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Abstract

In the article a virus transmission model is constructed on a simplified social network. The

social network consists of more than 2 million nodes, each representing an inhabitant of Slo-

venia. The nodes are organised and interconnected according to the real household and

elderly-care center distribution, while their connections outside these clusters are semi-

randomly distributed and undirected. The virus spread model is coupled to the disease pro-

gression model. The ensemble approach with the perturbed transmission and disease

parameters is used to quantify the ensemble spread, a proxy for the forecast uncertainty.

The presented ongoing forecasts of COVID-19 epidemic in Slovenia are compared with

the collected Slovenian data. Results show that at the end of the first epidemic wave, the

infection was twice more likely to transmit within households/elderly care centers than out-

side them. We use an ensemble of simulations (N = 1000) and data assimilation approach

to estimate the COVID-19 forecast uncertainty and to inversely obtain posterior distributions

of model parameters. We found that in the uncontrolled epidemic, the intrinsic uncertainty

mostly originates from the uncertainty of the virus biology, i.e. its reproduction number. In

the controlled epidemic with low ratio of infected population, the randomness of the social

network becomes the major source of forecast uncertainty, particularly for the short-range

forecasts. Virus transmission models with accurate social network models are thus essential

for improving epidemics forecasting.

Introduction

The ongoing COVID-19 epidemic has revealed a major gap in our ability to forecast the evolu-

tion of the epidemic. The most common approach to simulate the epidemic dynamics is using

compartmental models of susceptible (S), infectious (I) and recovered (R) population, i.e. SIR

models [1, 2]. These are described by a system of differential equations given some predefined

parameters, such as probability of the disease transmission and the rate of recovery or mortal-

ity. Another variation of the SIR model, which is more applicable to some viral diseases, is a

SEIR model, which accounts also for the exposed (E) population, representing infected but less

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0238090 August 27, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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infectious subjects or subjects not infectious at all [3]. The SEIR model is often combined with

activation functions to smoothly model social factors affecting virus spread and the disease

progression.

A major setback of the deterministic epidemic models is that they are only suitable for suffi-

ciently large populations with large number of infectious subjects, in which case the assump-

tion of random mixing and homogeneous spread of the virus is valid [4]. However, for

coronaviruses including SARS-CoV-2, there is evidence that some infectious cases, the so

called superspreaders, spread virus more than others [5, 6]. Their role is of the utmost impor-

tance when the population of infectious is small, i.e. in the initial uncontrolled phase of an epi-

demic and in its final controlled phase. In these cases, the deterministic SEIR models are

unable to properly describe the intrinsic uncertainty of the epidemics forecast related to het-

erogeneous connectivity of the social network and to heterogeneous disease progress of the

infected population.

In order to account for the superspreading nature of the new coronavirus (SARS-CoV-2)

and to properly estimate the forecast uncertainty, we use network-based approach to simulate

the virus spread. The simplified social network consists of more than 2 million nodes with a

total of up to 20 million undirected connections, representing the population of Slovenia and

the contacts of its inhabitants, with realistic distinction between household and outer contacts.

Despite being computationally more expensive, the advantage of the network approach is that

it allows direct simulation of intervention measures, contact-tracing strategies and other strat-

egies of the the virus containment [7, 8] as well as the lockdown-exit strategies.

The network epidemiology research has heavily advanced in the last three decades [8]. A

variety of different network types has been developed [9], however the breakthrough of social-

network approaches has been halted by the insufficient social data and epidemiological data

which would allow to verify different assumptions in the generation of social networks [10].

An exception to this includes studies, where the social network was generated based on the

comprehensive contact survey data [11, 12]. Nevertheless, network models have often been

criticised for the large number of parameters they require [13].

In this study, we perform an ensemble-of-simulations of the virus spread over the social

network. Since the network is randomly generated in each simulation, the evolution of the epi-

demics will differ between simulations. Different nodes are infected at initial time, while each

simulation also uses different virus transmission parameters and disease progress parameters,

which are perturbed according to their known distributions. This approach allows to estimate

the uncertainty of the epidemic forecasts in the case of controlled epidemic and uncontrolled

epidemic. To our knowledge, no study has ever compared the impact of network perturba-

tions, transmission parameters perturbations and other perturbations on the uncertainty of

the epidemic forecast.

