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Proteolysis of MOB1 by the ubiquitin ligase praja2
attenuates Hippo signalling and supports
glioblastoma growth
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Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult

population. Proteolytic turnover of tumour suppressors by the ubiquitin–proteasome system

is a mechanism that tumour cells can adopt to sustain their growth and invasiveness.

However, the identity of ubiquitin–proteasome targets and regulators in glioblastoma are still

unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core

component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo

cascade. Degradation of Mob through the ubiquitin–proteasome system attenuates the Hippo

cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during

the transition from low- to high-grade glioma is associated with significant downregulation of

the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo

cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth.
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G
liomas are malignant brain tumours that arise from glial
cells. They are the most common primary proliferative
disorders of the central nervous system in the adult

population. They include a heterogenous group of tumours that
are characterized by a variety of differentiation and malignant
phenotypes1. Glioblastoma multiform (GBM), which represents
about 50% of total gliomas, is the most aggressive form of brain
tumour, with a very poor median survival after initial diagnosis2.
High-grade gliomas are thought to derive from low-grade
variants. These variants undergo sequential genetic alterations,
giving rise to cell populations with more invasive behaviour,
greater activation of mitogenic pathways and loss of cell cycle
control3. Transition from low- to high-grade glioma is also
marked by activation of the hypoxia pathway, which promotes
blood vessel formation, clonal evolution and consequent tumour
expansion4–10.

At the molecular level, GBMs are characterized by a wide array
of genetic and epigenetic alterations. The pathogenic role of these
abnormalities in glioma development has been functionally
confirmed by in vivo studies. Thus, inactivation of tumour
suppressor genes (p53), constitutive activation of membrane
receptors (EGFR), induction of prosurvival pathways (PI3K/Akt),
aberrant gene transcription and metabolic dysfunction have all
been linked mechanistically to the development and progression of
GBMs3,11–17. These abnormalities underlie the high recurrence
rate and resistance of these tumours to current therapies. Although
major advances have been made recently in identifying the
relevant players that regulate GBM growth and development, so
far the key mechanisms and the genes responsible of glial
neoplastic transformation remain subjects of active investigation.

The ubiquitin–proteasome system (UPS) is emerging as an
important control mechanism of cell metabolism, growth and
survival. The UPS is the principal pathway for eliminating
unneeded or damaged proteins18. UPS couples ubiquitylation of a
target protein to its proteolytic cleavage. Ubiquitylation is a
multistep process that involves the sequential action of three
enzymes: activating enzymes (E1), conjugating enzymes (UBCs or
E2s) and ligases (E3s). E3-ubiquitin ligases fall into two main
classes characterized by a HECT domain or a RING domain19,20.
HECT domain E3 ligases act catalytically to form a thioester
intermediate during ubiquitin transfer to substrate, whereas RING
E3 ligases serve as a scaffold that brings together the substrate and
the E2 ligase. praja2 belongs to a growing family of mammalian
RING E3-ubiquitin ligases widely expressed in cells and several
tissues, including brain21,22. praja2 finely tunes the stability of
intracellular substrates and has a significant role in critical aspects
of cell signalling23. During cAMP stimulation, praja2 promotes
ubiquitin-dependent proteolysis of the inhibitory protein kinase A
(PKA) regulatory (Rs) subunits, sustaining downstream PKA
signalling and significantly impacting on gene transcription and
neuronal activity24. However, the role of praja2 in tumour cell
growth and the relevant molecular targets involved are unknown.

Here, we report a mechanism of signal attenuation in human
GBM based on proteolytic turnover of components of the
tumour-suppressor Hippo pathway. We find that praja2 directly
binds to and ubiquitylates Mps one binder 1 (MOB1), a
component and core effector of the Hippo pathway. Degradation
of ubiquitylated MOB1 by the proteasome inhibits this signalling
cascade, favoring GBM growth. By manipulating the levels and
activity of praja2, we have uncovered a pivotal role of this ligase
in glial cell tumorigenesis.

Results
praja2 interacts with Hippo pathway component MOB1. To
gain insight into praja2 function, we performed a yeast two-hybrid

screening using a human brain cDNA library and the C-terminal
domain of praja2 as bait. Two independent clones encoding the
C-terminus of MOB1 co-activator protein were isolated. MOB1 is
a core component of the nuclear-Dbf2-related kinase 1 (NDR1)/
LATS (large tumour suppressor) kinase complex that acts as a
downstream effector of the Hippo pathway. Hippo is an evolu-
tionally conserved protein kinase cascade that has a fundamental
role in the control of cell growth and organ size25.

