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Purpose: Primary open angle glaucoma (POAG) is a characteristic optic neuropathy which progresses to irreversible
vision loss. Few genes have been detected that influence POAG susceptibility and other genes are therefore likely to be
involved. We analyzed carefully characterized POAG cases in a genome-wide association study (GWAS).
Methods: We performed a GWAS in 387 POAG cases using public control data (WTCCC2). We also investigated the
quantitative phenotypes, cup:disc ratio (CDR), central corneal thickness (CCT), and intra-ocular pressure (IOP). Promising
single nucleotide polymorphisms (SNPs), based on various prioritisation criteria, were genotyped in a cohort of 294 further
POAG cases and controls.
Results: We found 2 GWAS significant results in the discovery stage for association, one of which which had multiple
evidence in the gene ‘neural precursor cell expressed, developmentally down-regulated 9’ (NEDD9; rs11961171,
p=8.55E-13) and the second on chromosome 16 with no supporting evidence. Taking into account all the evidence from
risk and quantitative trait ocular phenotypes we chose 86 SNPs for replication in an independent sample. Our most
significant SNP was not replicated (p=0.59). We found 4 nominally significant results in the replication cohort, but none
passed correction for multiple testing. Two of these, for phenotypes CDR (rs4385494, discovery p=4.51x10–5, replication
p=0.029) and CCT (rs17128941, discovery p=5.52x10–6, replication=0.027), show the consistent direction of effects
between the discovery and replication data. We also assess evidence for previously associated known genes and find
evidence for the genes ‘transmembrane and coiled-coil domains 1’ (TMCO1) and ‘cyclin-dependent kinase inhibitor 2B’
(CDKN2B).
Conclusions: Although we were unable to replicate any novel results for POAG risk, we did replicate two SNPs with
consistent effects for CDR and CCT, though they do not withstand correction for multiple testing. There has been a range
of publications in the last couple of years identifying POAG risk genes and genes involved in POAG related ocular traits.
We found evidence for 3 known genes (TMCO1, CDKN2B, and S1 RNA binding domain 1 [SRBD1]) in this study. Novel
rare variants, not detectable by GWAS, but by new methods such as exome sequencing may hold the key to unravelling
the remaining contribution of genetics to complex diseases such as POAG.

Primary open angle glaucoma (POAG) is the most
common subtype of glaucoma, which can be regarded as a
group of diseases with characteristic optic neuropathy that
causes a distinctive pattern of progressive visual field loss that
could eventually lead to blindness [1]. Several genes known
to cause POAG have been identified, such as myocilin
(MYOC),  optineurin (OPTN), WD repeat domain 36
(WDR36), and neurotrophin 4 (NTF4), though the exact
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mechanisms by which they are causal remains unclear [2-5].
Conflicting evidence for association has created uncertainty
about the importance of OPTN and NTF4 in POAG [6,7] in
the general population, though there is evidence that OPTN
may be specific for normal tension glaucoma (NTG) [3].
These genes are rare causes of the disease, and are detected in
families affected by glaucoma, and thus account for few
(<10%) POAG cases in total [8]. Association studies detect
more common causes of disease and, more recently, several
replicated genes have been detected using this method either
on a genome-wide scale or by candidate gene analysis.
Examples are a variant near the caveolin 1 (CAV1) and
caveolin 2 (CAV2) genes on chromosome 7 [9,10];
transmembrane and coiled-coil domains 1 (TMCO1) and
CDKN2B antisense RNA 1 (CDKN2B-AS1) [11], ELOVL
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fatty acid elongase 5 (ELOVL5), S1 RNA binding domain 1
(SRBD1) [12].

There have also been recent successes in identifying
genes associated with quantitative ocular traits important in
POAG such as intraocular pressure (IOP), vertical cup disc
ratio (CDR), optic disc area, and central corneal thickness
(CCT). Genes known to be involved with these traits include
atonal homolog 7 (ATOH7), transforming growth factor, beta
receptor III (TGFBR3), SIX homeobox 1 (SIX1), and caspase
recruitment domain family, member 10 (CARD10) with optic
disc size and vertical cup disc ratio [13-15], as well as zinc
finger protein 469 (ZNF469), A kinase (PRKA) anchor
protein 13 (AKAP13), and collagen, type V, alpha 1
(COL5A1) with CCT [16-18].