The article is organised as follows. Methodology section describes the social network

model, the virus transmission model and the coupled disease progression model. The probabi-

listic ensemble forecast of the COVID-19 epidemic for Slovenia and the contribution of differ-

ent model components to the total forecast uncertainty are described in section Results,

followed by the Discussion, conclusions and further outlook.

Methodology

Social network model

The social network model of the population of Slovenia distinguishes household connections

and connections outside households. A total of N = 2045795 nodes is used in the social net-

work. The number of k-person households is given in Table 1 and is based on the data of
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Statistical Office of Republic of Slovenia [14]. There are approximately 100 elderly care centers

in Slovenia with a total of approximately 20000 residents. Each elderly care center is assumed

to include 8 distinct groups of 25 people. Average household/care group consists of 2.5 people

in Slovenia so the average number of contacts per person within household is 1.5.

In normal conditions, contact number distribution follows power law with fat tails [15],

which are associated with superspreader events, e.g. large public gatherings such as sport and

cultural events. However, since all public events are canceled in the event of the COVID-19

epidemic, these fat tails are cut off [16] and the topology of the social network changes substan-

tially. In conditions without large public gatherings, it is reasonable to assume that certain peo-

ple still have much larger number of contacts than others. The studies of social mixing, e.g.

POLYMOD study of social interactions within 8 European countries, typically report negative

binomial distribution of the number of contacts [17, 18]. We assumed mean number of con-

tacts outside households to be 13.5 with standard deviation of 10.5. Instead of negative bino-

mial distribution, we rather use smooth gamma distribution, which resembles the shape of the

binomial distribution but has some useful mathematical properties, which will be exploited in

the continuation. Thus, we model the connectivity, i.e. the number of outer contacts per per-

son, using the gamma probability distribution, which is essentially an exponential distribution

pðx; k; yÞ ¼
1

GðkÞyk
xk� 1e� xy: ð1Þ

In this study, we use Gamma distribution with shape parameter k = 1.65 and scale parame-

ter θ = 4.08 for the initial setup in order to mimic the above-mentioned negative binomial dis-

tribution. This gives an average number of 13.5 outer contacts per person per day (Fig 1).

Together with 1.5 family contacts per person per day, the total number of contacts per person

per day is 15. Here, we assume that the average number of contacts is the same for each age

group, despite studies showing that elderly have reduced number of contacts [19]. The average

contact number per person per day varies for different countries, however a total of 15 contacts

per day is a reasonable assumption for Slovenia based on the numbers reported for other Cen-

tral European countries [18] and based on other contact surveys [11]. We also assume quasi-

static social network, i.e. only 20% of contacts are new every day, and the remaining 80% are

static. This choice is a first guess, justified by the fact that only around 20% of all daily contacts

last less than 15 minutes [18]. These can be regarded as random sporadic contacts. Distancing

measures to mitigate COVID-19 can be imposed by decreasing parameter θ, which also

decreases the average number of outer contacts (Fig 1).

Fig 2 shows an example of the connectivity change of a minimised network with 88 nodes

clustered on a circle with the real household distribution taken into account.

Table 1. Households size distribution in Slovenia.

k persons in household number of k-person households

1 269898

2 209573

3 152959

4 122195

5 43327

6 17398

7 6073

8 3195

https://doi.org/10.1371/journal.pone.0238090.t001
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Technically, we connect the graph in the following way:

1. number of outer contacts for each node is randomly drawn from Gamma distribution (Eq

1). If node i has xi = 0.33 contacts per day, it means that it will have 0 contacts 2/3 of the

time and 1 contact 1/3 of the time of the simulation;