First, we set out to verify the direct interaction of MOB1 and
praja2 detected in the two-hybrid screen. We confirmed
that praja2 directly binds to MOB1 in vitro. A fusion protein
carrying full-length praja2 fused to the C-terminus of glutathione
S-transferase polypeptide (GST) coprecipitated in vitro-translated
[35S]-labelled MOB1 (Supplementary Fig. S1a). Reciprocal
experiments using purified, recombinant GST-MOB1
confirmed interaction with praja2 expressed in HEK293 cells
(Supplementary Fig. S1b). Co-immunoprecipitation assays
showed that exogenous flag-praja2 and co-expressed HA-MOB1
formed a stable complex (Fig. 1a). As praja2 promotes degradation
of MOB1 (see below), we treated the cells for 12 h with the
proteasome inhibitor MG132 before harvesting in order to see the
complex. Deletion mutagenesis and binding assays identified
residues 531–630 as the praja2 segment that interacts with MOB1
(Fig. 1a). Next, we demonstrated this interaction in vivo by
isolating endogenous praja2/MOB1 complex from cell lysates.
LATS1 kinase was also present in the praja2 precipitates (Fig. 1b).
In vitro binding assays showed that MOB1A is required for
praja2–LATS1 interaction (Fig. 1c). The MOB1-binding domain
relies within a region of praja2 that is also involved in PKA R
interaction. Therefore, we tested if PKA binding to praja2 was
affected by MOB1. The results indicate that this is, indeed, the
case. Thus, PKA–praja2 interaction was significantly
reduced by coexpression of exogenous MOB1A (Supplementary
Fig. S2a,b). As consequence, PKA inactive holoenzyme
accumulates in cells expressing MOB1A (Supplementary
Fig. S2c,d).

To map the binary interaction sites, we performed a peptide
spotting experiment, first to confirm interaction in vitro and
second to determine specific amino acids required for praja2
binding to MOB1A. Overlapping 25-mer peptides derived from
human MOB1 were spotted onto a membrane and overlaid with
purified GST-praja2531–631 fusion proteins as previously
described26. We identified one potential binding site located at
the C-terminus of MOB1A with the binding motif ILKRL as the
core region for binding (Fig. 1d).

To test if the C-terminal region of praja2 (amino acids
531–708) interacts with MOB1A in a cellular context, we
applied a protein-fragment complementation assay (PCA) based
on the ‘Venus’ mutant of the yellow fluorescent protein (YFP)27.
This assay is independent of a continuous stimulus; the
irreversibility of this Venus-YFP PCA will trap transient protein
complexes directly in the living cell26. Binding of the two proteins
brings the unfolded fragments of the YFP-based reporter protein
into proximity, allowing for folding and reconstitution of the
fluorescent reporter to localize binary protein complexes in vivo27

(Fig. 1e, upper panel). As shown in Fig. 1e (lower panels), we were
able to detect MOB1A:praja2-CTD (praja2 C-terminal domain,
residues 531–708) complexes in vivo. In contrast to the mainly
nuclear localisation of the positive control for the protein:protein
interaction of a leucine zipper dimer (Zip:Zip), the MOB1A
homodimer was cytoplasmic28. Accordingly, we detected
cytoplasmic complexes between MOB1A-VenF[2] and praja2-
CTD N-terminal tagged with YFP PCA VenF[1] (Fig. 1e). In situ
immunostaining analysis of U87MG glioblastoma cells revealed
partial colocalization of endogenous praja2 and MOB1.
Overlapping signals were detected at the perinuclear region and
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Figure 1 | praja2 forms a complex with MOB1. (a) Schematic representation of the praja2 constructs used (upper panel). HEK293 cells were transiently

transfected with HA-MOB1A and flag-tagged praja2 (either wild-type or deletion mutants). Cells were treated for 12 h with MG132 (10 mM) before

harvesting. Twenty-four following transfection, cells were harvested and lysed. Lysates were subjected to immunoprecipitation with anti-HA antibody.

Precipitates were immunoblotted with anti-HA and flag antibodies (lower panels). (b) Endogenous praja2/MOB1/LATS1 complex was isolated from cell

lysates using anti-praja2 antibody. (c) In vitro-translated [35S]-labelled MOB1A and LATS1 were subjected to pulldown assays with purified GST or GST–

praja2 fusion. (d) Spotted peptides (25 mers, 20 aa overlap) of MOB1A were overlaid with recombinant GST-praja2 followed by immunoblotting with anti-

GST. The bar graph illustrates the densitometric quantification of the average of n¼ 2 dot blot experiments, coloured bars indicate the sequences (red box,

referred here as binding domain (BD)) of one potential binding site in the illustrated modular structure of MOB1A. (e) Schematic view of the principle of the

Venus-YFP PCA to capture protein complexes directly in the living cell and of the fusion proteins (indicated as circles) tested. Fluorometric imaging of

transiently transfected HEK293 cells co-expressing the indicated proteins tagged with Venus-YFP PCA fragment (1) or (2) 24 h post transfection (lower

panels). Scale bar, 10mm. (f) U87MG cells were subjected to double immunostaining with monoclonal anti-MOB1 and polyclonal anti-praja2 antibodies.

Images were collected and analysed by confocal microscopy. Magnification of selected areas is shown (insets). Scale bar, 10mM.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2791 ARTICLE

NATURE COMMUNICATIONS | 4:1822 | DOI: 10.1038/ncomms2791 | www.nature.com/naturecommunications 3

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


in the cytoplasm (Fig. 1f), and also at centrosomal region as shown
by triple labelling with anti-MOB1, anti-praja2 and anti-g tubulin
antibody (Supplementary Fig. S3a). A similar immunostaining
pattern was also observed in FNP8, a primary culture of human
GBM (Supplementary Fig. S3b).

