5 below. 

3.2. Longitudinal 

Key summary scores from the longitudinal cohort are given in 
Table 3. 

Repeated measures ANOVAs were used to determine whether the 
BHI and cognitive test results changed longitudinally, before any 
correction was carried out. BHI scores decreased over time (F(2,392)=
5.8938, p < 0.005), however a post-hoc Tukey’s test to determine which 
timepoints significantly differed from each other was not significant for 
any pairwise comparison. A further Scheffe’s test to corroborate this 
result also found no significant changes in score between any measured 
timepoints. 

There was no significant difference in MMSE score over time. 
Assessment of the 4MT by repeated measures ANOVA found a change 
over time (F(2,392)=17.37, p < 0.001). A subsequent Tukey’s test found 
that there was no difference in score between baseline and 12 months, 
but that there was a decrease in score between 12 and 24 months (95% 
CI:0.95 to 2.664, p < 0.001). It was also lower at 24 months than 
baseline (95% CI:0.457 to 2.172, p < 0.005). RBANS total score changed 
over time (F(2,392)=43.3907, p < 0.001). Post-hoc Tukey’s testing 
highlighted a decrease between baseline and 12 months (95% CI: 1.214 
to 7.446, p < 0.005), and an increase between 12 months and 24 months 
(95% CI:-9.888 to -3.655, p < 0.001). However, there was no significant 
difference between baseline and 24 months. RBANS DMI changed over 

Fig. 2. Key demographic findings in the cross-sectional cohort: (A) Linear regressions assessing the relationship between the age of participants and the BHI; (B) 
Gender differences in BHI scoring; (C) uncorrected linear regressions assessing the relationship between years of education and BHI scores; and (D) BHI scores by 
APOE status in the full cross-sectional cohort. In (A) and (C), male participants are depicted in blue, and female participants in green. 

Table 2 
Cognition in complete cross-sectional cohort.  

Variable Units Results N with 
available data 

Reported 
cognitive 
decline 

None: AD: Mixed 
dementia: MCI 

1432: 7: 1: 56 1496 

MMSE Mean score (SD, 
range) 

28.55 (1.65, 17 
– 30) 

1496 

4MT Mean score (SD, 
range) 

8.6 (3.42, 0 -15) 1463 

Total RBANS Mean score (SD, 
range) 

102.9 (14.86, 
51 – 149) 

1496  
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time (F(2,392)=14.5226, p < 0.001). Post-hoc Tukey’s testing showed 
no significant difference between scores at baseline and 12 months, but 
an increase between 12 months and 24 months (95% CI:-7.36 to -0.945, 
p < 0.01). Scores were higher at 24 months than baseline (95% CI: 
-6.852 to -0.437, p < 0.05). 

Mixed linear regression models were then employed to assess the 
aforementioned relationships, additionally controlling for age and 
gender. Education and APOE were not controlled for due to a lack of 
significant relationships with BHI score identified in the cross-sectional 
cohort analysis. Models computed to assess the relationship between 
RBANS total and BHI scores did not converge at any of the considered 
timepoints, and therefore findings cannot be reliably reported. This was 
also the case for RBANS total at 12 months, and 4MT at baseline. Results 
are summarised in Table 4. 

4. Discussion 

Using two sub-studies we validated the BHI biomarker, a cross- 

sectional study of 1496 participants, which utilised the rich data 
within EPAD to assess BHI against risk factors for dementia and cogni-
tive tests, and a longitudinal sub-study of 197 participants to investigate 
changes in the relationship between BHI and cognitive tests over time. 

Within the cohort of subjects with a full complement of required 
scans, feasibility of BHI was evidenced, with most scans resulting in a 
successful computation of BHI. Mean BHI scores throughout are broadly 
comparable to our prior work [6]. Female participants had significantly 
higher BHI scores than male participants, as was also the case in our 
prior work [6], and may be linked to male individuals having larger 
brains with poorer perfusion than their female counterparts [30,31]. 
Scores decreased significantly with age, which was expected and has 
been shown previously [6]. After correction for age, increased years of 
education were significantly associated with a decline in BHI score, 
which was unexpected. Taken together with our findings from our prior 
work – which considered education as degree/no degree, rather than 
years of experience and found that males with degrees had higher BHI 
scores that those who did not have a degree [6] – the relationship 

Fig. 3. Comparison of BHI scores in the cross-sectional cohort in participants who did and did not report MCI in their medical histories.  