Genome-wide association studies (GWAS) have been
performed in a wide range of complex diseases, including
diabetes, age-related macular degeneration, Crohn’s disease
and bipolar disorder [19,20]. Many common variants have
been reproducibly associated with these and many other
common diseases. GWAS has therefore been the principal
strategy employed, over the last few years, to uncover the
genetics of complex traits. We performed a GWAS of risk in
387 POAG patients and 5,830 Wellcome trust case controls
consortium (WTCCC2) controls and assessed genetic
correlation with quantitative ocular traits in these 387 cases
and 50 Southampton controls. We then followed up promising
single nucleotide polymorphisms (SNPs) in a further 294
POAG patients.

METHODS
Patient samples and phenotypes: Three hundred and eighty
seven (387) primary open angle patients from a cohort of

patients being recruited in Hampshire (UK) were included in
this study. Patients were recruited following the tenets of the
declaration of Helsinki, informed consent was obtained and
the research was approved by the Southampton & South West
Hampshire Research Ethics Committee. Patients were all
diagnosed as POAG cases and further defined as normal
tension glaucoma (NTG) if the average IOP over both eyes
≤21 mmHg, and high tension glaucoma (HTG) if otherwise.
All showed visual field loss in at least one eye. A full
description of the cohort is given elsewhere [21]. Cases
diagnosed as psuedoexfoliation glaucoma and those with a
known myocilin mutation were excluded. The replication
sample consisted of 294 further POAG cases collected from
Southampton, Portsmouth and additional sites on this study in
Frimley, Torbay, and Wolverhampton. Myocilin positive
cases could not be excluded due to incomplete screening.
Descriptions of both the discovery and replication sample are
given in Table 1.

The quantitative ocular traits analyzed were; intraocular
pressure (IOP) taken as the maximum observed and average
value per patient (measured by Goldman applanation
tonometry), cup:disc ratio taken as the worst eye and average
per patient, and central corneal thickness (CCT) taken as
average over both eyes (measured by ultrasound pachymetry-
Tomey pachymeter SP-3000; Tomey USA, Phoenix, AZ).
Although data were mostly complete for IOP and CDR, fewer
data were available for CCT. These ocular traits were also
measured in the 50 Southampton controls. Details are given
in Table 2.

Genotyping and QC: The discovery sample was genotyped
using the Affymetrix SNP 6.0 array (Affymetrix, Santa Clara,

TABLE 1. DEMOGRAPHIC INFORMATION ON PATIENTS AND CONTROLS OF POAG DISCOVERY AND REPLICATION SAMPLES.

 Descriptive
Discovery sample

POAG cases
Replication sample

POAG cases

p-value differences
between discovery

and replication
samples

WTCCC2
controls

Southampton
controls

No. of subjects n=387 n=294  n=5380 n=50
Diagnosis
POAG 387 294  NA 0 (0%)
HTG 319(82%) 233(79%)  NA 0 (0%)
NTG 68(18%) 61(21%) p=0.3† NA 0 (0%)
Age in years
Mean 75.3 73.1  NA 79
Standard deviation 10.6 10.7 p=0.0077* NA 4.9
Gender
Female 193 144  2647 27
Male 194 150 p=0.82† 2733 23

        This table describes the diagnosis, age and gender of the discovery and replication POAG case and control samples.
        POAG=primary open-angle glaucoma; HTG=high tension glaucoma, NTG=normal tension glaucoma; p-value *significance of
        independent samples T- test, †significance of 2×2 χ2 test; NA=not available. WTCCC2=Wellcome Trust Case Control
        Consortium 2 controls –including 1958 British birth cohort and national blood service cohort members. Southampton Controls
        –have no sign of Glaucoma or Age-related macular degeneration.
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CA) and frequencies were compared with the Affymetrix SNP
6.0 array data available for approximately 5,000 WTCCC2
controls, originating from the National Blood Service and the
1948 British birth cohort. The replication sample genotyping
was performed using KASPar chemistry.