praja2 ubiquitylates and degrades MOB1. We postulated that
praja2 ubiquitylation promotes MOB1 degradation. We tested
this hypothesis by measuring MOB1 levels in cells co-transfected
with expression vectors encoding for flag-praja2 (either wild-type
or RING mutant) and HA-tagged MOB1. We used two highly
conserved variants of MOB1, MOB1A and MOB1B. As shown in
Fig. 2a,b, expression of wild-type praja2 significantly reduced
HA-MOB1A levels relative to the CMV vector control. In con-
trast, transfection with the inactive praja2 mutant (praja2rm)
increased the concentration of HA-MOB1A. Similar results were
obtained with co-transfected MOB1B (Fig. 2c,d). Endogenous
MOB1 was also efficiently degraded by transfected praja2
(Fig. 2e). Treatment with MG132 reversed the reduction by
praja2 of the levels of HA-MOB1A (Fig. 2f) or of endogenous
MOB1 (Fig. 2g). To demonstrate that praja2 affected MOB1
stability, rather than MOB1 synthesis, the experiments were
repeated in presence of cycloheximide, an inhibitor of protein
synthesis. Figure 2h,i shows that MOB1 levels declined over time
in control cells, with a half-life of B5 h. Knocking down endo-
genous praja2 significantly increased the half-life of endogenous
MOB1 (Fig. 2h,i) and of HA-MOB1A (Supplementary Fig. S4a,b).
Complementary experiments demonstrated that praja2 over-
expression markedly reduced HA-MOB1A stability (Fig. 2j,k),
whereas endogenous MOB1 (Supplementary Fig. S4c,d) or
HA-MOB1 (Fig. 2j,k) were stabilized by praja2rm overexpression.

Since praja2 is an E3-ubiquitin ligase, we asked if praja2
ubiquitylates MOB1 in living cells. Indeed, flag-praja2 promoted
accumulation of poly-ubiquitylated forms of endogenous MOB1
(Fig. 2l) and of the co-transfected HA-MOB1A (Fig. 2m). Ligase
activity was required for HA-MOB1A ubiquitylation; expression
of praja2rm did not enhance MOB1 modification (Fig. 2l,m). An
in vitro ubiquitylation assay confirmed that MOB1 is, in fact, a
direct substrate of praja2 (Fig. 2n).

praja2 negatively regulates the Hippo pathway. YAP nuclear
factor drives transcription of several genes. These include cyclin E
and cyclin D, which induce quiescent cells to enter the cell
cycle29–31. Upon reaching cell confluence and/or defined organ
size, activated Hippo/MST phosphorylate the MOB1/LATS
dimer, which leads to the activation of MOB1/LATS (ref. 32).
Active MOB1/LATS complex phosphorylates YAP transcription
factor at S127 (ref. 32). Phosphorylated YAP is trapped within
the cytoplasm via interaction with 14-3-3 proteins and eventually
degraded. Cytoplasmic sequestration of phosphorylated YAP
suppresses the proliferating and antiapoptotic program, leading
to cell cycle arrest and inhibition of organ or tumour growth33,34.

We postulated that praja2, by reducing MOB1 levels, would
downregulate LATS activity, decreasing YAP phosphorylation
and negatively impacting on the downstream Hippo cascade. We
tested this idea by monitoring YAP phosphorylation at S127
(pYAP) and MOB1 levels in growing and in quiescent U87MG
glioblastoma cells. As control cells reached confluence, YAP
phosphorylation increased B1.7-fold over baseline levels
(Fig. 3a,b). Downregulation of endogenous praja2 (praja2 small
interfering RNA (siRNA)) increased the levels of MOB1 and
concomitantly enhanced YAP phosphorylation above control
siRNA values (Fig. 3a,b). This was associated with marked
reduction of YAP accumulation in the nuclei of praja2
siRNA-transfected cells (Fig. 3c,d). Direct interference with

endogenous praja2 activity reproduced the effects of praja2
silencing. Thus, expression of the praja2rm mutant increased the
levels of MOB1 and enhanced confluence-induced YAP
phosphorylation (Fig. 3e). As a read-out of YAP transcriptional
activity, we measured the levels of cyclin E mRNA35–37. As
expected, silencing of praja2 significant reduced cyclin E
expression, both in U87MG cells and in primary cultures of
human GBM (FNP8) (Fig. 3f).

praja2 is required for cell proliferation and tumour growth
in vivo. The finding that praja2 downregulates the Hippo path-
way provided a starting point to analyse how praja2 contributes
to the phenotype of GBM cells. Hippo pathway activity is nega-
tively correlated with growth and aggressive phenotype of
GBM38. We predicted, therefore, that praja2 inactivation of
MOB1 would enhance glial cell transformation. First, we
compared praja2 expression in FNP8 and in U87MG cells.
Supplementary Figure S5a shows that praja2 is expressed at
comparable levels in both cell types. To link causally praja2
to glioma cell malignancy, we asked how praja2 silencing
affected cell growth. siRNA duplexes targeting human praja2
efficiently knocked-down endogenous protein (Supplementary
Fig. S5a). Importantly, downregulation of praja2 markedly
inhibited growth of both U87MG (Fig. 3g) and FNP8
(Supplementary Fig. S5b) cells. The requirement of praja2 for
cell growth was confirmed by fluorescent-activated cell sorter
analysis. Thus, praja2 siRNA-transfected U87MG cells
accumulated at the G1 phase of cell cycle (Fig. 3h). A reduction
at G2-M transition was also evident in the praja2-silenced cells.
Taken together, these findings indicate that praja2 supports the
growth of cultured GBM cells.