Fig. 4. BHI scores by alcohol consumption (units per week) in the full cross-sectional cohort.  
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between BHI and education requires further investigation. 
Variables pertaining to medical histories were also considered, and 

associations with vascular risk factors were demonstrated and reassur-
ing for the BHI, giving the established links between vascular health and 
dementia [32–35]. Those who reported MCI in their medical histories 
evidenced significantly lower BHI scores that those who did not. Studies 
have suggested that brain changes can be seen at this stage of cognitive 
decline [36]. 

In some instances, expected associations were not demonstrated, 
examples including WHR and BMI [37], which is an aspect of brain 
health that the BHI is designed to measure. Smoking status and units of 
alcohol consumed did not significantly associate with BHI. The risk that 
smoking poses to brain health is well-established [38], and this finding 
was contrary to our own prior work using UK Biobank [6]. Some of these 

findings may reflect sample size issues, distribution of disease and how 
data were coded, for example EPAD participants who are non-drinkers 
are grouped along with those consuming small volumes of alcohol (<1 
unit per week). This may negate associations as increasing data suggest 
that any alcohol exposure can be harmful to brain health [39]. 

An unexpected finding of this study was that participants with 
depression and/or anxiety had significantly higher BHI scores than those 
who did not. Depression has been associated with neuroinflammation 
[40,41], some loss of brain volume [42,43], and long-term damage to 
the hippocampus [44]. However, it has been suggested some of this 
neurological change may be reversible [45,46]. It has been suggested 

Fig. 5. Uncorrected linear regressions depicting the relationship between BHI scores and (A) MMSE; (B) 4MT; (C) RBANS total; and (D) RBANS DMI scores. Male 
participants are depicted in blue, and female participants in green. 

Table 3 
Key summary scores from the longitudinal sub-cohort.   

Timepoint  

Units Baseline 12 months 24 months 

BHI Mean (SD, 
range) 

0.645 (0.038, 
0.523 – 0.803) 

0.643 (0.036, 
0.516 – 0.733) 

0.64 (0.036, 
0.507 – 0.726) 

MMSE* 28.67 (1.49, 19 
– 30) 

28.55 (1.6, 22 – 
30) 

28.7 (1.57, 18 – 
30) 

4MT 8.8 (2.73, 0 -15) 9.3 (2.92, 0 -15) 7.49 (4.83, 0 - 
15) 

RBANS 
total 

104.5 (11.98, 
67 – 134) 

100.17 (13.97, 
59 – 141) 

106.94 (13.46, 
66 – 139) 

RBANS 
DMI 

103.9 (12.74, 
68 – 130) 

103.4 (13.75, 
56 – 134) 

107.55 (14.12, 
48 – 134)  

* For 12- and 24-month timepoints, data was available for n = 197, but lon-
gitudinal analysis only used 196 participants for assessment of MMSE as only n =
196 were available at baseline. This participant was kept in the cohort due to 
their data availability for other cognitive tests. 

Table 4 
Results of mixed linear regression model analyses. Statistically significant 
findings are denoted as: * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: N. 
S., not significant.   

Model convergence? Gender Age Cognitive test 

MMSE 
Baseline Yes ** *** N.S. 
12 months Yes * *** N.S 
24 months Yes ** *** N.S 
4MT 
Baseline No Cannot be reliably reported due to lack of 

model convergence 
12 months Yes * *** N.S. 
24 months Yes ** *** N.S. 
RBANS total 
Baseline No Cannot be reliably reported due to lack of 

model convergence 12 months No 
24 months No 
RBANS DMI 
Baseline Yes ** *** N.S. 
12 months No Cannot be reliably reported due to lack of 

model convergence 
24 months Yes ** *** N.S.  