2. for each node i, we randomly assign the connections to xi other nodes, where xi is the num-

ber of contacts of node i. However, not every node has the same probability of being picked

as a neighbour. Node j, which has xj contacts, is picked as a neighbour with probability

xj N(xj)/T, where N(xj) is the number of nodes with xj contacts and T is the total number of

contacts in the network (T is twofold the number of connections). Sampling over Gamma

distribution (Eq 1) gives us a distribution of N(x) = p(x)N. When picking the neighbours,

we actually sample the same Gamma distribution times x, i.e.

pnðxÞ ¼ pðx; k; yÞx ¼
1

GðkÞyk
xke� xy / pðx; kþ 1; yÞ: ð2Þ

3. The shape of the social network is changing at every timestep of the simulation (80% of con-

nections static, 20% changing) to account for random sporadic contacts. (a) The number of

contacts of node i is fixed (randomly jumps between bxic and dxie based on the value of xi).
For example, if a node has 0.33 contacts per day, 1 contact is picked with probability 1/3

and 0 contacts with probability 2/3. (b) The social network is partially rewired at every time

step to account for superspreaders mobility.

Fig 1. Distribution by the number of contacts. Number distributionN(x) = p(x)N by the number of contacts in the social network

model. The black graph shows the assumed distribution of people with a given number of outer contacts in a normal, non-epidemic

phase, while the red graph presents reduced number of outer contacts in the case of a social distancing measures.

https://doi.org/10.1371/journal.pone.0238090.g001
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An important advantage of our network approach is that the nodes are not connected ran-

domly through “half-links” (directed connections linking egos to their contacts, the alters),

such as in the vast majority of modelling studies, where the who-acquires-infection-from-

whom matrices were constructed based on the egocentric data [9, 11]. Instead, nodes are fully-

linked.

Compartments. Similarly as in the deterministic SEIR model, we divided the population

into following compartments: susceptible, infected (exposed), infectious and recovered. The

latter are assumed to be immune at least for the time period of the simulation. In the network

model, a susceptible node becomes exposed (infected) with a certain probability (called an

attack rate) when it is in contact with an infectious node. After a certain period of time

(defined in the continuation), the infected node progresses into infectious state. In the accor-

dance with the chosen compartmental division, the state of each mode is updated at every time

step.

Virus transmission model

Reproduction number R0. The basic reproduction number R0 provides information on

the average speed of virus transmission in an uncontrolled phase of the epidemic. Different

methodologies produced different results, however the majority of reported R0 for SARS--

CoV-2 is within 2 and 4. Here, we use median reported R0 from a number of studies, as well as

its median confidence intervals, i.e. R0 = 2.68 (95% confidence interval (CI) 2-3.9). This

approach is not the optimal one, since we are trading accuracy for precision. The published R0

values as well as our deduced R0 distribution is shown in Fig 3a and 3b. The optimal log-nor-

mal distribution should thus match the following conditions: CDFðRL
0
; m; s;DxÞ ¼ 0:025,

CDFðRU
0
; m;s;DxÞ ¼ 0:975, and median(CDF) = exp(μ) = R0, where RL

0
and RH

0
are lower and

Fig 2. Social network connectivity. Connectivity of the social network ofN = 88 nodes for a) densely connected graph, where each node has on average

15 contacts per day (1.5 family and 13.5 outer contacts, θ = 22.5) and b) sparsely connected graph, where each node has on average 2.5 contacts per day

(1.5 family and 1 outer contact). Red dots are nodes, blue lines represents household connections and black lines outer connections. The graph

represents a minimized version of the social network used in the virus spread simulation.

https://doi.org/10.1371/journal.pone.0238090.g002
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upper boundaries of R0, CDF stands for log-normal cumulative distribution function. Then,

we define a quadratic cost function, which includes all the above criteria, and by minimizing

it, we obtain the optimal parameters for log-normal distribution: Δx = 0.36 and σ = 1.14.