We further tested this notion in vivo using a mouse model of
cancer growth. In this model, U87MG cells are injected
subcutaneously into CD1 nude mice. The cells start to grow at
the site of injection several days post-implantation39. To prove
that praja2 is, in fact, required for tumour growth in vivo, we
silenced endogenous praja2 in U87MG cells before injection by
transient transfection with siRNA duplexes targeting praja2
(praja2 siRNA) or with control non-targeting siRNAs (control
siRNA). Three weeks post-injection, the mice were killed and the
weight of the lesions was scored. As shown in Fig. 4a,b,
downregulation of praja2 significantly inhibited tumour growth.
Similar results were obtained using primary cultures of human
GBM (NMDP7) (Supplementary Fig. S6). We also probed the
tumour sections for Ki67, a proliferative marker and predictive
parameter of glioblastoma recurrence and progression. The
number of Ki67-positive cells was reduced by two-fold in
tumour sections derived from praja2 siRNA-transfected relative
to cells transfected with control siRNA (Fig. 4a). The levels of the
cyclin-dependent kinase inhibitor p21, a molecular marker of G1
growth arrest, were significantly higher in praja2 siRNA-treated
tumours, compared with controls (Fig. 4c,d), confirming the
requirement of praja2 for cell cycle progression.

To study the role of praja2 in tumour development in a more
physiological tissue context, we used an orthotopic glioblastoma
model. U87MG cells transiently transfected with siRNAs (praja2
siRNA or control siRNA) were implanted stereotaxically into the
left caudate nucleus of mouse brain. The mice were killed 3 weeks
later. Histological analysis of post-mortem control mouse brain
revealed an homogenous tumour mass with sharp borders that
was clearly delimited from the adjacent normal brain tissue. The
orthotopic tumour, like the subcutaneous tumour, was composed
mostly of large pleomorphic cells with abundant eosinophilic
cytoplasm (Fig. 4e). Exposure of tumour cells to praja2 siRNA,
dramatically reduced tumour weight (Fig. 4e,f). A two-fold
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Figure 2 | praja2 ubiquitylates and degrades MOB1. (a–d) HEK293 cells were transiently co-transfected with CMV or flag-praja2 (either wild-type

or RING mutant) and HA-MOB1A (a) or HA-MOB1B (c) vectors. Lysates were immunoblotted with the indicated antibodies. Quantitative analysis

(mean±s.e.m) is reported in the panels (b,d), respectively. *Po0.01 versus CMV; #Po0.01 versus flag-praja2, Student’s t-test. (e) Immunoblot analysis of

endogenous MOB1 on lysates from cells transiently transfected with CMV, flag-praja2 or flag-praja2rm vector. Tubulin was used as loading control. (f) Cells

were transiently co-transfected with CMV or flag-praja2 and HA-MOB1A vectors. Lysates were immunoblotted with the indicated antibodies. The cells

were treated for 8 h with MG132 (20mM) before harvesting. (g) Cells were transiently transfected with CMV or flag-praja2 (either wild-type or RING

mutant) and treated for 8 h with MG132 (20mM) before harvesting. Lysates were immunoblotted with the indicated antibodies. (h) Cells transiently

transfected with control siRNA or praja2 siRNA were treated with cycloheximide and harvested at the indicated time points after treatment. Lysates were

immunoblotted with the indicated antibodies. (i) Cumulative analysis (mean±s.e.m.) of the experiments shown in h. (j) Cells transiently co-transfected

with HA-MOB1A and with either the expression vector for praja2 or praja2rm. CMV vector was included as control. Lysates were immunoblotted with the

indicated antibodies. (k) Cumulative analysis of the experiments shown in j. The data are expressed as mean±s.e.m. of three independent experiments.

(l) Cells were transiently co-transfected with myc-ubiquitin and flag-praja2 or flag-praja2rm. Cells were treated for 8 h with MG132 (20mM) before

harvesting. Lysates were immunoprecipitated with anti-MOB1 antibody. The precipitates and lysates were immunoblotted with anti-MOB1, anti-myc and

anti-flag antibodies. (m) Same as in l, except cells were transiently co-transfected with HA-MOB1A and lysates were immunoprecipitated with anti-HA

antibody. Precipitates and lysates were immunoblotted with anti-HA, anti-myc and anti-flag antibodies. (n) In vitro-translated, [35S]-labelled MOB1A

was incubated with flag-praja2 or flag-praja2rm (immunopurified from transfected cells) and his6-tagged ubiquitin, in the presence of E1 and UbcH5c (E2).

The reaction mixture was denatured, size-fractionated on 12% SDS–PAGE, and analysed by autoradiography. A fraction of the reaction mixture was

immunoblotted with anti-flag antibody (lower panel).
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reduction of Ki67 immunoreactive signal in these tumours
further supports the role of praja2 in regulating GBM cellular
proliferation (Fig. 4e). Growth of GBM lesions in living mice was
monitored by positron emission tomography (PET) using
the radiolabeled thymidine analogue 18F-fluorothymidine
(18F-FLT). 18F-FLT-PET analysis is routinely used in vivo to
trace cell proliferation in a milieu of intact tumour tissue40.
FLT-PET scanning analysis revealed a two-fold reduction
of 18F-FLT uptake by tumours derived from praja2 siRNA-
transfected cells compared with controls (Fig. 4g,h). These
findings provide further evidence that praja2 enhances glioma
growth in vivo.