J.K. Watt et al.                                                                                                                                                                                                                                  



Cerebral Circulation - Cognition and Behavior 6 (2024) 100214

8

that people with depression sometimes evidence better cognition, and 
that those who are healthier are more likely to attend assessment [47, 
48]. Nevertheless, there is a wealth of research which has shown a 
relationship between mood disorders and poor cognition [49–52], and 
as such the current finding is counterintuitive to what we may expect. 
Further research may enable elucidation of whether this is a legitimate 
finding or is a spurious result due to, for example, a confounding vari-
able which has not been accounted for in the current work. 

One of the strongest risk factors for dementia is the presence of the 
APOE e4 allele [14], but no significant differences in BHI scores due to 
genetic complement of APOE were seen. Whilst risk and the e4 allele do 
not correlate identically in every population [53–56], much of the 
research was carried out in Caucasian populations, who represent the 
vast majority of participants herein. Current evidence suggests APOE e4 
mostly has influences in later-life and the current cohort is probably too 
young to exhibit these [57–59]. The incorporation of multiple MRI 
phenotypes in the BHI may also obscure specific influences which may 
be seen if assessed individually. Research has shown APOE interacts 
with amyloid-beta [60] which was not assessed within the current study 
but may provide further explanation unexpecting findings between 
APOE and BHI scores. 

The key focus of the cross-sectional cohort within this study was to 
assess the relationships between BHI scores and multiple cognitive tests. 
It was hypothesised that individuals with higher cognitive test scores 
would have higher BHI scores, and after correction for age this was 
found to be the case in all cognitive tests assessed for male participants, 
but only the 4MT for females. This test focuses on the hippocampus, a 
known region of early change in dementia [21], thereby providing 
support for the utility of BHI as a marker for early brain changes. Whilst 
cognitive assessments focused on global cognition and memory, other 
key domains of cognition relevant to neurocognitive disorders – such as 
executive function - were not investigated. This is a key limitation in 
understanding the relationship between BHI and cognition and should 
be addressed in subsequent work. 

The longitudinal sub-cohort was investigated to determine any 
changes in the BHI, as well as its relationship to cognitive scores over 
time. It was hypothesised that BHI scores would decrease with time, and 
that this alteration in brain health would be reflected in decreased 
MMSE, RBANS and 4MT scores. However, many of the changes that 
were found were too small for any significant differences to be captured. 
This may be a product of sample size, or length of follow-up, and has 
implications for design of biomarker-based research studies. 

Limitations 

The longitudinal sub-study cohort size is modest in size (n = 197) and 
follow-up over only two years and three timepoints may not be sufficient 
to demonstrate definitive change. Future work would benefit from 
following a cohort over a longer period and at more timepoints. 

Currently, reference values for BHI in younger adults are unknown, 
and would further aid interpretation of these findings in older adult 
cohorts. It should be acknowledged that some data used in this study is 
self-report data, which can have various issues. Participants may exag-
gerate or understate their responses or respond in a manner they deem to 
be socially desirable [61]. This is particularly pertinent to smoking and 
alcohol consumption, making the basis of these specific results some-
what unreliable. 

The vast majority of participants in the current cohort are Caucasian, 
which is also true of EPAD as a whole. This is a common problem in 
neuroimaging [62] and one which requires addressing for equitable use 
of the BHI in further research and future clinical contexts. The work 
herein made use of MNI templates, which are standard templates within 
the field, and yet are not always suitable for use for participants who 
have diverse ancestries [63–65;66]. Alternative templates can easily be 
input to the BHI pipeline and should be considered for use in future 
studies. 

5. Conclusions 

BHI is linked to several known risk factors for cognitive decline, and 
shows association with various cognitive tests, showing promise for its 
clinical utility. Further work is required to robustly investigate longi-
tudinal changes in the BHI and its relationship with oft-used cognitive 
tests over a longer period of time. 
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