Quality control steps involved removing cases and SNPs
with a high degree of missingness, and removing SNPs with
a minor allele frequency less than 5%. We also performed
identity by state (IBS) analysis to identify unknown relatives
or duplicates and multi-dimensional scaling (MDS) to identify
those with differing ethnic backgrounds to the majority of the
group (a Caucasian cohort). The WTCCC2 controls clustered
tightly together with our cases in the MDS plot, showing that
our cases and controls were ethnically compatible (Appendix
1). A total of 387 cases (from 400 genotyped) and 5,380
controls remained for analysis in the discovery sample after
these steps.

A Hardy–Weinberg equilibrium (HWE) test (in the
WTCCC2 control data) identified SNPs with large deviations
(p<0.001) that were excluded from analysis, controlling for

possible genotyping errors in the controls. As the cases were
genotyped separately, further filtering steps were undertaken
to control for possible genotyping error in the cases. See
Appendix 2 (supplementary methods) for details. All QC steps
were performed using PLINK [22], and 681,552 SNPs
remained for analysis. A QQ plot is shown in Appendix 3.
Statistical analysis: We analyzed the data for risk using allelic
χ2, and further subdivided our cases into NTG and HTG cases
which were independently tested against the WTCCC2
controls. The quantitative ocular traits were analyzed by linear
regression, with each SNP tested against each of the traits.

GWA studies are prone to detection of false positives; to
ensure that the most promising signals were taken through to
the replication stage we applied a ‘clumping’ strategy [22].
Significant SNPs were clumped together as a single
association signal if in linkage disequilibrium over a
250 kilobase pair distance. Prioritization for replication was
as follows; SNPs with multiple supporting independent
clumps in the same region; support from quantitative trait
results, as this is not dependent on the WTCCC2 controls;

TABLE 2. QUANTITATIVE TRAIT PHENOTYPES FOR PATIENTS AND CONTROLS OF POAG DISCOVERY AND REPLICATION SAMPLES.

 Discovery sample POAG
          cases (n=387)

Replication sample POAG
         cases (n=294)

Southampton control sample
                   (n=50)

Descriptive worst eye average worst eye average worst eye average

Highest observed intraocular pressure (IOP)
Mean 27.75 25.90 26.7 24.9 15.74 15.53
SD 6.38 5.44 7.04 5.8 3.02 3.00
Minimum 14 14 13 12.5 10 10
Maximum 60 54 58 43 21 21
N 387 387 282 282 50 50
Missing data 0 0 12 12 0 0
Cup:disc ratio (CDR)
Mean 0.78 0.72 0.76 0.71 0.32 0.30
SD 0.14 0.15 0.16 0.15 0.13 0.12
Minimum 0.08 0.08 0 1 0.1 0.1
Maximum 1 1 1 0.975 0.7 0.6
N 387 387 283 283 49 49
Missing data 0 0 11 11 1 1
Central corneal thickness (CCT) average over both eyes
Mean                 534                                   539                             552
SD                 34.19                                   40.5                              34.5
Minimum                 417                          398                              439
Maximum                 624                                   639                              620
N                 191                               201                              48
Missing data                 196                                93                              2

        This table gives statistical descriptions of the quantitative ocular traits measured in the discovery and replication POAG cases
        and the replication controls. No phenotypic information is available for the discovery WTCCC2 controls.
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significant SNPs with a p-value ≤10−6 with some support in
the surrounding region; finally, where clumped results located
within a gene, relevant functional data was also taken into
consideration.

This multi-pronged approach gave a total of 86 SNPs to
test in the replication cohort. All analysis steps were
performed using PLINK [22].

RESULTS
GWAS results: There were two SNPs with GWAS
significance (p<1×10−8) in the risk analysis, the most
significant was on chromosome 6 (rs11961171,
p=8.55±10−13) and had 6 SNPs (rs41463745, rs4713332,
rs16871186, rs16871188, rs4713335, and rs16871204) in the
clump (p≤0.0002) and four other independent SNPs in the
surrounding region (Figure 1). The genes nearest to the signal
are neural precursor cell expressed, developmentally down-
regulated 9 (NEDD9), LOC100129322, and transmembrane
protein 170B (TMEM170B). We chose three independent
SNPs to genotype in this region in the replication sample. The
second GWAS significant SNP was on chromosome 16
(rs924463) with no supporting evidence from the surrounding
region suggesting a likely false positive. Figure 2 shows a
Manhattan plot of the risk GWAS.