The praja2-MOB1 axis controls glioma growth in vivo. The
data presented above indicate that accumulation of praja2 is
positively correlated with glioma growth in vitro and in vivo. As
MOB1 is a praja2 substrate, we hypothesized that degradation of
MOB1 by praja2 inhibits the Hippo pathway, thus enhancing
GBM growth. This hypothesis is supported by several additional
findings. First, knock-down of praja2 significantly upregulated
MOB1 in transplanted U87MG tumours (Fig. 5a and b). Second,
concomitant downregulation of MOB1 restored growth of praja2-
silenced glioblastoma cells (Fig. 5c). Downregulation of praja2
activated the Hippo pathway, as shown by increased autopho-
sphorylation of LATS1 at its activation site serine 909 (pLATS1)
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(Fig. 5d,e) and phosphorylation of YAP at S127 (Fig. 5d). This
parallels a global downregulation of cyclins. The replication
cyclins, cyclin E and cyclin D were downregulated 10-fold and
4.8-fold, respectively, in praja2-silenced cells. Some down-
regulation of cyclin B (3.6-fold) was also observed (Fig. 5d).
Consistent with our hypothesis, concomitant downregulation of
MOB1 partially reversed the increase in LATS1 and YAP1
phosphorylation induced by praja2 silencing (Fig. 5d,e) Simul-
taneous knock-down of MOB1 partially restored cyclin expres-
sion in the praja2 knock-down cells, particularly in the case of
cyclin E, whose expression increased 5.9-fold. These data along
with those reported in Fig. 3 suggest that praja2 primarily reg-
ulates G1-S progression. Lastly, inhibition of the Hippo signalling
by MOB1 knock-down restored tumour growth of praja2-
silenced glioblastoma cells in mouse brain (Fig. 5f,g).

praja2 is overexpressed in human glioma. Given its positive role
in glioma cell proliferation and xenograft tumour growth, we
investigated the expression profile of praja2 in human gliomas.
Tissue samples obtained from first biopsies of patients that
underwent brain surgery for low-grade astrocytoma or GBM were
homogenized and the protein lysates were immunoblotted with
anti-praja2 antibody. Low levels of praja2 were detected in lysates
from human astrocytomas, whereas praja2 concentrations were
two-fold to three-fold higher in lysates from GBM samples
(Fig. 6a,b). Quantitative RT–PCR analysis demonstrated that
praja2 mRNA was increased in tumour biopsies of GBM, com-
pared with astrocytoma II (Fig. 6c). This was not a consequence
of amplification of the praja2 gene in GBM lesions, as shown by
fluorescence in situ hybridization (Supplementary Fig. S7a,b).
Next, we performed immunohistochemistry on tissue sections
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derived from GBM and astrocytoma patients. The results were
consistent with the immunoblotting data. Thus, more praja2
accumulated in GBM compared with astrocytoma tissues
(Fig. 6d). MOB1 staining inversely correlated with glioma
malignancy and praja2 levels. In particular, low-grade astro-
cytoma cells displayed a strong MOB1 signal that was diffusely
distributed throughout the cytoplasm, whereas significantly lower
concentrations of MOB1 were detected in GBM cells (Fig. 6d).

We then asked whether enhanced expression of praja2 in
glioma tissues was associated with changes in the intracellular

distribution of the ligase. Immunofluorescence analysis of
glioma tissues is shown in Supplementary Fig. S8. In astrocytoma
tissue, moderate praja2 staining was homogeneously distributed
at the cell periphery (Supplementary Fig. S8a,b). As expected,
strong praja2 staining was observed in GBM cells (Supplementary
Fig. S8a,b). This staining was diffusely distributed throughout
the cytoplasm, with some concentration at the perinuclear
membrane and the nuclear compartment. Conversely, the MOB1
immunofluorescent signal was intense in astrocytoma cells,
whereas only a slight signal was detected in GBM lesions
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(Supplementary Fig. S8c,d). Note that GBM sections contain
heterogenous cell populations marked by quite different levels of
praja2 and MOB1, possibly reflecting the high rate of genomic
instability that defines these tumours.

Increased levels of praja2 in GBM lesions were linked to
significantly decreased YAP phosphorylation (Fig. 6e). The
unmodified YAP accumulated in the nuclear compartment
(Fig. 6e). In contrast, astrocytoma tissues present high levels of
phosphorylated YAP, which is mostly distributed throughout the
cytoplasm (Fig. 6e).

Discussion
Here, we report a mechanism of signal attenuation in human
GBM based on proteolytic turnover of components of an
oncosuppressive pathway. We find that praja2 directly binds to
and ubiquitylates MOB1, the regulatory component of the
LATS1/2 kinases of the Hippo pathway. Degradation of
ubiquitylated MOB1 by the proteasome inhibits this signalling
cascade, favoring GBM growth.