Attack rate. In general, the basic reproduction number R0 can be decomposed into the

secondary attack rate times the number of contacts. The secondary attack rate (SAR) is defined

as the probability that an infection occurs among susceptible people within a specific group

(i.e. household contacts or other contacts outside households). The measure can provide an

indication of how social interactions relate to the transmission risk. We can further decompose

the R0 into the household risk of infection and outer risk of infection [31]

R0 ¼ SARhNh þ SARcNc; ð3Þ

where SARh and SARc are secondary attack rates within household and outside household

(outer contacts), respectively. Nh and Nc are the numbers of household contacs and outer con-

tacts. Here, one must notice that the above estimation of SARh assumed homogeneous mixing,

Fig 3. Basic reproduction number and secondary attack rate. a) Basic reproduction number R0 (median and 95% confidence interval), reported in a

number of studies for different locations [20–30] and references therein. b) Log-normal probability density function of the basic reproduction number,

used for ensemble simulations. c) Probability distribution of secondary attack rates for household contacts and outer contacts.

https://doi.org/10.1371/journal.pone.0238090.g003
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while the network model is heterogeneous with

R0 ¼ SARh hNhi þ
VarðNhÞ

hNhi

� �

þ SARc hNci þ
VarðNcÞ

hNhi

� �

; ð4Þ

where h�i denotes mean and Var(�) denotes variance of the distribution of the number of con-

tacts. To be consistent with [31], we stick with formulation (3).

The study of Liu et al. [31] suggests SARh value of 35% (95% CI 27-44%) for SARS-CoV-2.

The distribution of R0 is given in the previous paragraph. It holds: SARc = (R0 − SARh Nh)/Nc.
This gives a transmission efficiency of SARc = 16% (95% CI 10.8-25.1%), in line with the recent

estimate of the COVID-19 outbreak in an Israeli high school [32]. Fig 3c shows probability dis-

tributions of secondary attack rates as used in the ensemble of simulations.

If the social infectious period is Tinf� 5 days (check Infectious period), we can assume

that the daily risk of getting infected from a certain household member is SARh,daily where

1 � ð1 � SARh;dailyÞ
Tinf ¼ SARh and

SARh;daily ¼ 1 � exp
ln ð1 � SARhÞ

Tinf

 !

ð5Þ

being equal 8.3% (95% CI 6.1-10.9%). Similarly, we compute SARc,daily = 3.4% (95% CI 2.3-

5.6%).

Some studies have concentrated only on the symptomatic secondary attack rates and have

shown relatively smaller numbers: 0.45% (95% CI 0.12%-1.6%) among all close contacts and

10.5% (95% CI 0.12%-1.6%) among household members [33]. However, these numbers cannot

reproduce the reported R0 between 2 and 3.9 with any realistic number of contacts. Another

study shows similar attack rates to what we use here [34].

The attack rate affects the virus transmission as follows. At each timestep of the simulation

(every 1 day), the susceptible contacts of each infectious individual are randomly infected with

probability SARh,daily or SARc,daily, depending whether the contact occurs within household or

outside it.

Disease progression model

A simplified sketch of the disease progression model is shown in Fig 4a. When a certain indi-

vidual (node) gets infected, incubation period starts and several days will pass until the symp-

tom onset (for symptomatic infection). The majority of the infected people recovers at home/

elderly care centers, some cases with fatal outcome are only given palliative care, while certain

individuals are admitted to hospital in the following days. Several outcomes are possible:

recovery after normal hospitalisation, recovery after intensive care unit hospitalisation, and

death. Note that for every node, the illness evolves differently (according to one of the above

scenarios) and based on the probability distributions described in the following subsections.

Case fatality ratio. The baseline case fatality ratio (CFR), i.e. the fatality ratio among all

positively tested, is assumed 1.38% (CI 1.23-1.53%) [35, 38], similar to the estimate for South

Korea [39]. Dividing deaths-to-date by cases-to-date leads to a biased estimate of CFR, called

naive CFR (nCFR) as the delays from confirmation of a case to death is not accounted for, as

well as due to under-reporting of cases and even deaths. The reported numbers agree with

recently published study for symptomatic case fatality ratio in China [40].