Quantitative traits: The quantitative ocular traits are
summarized in Table 2. As expected for POAG cases the IOP
was raised, the CDR increased and the CCT reduced
compared to controls. The values were similar in the discovery
and replication cases.
Replication results: For replication 86 SNPs were genotyped
in the 294 new cases, 50 controls, as well as the discovery
sample allowing data quality checks. The overall concordance

rate between the discovery and replication data was >99%. All
SNPs passed the HWE test (p>0.001 in controls).

SNPs were analyzed for association to the phenotype
which led to their inclusion in the replication cohort. Results
for the most significant region in the GWAS and all SNPs
which showed significant replication are given in Table 3 and
full results are listed in Appendix 4. There were 4 results with
a p-value <0.05, none of which pass a multiple testing
correction for 86 SNPs. One SNP, located downstream of the
gene ‘KH domain containing, RNA binding, signal
transduction associated 3’ (KHDRBS3), was significant for
average CDR, and in a consistent direction to the discovery
data. One SNP, located within the gene ‘ubiquitin protein
ligase E3 component n-recognin 7’ (UBR7), was significant
for the phenotype CCT and also had an effect in the same
direction as the discovery data. Functional information is
lacking for UBR7. Ocular trait information had also been
collected for the 50 Southampton controls, enabling a similar
quantitative analysis in controls for these 2 SNPs. Neither was
significant perhaps suggesting that their effects are specific to
glaucoma cases, although the control sample size is limited.
The final 2 significant SNPs (one for HTG and one for NTG)
showed association in the opposite direction to the discovery
data, indicating false-positive results.
Previously published POAG genes: Included in our
replication data were 3 SNPs near published POAG risk genes
which showed strong evidence for association in our
discovery data. SNPs in SRBD1 and MTAP (near CDKN2B)
both showed strongest evidence for the HTG group, and a SNP
in CDKN2B which showed strongest evidence in the NTG
group. However, these SNPs were not significant in our
replication sample (Appendix 4). Table 4 gives a summary of
the evidence for published POAG genes, with SRBD1,

Figure 1. A plot of the most significant
region in the discovery sample GWAS.
This plot shows the region around the
most significant result in the discovery
sample GWAS. SNPs are plotted as the
-log10 of the p-value. The plot was
produced using LocusZoom.

Molecular Vision 2012; 18:1083-1092 <http://www.molvis.org/molvis/v18/a115> © 2012 Molecular Vision

1086

http://pngu.mgh.harvard.edu/purcell/plink/
http://www.ncbi.nlm.nih.gov/snp?term=rs11961171
http://www.ncbi.nlm.nih.gov/snp?term=rs41463745
http://www.ncbi.nlm.nih.gov/snp?term=rs4713332
http://www.ncbi.nlm.nih.gov/snp?term=rs16871186
http://www.ncbi.nlm.nih.gov/snp?term=rs16871188
http://www.ncbi.nlm.nih.gov/snp?term=rs4713335
http://www.ncbi.nlm.nih.gov/snp?term=rs16871204
http://www.ncbi.nlm.nih.gov/snp?term=rs924463
http://www.molvis.org/molvis/v18/a115/app-4.pdf
http://www.molvis.org/molvis/v18/a115/app-4.pdf
http://csg.sph.umich.edu/locuszoom/
http://www.molvis.org/molvis/v18/a115


CDKN2B, and TMCO1 giving the most convincing evidence
in our larger discovery sample. The best of several significant
SNPs within SRBD1 is rs11884064 (p=6.7×10−5), though
nearby rs1657855 is marginally more significant
(p=2.69×10−5).

We found no association evidence for SNPs within
MYOC, as expected, since patients with MYOC mutations
were excluded. Also MYOC mutations along with WDR36 and
OPTN are rare causes of POAG and thus not expected to be
detected by GWAS. We found some very weak evidence in
OPTN (p=0.02), but none in WDR36.