Proteolysis of cellular proteins by the UPS is a sophisticated
mechanism controlling complex biological interactions that
underlie cell survival, growth and metabolism. Accordingly,
disregulation of the UPS is causally implicated in a wide variety of
human diseases, including neurodegeneration and cancer.
Modulating overall UPS activity is a therapeutic strategy currently
being tested for treatment of several human disorders41.
However, non-specific side effects and toxicity problems limit
its use. An alternative approach, targeting the levels or activity of
specific E3 ligases, is an attractive and, perhaps, more effective
therapeutic strategy42. The E3-ubiquitin ligase MDM2 represents
the prototype target of inhibitors that selectively interfere with the
ubiquitylation processes in human tumours. MDM2 is a
transcriptional target of p53 and tightly regulates p53 levels by
marking p53 for UPS degradation43. This constitutes a negative
feed-back loop that controls the p53-dependent stress response.
Decreased levels of p53 are found in many human cancers,

resulting from genetic inactivation, viral infection or
amplification of the MDM2 gene44. Preventing MDM2–p53
interaction with small-molecule drugs restores normal p53
activity. This therapy is currently being tested in haematological
and solid malignancies45.

Changes in the expression profile of components of the
ubiquitin ligase complexes have been reported in diverse
tumours20. UbcH10, an ub-conjugating enzyme that regulates
cell cycle progression, is upregulated in high-grade astrocytoma46.
Conversely, the tumour suppressor F-box protein Fbxw7, a
component of the Skp1-Cul1-F-box E3-ubiquitin ligase complex,
is downregulated in high-grade glioma, and serves as prognostic
biomarker for survival in glioma patients47. Somatic mutations of
ubiquitin ligases have been identified in GBM and in other
human malignancies, further supporting a pathogenic role of
deregulated UPS system in brain tumours48,49.

Our findings identify praja2 as a novel cancer-associated gene
whose expression is upregulated in high-grade glioma. The
expression profile of praja2 in tissue biopsies of astrocytoma and
GBM lesions is consistent with a direct correlation between the
levels of the ligase and the malignant phenotype of the tumour.

At the mechanistic level, we identified MOB1, the regulatory
component of the LATS1/2 kinases, as a critical praja2 substrate.
MOB1 family members (MOB1A and MOB1B) are products of
highly conserved genes originally identified as regulators of
mitotic exit and cytokinesis in yeast, and later reported as tumour
suppressors and components of the Hippo-NDR/LATS path-
way25. MOB1 interacts with and activates LATS1/2 kinases. The
MOB1/LATS kinase complex phosphorylates and inactivates
YAP, a transcription factor that controls entry into the cell cycle
of quiescent cells. Phosphorylated YAP is recruited and
ubiquitylated by the SCF (beta-TRCP) E3-ubiquitin ligase
complex. Ubiquitylated YAP is degraded through the
proteasome50. The Hippo pathway can also be attenuated by
proteolytic turnover of the LATS1 Kinase. LATS1 is ubiquinitated
by the HECT class E3-ubiquitin ligase ITCH, which interacts with
the PPxY motifs of LATS1 through its WW domains. Proteolysis
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of ubiquitylated LATS1 enhances cell growth, induces epithelial-
mesenchymal transition and increases tumorigenicity51,52. In the
work described above, we report that the regulatory component of
the LATS1 kinase, MOB1, is degraded by praja2 through the UPS.
Proteolysis of MOB1 by praja2 attenuates the Hippo cascade and
enhances proliferation of glioblastoma cells. As MOB1 interacts
with NDR1/2 kinases, this suggests that praja2 may also impact on
the NDR1/2-dependent signalling cascade32. This mechanism
operates in vivo; downregulation of MOB1 restored the
proliferative activity of praja2-silenced GBM cells and sustained
tumour growth. By removing the inhibitory constraint imposed by
Hippo, praja2 would favour YAP-dependent gene transcription,
coupling the UPS pathway to GBM growth (Fig. 7). Notably, we
found that MOB1 levels inversely correlate with praja2 abundance
and glioma malignancy, supporting the role of praja2 in control of
MOB1 stability in vivo. Moreover, upregulation of praja2 in GBM
lesions is linked to significant inhibition of the Hippo pathway,
confirming the mechanistic link between praja2, Hippo pathway
and GBM in vivo.

Our results, taken together, identify the E3 ligase praja2 as a
novel cancer-associated gene whose expression predicts the
aggressive potential of glioma. Negative regulation of the Hippo
pathway by praja2 constitutes a UPS-driven signalling circuit that
sustains growth of glial cells carrying various oncogenic
mutations. Unveiling the mechanism(s) regulating praja2 expres-
sion and activity in glioma cells and identifying additional
relevant praja2 targets will contribute to our understanding of the
role of UPS pathway in the development and progression of
human GBMs. We expect this to inform the design of more
effective target-oriented therapeutic strategies for aggressive
human GBM.

Methods
Cells and tissues. The human embryonic kidney cell line (HEK293) was cultured
in DMEM containing 10% fetal bovine serum (FBS) in an atmosphere of 5% CO2.
The glioblastoma cell line U87MG (grade-IV) was purchased from the American
Type Culture Collection and maintained in modified Eagle’s medium supple-
mented with 10% heat inactivated fetal calf serum and 2 mM L-glutamine,
100 IU ml� 1 penicillin, 100mg ml� 1 streptomycin, 1x non-essential amino-acid,
1 mM sodium pyruvate, at 37 �C, 5% CO2 and 95% of humidity. Primary glio-
blastoma cell lines (FNP8 and NMDP7) were prepared from enzymatic digestion of
bioptic samples surgically removed from Neuromed patients. All patients gave their
informed consents and were shown to carry glioblastoma multiforme (according to
WHO classsification). All tumours were positive for vimentin, GFAP (glial fibril-
lary acidic protein) and EGFR.