Infection fatality, intensive care and hospitalisation ratios. Infection fatality ratio (IFR)

estimates are based on the study of [35], which reported IFR of 0.66% with 95% confidence

interval 0.4% to 1.3%. These estimates are consistent with IFR estimate on Princess Diamond
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Cruise ship, when demographic differences are accounted for [41]. In Imperial College report

on COVID-19 [42], these numbers have been also adjusted for the non-uniform attack rate

and UK demography. The authors obtained age-stratified IFR estimates by adjusting their

CFR estimates using COVID-19 prevalence data for expatriates evacuated from Wuhan. This

approach involves very large uncertainties. Furthermore, [35] collected data from patients who

were hospitalised in Hubei, mainland China, where median age is 37.4 years while median age

in Slovenia is 44.5 years. Study reported a strong age gradient in risk of death. We have applied

those age-stratified estimates to the Slovenian population. Performing an age-stratified

weighted average, we compute the total IFR of 1.16% (95% CI 0.63-2.22%). Similar total IFR

was reported by a comprehensive study for Italy (1.29%, 95% CI 0.89-2.01%) [43]. On the

other hand somewhat lower IFR (0.95%, 95% CI 0.47-1.70%) has been estimated for Lombar-

dia with the lower bound of 0.65%, consistent with 0.58% lower bound for Bergamo province

[44]. A bit higher IFR of 1.6% (95% CI 1.1-2.1%) was reported in another study, while a thor-

ough meta-analysis of IFR estimates was done by [45].

Analogously as for IFR, we compute the average hospitalisation rate of 6.37% (95% CI 3.8-

13%) based on [35]. Slightly lower age-dependent hospitalisation rates were estimated for

COVID-19 patients in USA [46], which adjusted for demography of Slovenia (but not

Fig 4. Assumed COVID-19 illness evolution. a) A simplified sketch of illness evolution. b) Infection fatality ratio distribution and infection

hospitalisation ratio distribution for ensemble simulations. Computed based on data from [35]. c) Incubation period and illness onset to hospitalisation

distribution for COVID-19 patients [36]. d) Mean distribution of hospital admission to death, hospital admission to hospital leave for severe and for

non-severe illness [36, 37].

https://doi.org/10.1371/journal.pone.0238090.g004
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accounting for non-uniform attack rate) gives hospitalisation ratio of 3.97%. The latter result

better coincides with the observed number of hospitalisations in Slovenia. No interval estimate

is given, thus we use the same relative error as given by [35]. The final hospitalisation ratio is

thus 3.97% (95% CI 2.37-8.10%). We assume that roughly one fourth to one third of all hospi-

talised cases are admitted to ICU [47], despite some studies showing smaller proportions [48].

We assume that one half of cases admitted to intensive care unit (ICU) are fatal [49].

Taking into account infection fatality ratio, hospitalisation ratio and ICU admission ratio, it

follows that roughly one half of all deaths occur at home/elderly care center/palliative care cen-

ter, which agrees with the present data for Slovenia [50]. Note that for simplicity, we have

assumed uniform attack rate across all ages, despite studies showing that working population

is most likely to get infected [51, 52]. Using the minimization procedures, we obtain parame-

ters of log-normal distribution which best fits both values and their 95% confidence interval

(Fig 4b).

Incubation period—Infection to illness onset. Mean incubation period is taken to be 5

days (95% CI 4.2-6.0 days), while the 95th percentile of the distribution was 10.6 days (95% CI

8.5-14.1 days) and 99th percentile 15.4 days (99% CI 11.7-22.5 days) [36]. Similar numbers

were reported in earlier studies with less patients included [24, 53–55]. Log-normal distribu-

tion is used to describe the distribution of incubation period among nodes. However, the

parameters of the lognormal distribution also vary for every ensemble member, according to

their uncertainty. Incubation period distribution and other outcome parameters are shown in

Fig 4c.