DISCUSSION
We report two SNPs highly significant in our discovery data
for the phenotypes CCT and CDR. Both have positive
replication data, neither of which withstands a multiple testing
correction, but both show direction of effects consistent with
the discovery data. The most significant SNP in the POAG
risk analysis is located in NEDD9. There was strong evidence
from surrounding SNPs and NEDD9 appears an excellent
candidate as it has been shown to be increased in trabecular
meshwork cells [23], however, none of the 3 SNPs chosen for
follow-up in the NEDD9 region were significant in the
replication study. As GWAS studies are prone to type one
(false positive) error, we chose to follow-up the SNPs with
most evidence, based on a variety of criteria, rather than
simply single p-values. We believe our selection criteria
enhanced our likelihood of successful replication, but it is
possible we may have excluded some real associations.

Several genes of moderate effect have been detected by
GWAS, including variants near CAV1 and CAV2 [9] and
TMCO1 and CDKN2B [11]. We assessed evidence for a list

of well replicated published genes in our GWAS (Table 4) and
found the genes SRBD1, CDKN2B, and TMCO1 had the most
convincing evidence of association in our data. Interestingly,
the best SNP within SRBD1 is rs11884064 (p=6.7×10−5),
though nearby rs1657855 is marginally more significant
(p=2.69×10−5) and located upstream of SRBD1 and nearer the
SIX3 and SIX2 genes which play roles in eye development.

Few GWAS significant signals have been detected for
POAG, even in studies with very large sample size [9]. It
seems that the remaining POAG heritability may be accounted
for, by rare variants across multiple genes that all contribute
to genetic risk and these are not amenable to discovery using
genome-wide association methodology. GWAS are aimed at
identifying common SNPs with allele frequency of >5% based
on the common variant-common disease hypothesis of disease
pathogenesis. These genetic polymorphisms may individually
only modestly increase the risk of disease. However, there is
increasing evidence that accumulation of rare variants may
have a larger impact on complex disease than first thought,
and may be responsible for the as yet unaccounted for genetic
contribution to some common complex diseases. Recent
identification of a rare penetrant variant in AMD as an
example [24]. Such variation will be detectable by new
methods in next generation sequencing which allows genetic
variation to be cataloged for all genic regions or the whole
human genome. The genetic variants accounting for the
remaining heritability of POAG may be more suited to
detection by this type of study. There are also several ocular
traits (sub-phenotypes), relevant to POAG diagnosis and
disease progression, which have been associated with genetic
variation in the population and in the POAG subgroup. There
appears to be a complex interplay between genes involved in

Figure 2. A Manhattan plot of the discovery sample GWAS results. This Manhattan plot shows the results of the discovery sample GWAS
for all autosomes. Results are plotted as –log10 of the p-value. The top two results are circled, on chromosome 6 and chromosome 16. No
other SNPs reach a stringent genome-wide significance level of 10-8. This plot was produced using Haploview.
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eye development and maintenance, which are also involved
in susceptibility to the common form of glaucoma (POAG)
[25].
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Appendix 1. Multi-dimensional Scaling (MDS) plot of ethnicity clustering.

POAG cases and WTCCC2 controls are plotted along
with HapMap phase3 data. Ethnic groups cluster together and
the POAG and WTCCC2 samples cluster together with the
HapMap CEU (Utah residents with ancestry from northern
and western Europe) and the TSI (Toscans in Italy) samples.

The red squares with a white cross labelled ‘Remove’ are
samples that fell away from the main cluster and were
removed from analysis. To access the data, click or select the
words “Appendix 1.” This will initiate the download of a
compressed (pdf) archive that contains the file.

Appendix 2. Supplementary methods.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 3. QQ plot of autosomes.

To access the data, click or select the words “Appendix
3.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 4. All SNPs tested in replication cohort with p-values and
frequencies for discovery and replication data, and direction of effect for
the quantitative traits.

Grey cells highlight known genes and significant
replication results. To access the data, click or select the words

“Appendix 4.” This will initiate the download of a compressed
(pdf) archive that contains the file.
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