Transfection of plasmids and siRNAs. Vectors encoding for wild-type or
mutant praja2, ubiquitin, MOB1A and MOB1B were described previously53,54.
Transfection efficiency was monitored by including a GFP vector in the trasfection
mixture. SMARTpool siRNAs targeting distinct segments of coding regions of
praja2 and MOB1 were purchased from Dharmacon. The following are the siRNA
sequences (Thermo Scientific) targeting human praja2: sequence 1: 50-GAAGC
ACCCUAAACCUUGA-30 ; sequence 2: 50-AGACUGCUCUGGCCCAUUU-30 ;
sequence 3: 50-GCAGGAGGGUAUCAGACAA-30 ; sequence 4: 50-GUUAGAUU
CUGUACCAUUA-30 . The following are the siRNA sequences (Thermo Scientific)
targeting human MOB1: sequence 1: 50-AUGAAUGGGUUGCAGUUAA-30 ;
sequence 2: 50-GCAGAUGGAACGAACAUAA-30; sequence 3: 50-GCACCAA
AGUAUAUUGAUU-30; sequence 4: 50-GGUUAAAUGUUGAUACGAA-30 .
siRNAs were transiently transfected using Lipofectamine 2000 (Invitrogen) at a
final concentration of 100 pmol ml� 1 of culture medium. For siRNA experiments,
similar data were obtained using a mixture or four or two independent siRNAs.

Antibodies and chemicals. Goat and rabbit polyclonal antibodies directed against
MOB1 were purchased from SantaCruz and Cell Signalling, and used at working
dilutions of 1:300 (for immunostaining) and 1:1000 (for immunoblot); extracellular
signal-regulated kinase 2 (ERK2) (dilution 1:3000), GST (dilution 1:5000),YAP
(dilution 1:1000 for immunoblot and 1:300 for immunostaining), cyclin D1
(dilution 1:1000), cyclin B1 (dilution 1:1000) and cyclin E (dilution 1:1000) were
purchased from SantaCruz; haemagglutinin epitope (HA.11, dilution 1:1000) was
purchased from Covance; a-tubulin, g-tubulin, flag and myc epitope (dilutions
1:3000) were purchased from Sigma; phospho(Ser127)YAP (dilution 1:1000),
phospho(Ser909)LATS1 (dilution 1:1.000) and LATS1 (dilution 1:1000) were

purchased from Cell Signalling; praja2 (dilution 1:5.000 for immunoblot and 1:300
for immunostaining) was purchased from Bethyl laboratories; polyclonal antibody
directed against human praja2 (immunoblotting dilution 1:500; immunostaining
dilution 1:300) was generated in rabbit using the following epitope: residues 60–250.

Immunoprecipitation and pulldown assay. Cells were homogenized and sub-
jected to immunoprecipitation and immunoblot analyses as described previously24.
GST fusions were expressed and purified from BL21 (DE3) pLysS cells. GST or
GST–praja2, beads (20ml) were incubated with 2 mg of cell lysate or with in vitro-
translated [35S]-labelled MOB1A in 200 ml lysis buffer (150 mM NaCl, 50 mM Tris-
HCl at pH 7.5, 1 mM EDTA and 0.5% Triton X-100) in rotation at 4 �C overnight.
Pellets were washed four times in lysis buffer supplemented with NaCl (0.4 M final
concentration) and eluted in Laemmli buffer. Eluted samples were immunoblotted
with the indicated antibody. In the case of GST/GST-MOB1A pulldowns, we
precipitated praja2-flag expressed in HEK293 cells for 3 h (lysis buffer: 10 mM
sodium phosphate pH 7.2, 150 mM NaCl, 0.5% Triton X-100 supplemented with
standard protease inhibitors). Resin-associated complexes were washed at least four
times with the lysis buffer and eluted with Laemmli sample buffer.

In vitro ubiquitylation assay. [35S]-labelled MOB1A was synthesized in vitro
using a TnT Quick coupled transcription/translation system (Promega) in the
presence of 45 mCi of [35S]-labelled methionine using as template a pcDNA3 vector
carrying Myc/His-MOB1A transgene. The ubiquitylation assay was carried out as
described previously53.

Animals and tumour cell implantation. Male CD1 nude mice (20–22 g body
weight; Charles River, Calco, CO, Italy) were kept under controlled conditions
(temperature, 22 �C; humidity, 40%) on a 12-h light/dark cycle with food and water
ad libitum. Experiments were performed following the guidelines for animal care
and use proposed by the National Institutes of Health (Bethesda, MD). Mice were
subcutaneously implanted with 1� 106 U87MG cells per 0.5 ml, under anaesthesia.
The weight of subcutaneous tumours was assessed after 1 month. In another set of
experiments, U87MG cells were stereotaxically implanted into the left caudate
nucleus (by using the following coordinates: 0.6 mm anterior to the bregma;
1.7 mm lateral to the midline; and 4.5 mm ventral from the surface of skull of mice
under ketamine (100 mg kg� 1, i.p.)/xylazine (10 mg kg� 1, i.p.) anaesthesia. Cells
(0.3� 106 cells per 5 ml) were implanted at an infusion rate of 1 ml min� 1.

Immunohistochemistry. Formalin-fixed, paraffin-embedded tissues from the
tumours were selected. Representative slides of each tumour were stained with
hematoxylin and eosin. Immunohistochemistry for praja2 and Ki67 (Ventana,
Tucson, Ariz.) was performed automatically with a Nexes instrument (Ventana).
Antibody detection was performed using a multilink streptavidin–biotin complex
method, and antibodies were visualized by a diaminobenzidine chromagen
method. Negative control samples were incubated with primary antibodies only.
The number of Ki67-positive cells was determined in four random fields (1 cm2

each) by using the ImageJ 1.31v software (National Institutes of Health). Stereo-
logical techniques for electron microscopic morphometry were applied to normal
brain and brain tumour slides. Our aim was to obtain objective baseline data for the
study of expression of praja2 in these tissues. The results, expressed mainly in
numerical densities of positive cells in the control and pathological tissue revealed
increasing gradients throughout grading of the tumour tissues. Each section was
subjected to count stereology of cells positive for praja2. The counting was per-
formed using a microscope (Axio Imager M1 microscope) equipped with software
Image Pro Plus 6.2. This automatically calculates the density of praja2 positive cells
per area (mm2). To evaluate the expression of MOB1, YAP and phospho YAP in
tumour cells, 4-m serial sections from representative blocks were cut, mounted on
poly-L-lysine coated glass slides and used for the immunohistochemical staining.
Representative sections were incubated with the anti-MOB1, anti-YAP and anti-
phospho YAP antibodies. Subsequently, the slides were incubated with biotinylated
secondary antibodies, peroxidase-labelled streptavidin (DAKO LSAB kit HRP,
Carpinteria, CA) and chromogenic substrate diaminobenzidine (DAB, Vector
Laboratories, Burlingame, USA) for the development of the peroxidase activity.
Slides were counterstained with hematoxylin, dehydrated and cover-slipped with a
synthetic mounting medium (Entellan, Merck, Germany). Only cells with a definite
cytoplasmic staining were judged as positive for the MOB1 antibody, whereas for
YAP and phospho-YAP nuclear and cytoplasmic positivity were evaluated,
respectively.

Small animal PET Imaging and data analysis. Before PET studies, mice were
injected in the tail vein with 9.5 MBq of 18F-FLT, and were kept awake in a
ventilated cage (26 �C) during a tracer uptake period of 60 min. Anaesthesia was
performed with intraperitoneal administration of ketamine (100 mg kg� 1) and
xylazine (10 mg kg� 1) (injection volume, 100 ml per 10 g) during the entire scan-
ning period. Imaging was performed with the dedicated small animal PET scanner
eXplore Vista GE Healthcare. The static PET data were acquired for 30 min. Image
data sets were corrected for random coincidences, scatter and physical decay to the
time of injection. No attenuation correction was applied. The measured
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reconstructed spatial resolution of the Explore Vista scanner is B1.6 mm full-
width at half maximum (FWHM) at the center of the field of view. The counting
rates in the reconstructed images were converted to activity concentrations (SUV
units) by use of a system calibration factor (1,035 Bq ml� 1 per cps per voxel)
derived from the imaging of a mouse-size water-equivalent phantom containing
18F. Maximum (SUVmax) and mean (SUVmean) standardized uptake values
(SUVs) (SUV¼ tissue activity (MBq per cc)/(injected dose (MBq)/body weight
(g))), and the ‘metabolic volume’ of the lesions were calculated from the PET
studies. Quantitative data were obtained using GE eXplore Vista software, on the
base of a ‘region growing’ procedure, by adding all spatially connected voxels with
SUV 450%. FLT uptake between control and siRNA-treated mice were compared.

Immunofluorescence and confocal analysis. Sections from human glioblastoma
biopsies were subjected to double staining with DAPI and primary antibodies.
Fluorescent signals were visualized using a Zeiss LSM 510 Meta argon/krypton
laser scanning confocal microscope. Four images from each optical section were
averaged to improve the signal-to-noise ratio. Images from a minimum of four
sections per tumour and four different samples of each category of tumours were
collected and analysed. Immunofluorescence on cultured cells was performed as
described previously24.

Fluorescence-activated cell sorting. For cell cycle analysis, samples were labelled
with propidium iodide. Cells were fixed with 70% ethanol in phosphate-buffered
saline (PBS) and routinely kept at þ 4 C� overnight. Cells were washed twice with
PBS, resuspended in PBS containing 40 mg ml� 1 propidium iodide (Sigma),
7 units ml� 1 RNase DNase-free (Eppendorf) and incubated at room temperature
for 20 min. Cells were analysed using a CyAn ADP flow cytometer (Dako Cyto-
mation, Ely, UK) using Summit software. Results are presented as mean±s.e.m. of
three separate experiments.

In vitro protein binding assays. GST hybrid proteins were expressed in Escherichia
coli (strain BL21). Induction, cell lysis and affinity purification of hybrid proteins
were performed as recommended by the supplier of the pGEX vectors
(GE Healthcare). GST hybrid proteins (GST, GST-MOB1A) immobilized on
glutathione beads were incubated for 3 h with cell lysates from HEK293 cells
transiently expressing flag-praja2. Resin-associated complexes were washed at least
four times with the standard lysis buffer (10 mM sodium phosphate pH 7.2, 150 mM
NaCl, 0.5% Triton X-100) and eluted with Laemmli sample buffer (2% SDS, 50 mM
Tris-HCl pH 6.8, 0.2 mg ml� 1 bromphenol blue, 0.1 M DTT, 10% (v/v) glycerol).
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