Infectious period. The infectious period is not yet well defined. A small study from Ger-

man cohort of only 9 patients with mild clinical courses showed that viral shedding was high

during the first week of symptoms and peaking at day 4 [56]. Another study from Singapore

reported seven clusters in which virus was transmitted from a COVID-19 patient before

experiencing symptoms. According to the authors pre-symptomatic transmission occurred 1-

3 days before symptoms onset [57]. We have therefore estimated latent (non-infectious) period

of 2.5 days and infectious period to start 2.5 days before the completion of incubation period

(average incubation period is estimated at 5 days). Thus, we assume 2.5 days of pre-symptom-

atic transmission. Slightly larger numbers (2.55 days for Singapore and 2.89 days for Tianjin,

China) were reported by [58].

The infectious period likely ends around 5 days from symptoms onset, so the total period of

infectiousness lasts Tbioinf� 7 days. Note however that none of the interval boundaries are

known exactly. Determining its final boundary is especially challenging, as it depends on the

social factors as well, e.g. whether the infected cases are able to self-isolate from surroundings

and how strictly they follow the self-isolation order. Here, we assume strict (100%) self-isola-

tion and use a social infectious period of Tsocinf = 5 days. It starts 2.5 days (95% CI 1.5-3.5 days)

after infection and ends 2.5 days after incubation (95% CI 1.5-3.5 days) as the case ascertain-

ment typically occurs 2 days after symptoms onset [59]. The infectious period fall in line with

study of [34]. It also falls in line with the reported proportion of pre-symptomatic transmission

(representing half of infectious period) being 48% for Singapore, 62% for Tianjin, China [60]

and 44% for 77 infector-infectee pairs in Gaungzhou, China [61].

Illness onset to hospitalisation or home recovery. From the illness onset on, there are

two possible recovery pathways: home recovery/death or hospitalisation (Fig 4c). Home recov-

ery period for mild cases has not been documented officially but is reported to be within one

and two weeks. Since it does not affect the hospitalisation statistics, we here assume it to be

log-normally distributed with mean period of 10 days.

Based on the clinical study of [36], mean illness onset to hospital admission period is 3.9

days (95% CI 2.9-5.3 days), with median of 1.5 days (95% CI 1.2-1.9 days), 5% percentile at 0.2
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days (95% CI 0.1-0.3 days) and 95% percentile at 14 days (95% CI 10.3-20.1 days). Only the

distribution of data for living patients is accounted for, since we now understand the severity

of the illness.

Hospital admission to recovery or death. Hospital admission to death median (mean)

length is assumed 6.7 (8.6) days long (Fig 4d). Only slightly longer periods were reported by

[62] with mean length of 10.1 days. Hospital admission to recovery is on average longer than

hospital admission to death. The median hospitalisation length is 11 days (95% CI 10-13) for

non-severe cases and 13 days for severe (95% CI 11-17) [36]. Both are log-normally distrib-

uted. For ensemble computations, their medians are further log-normally distributed accord-

ing to their respective confidence intervals. Similar numbers were reported by [63] with 11 day

(95% CI 7-14) mean hospital length of stay and 8 day (95% CI 4-12) mean ICU length of stay.

Fatality ratio of severe cases in need of intensive care is reported to be around 50%. We

assume fatality ratio of severe cases without intensive care to be normally distributed with

mean of 90% (95% CI 85-95%). Fatality ratio of severely ill without oxygen is assumed to be

10% (95% CI 5-15%).

Initial condition

The initial condition for the simulation is defined for March 12, 2020. To that day, there were

131 symptomatic cases who tested positive in Slovenia, 8 days after first positive case, which

implies an anomalously low doubling time of τ = 1.23 days. This number is case specific as

there was winter holiday in Slovenia at the end of February and beginning of March. Thus, lots

of cases were imported from Northern Italy (including Lombardy). Other studies typically sug-

gest a doubling time of around 5 days (95% CI 4.3—6.2) in the initial uncontrolled stage of the

epidemic [64]. Smaller values of around 3.5 days in most of Western Europe [65]. Thus, our

choice is doubling time of Tdouble = 3.5 days (95% CI 2.5-4.5 days) for the period before March

12.

Different numbers of actually infected people were suggested in the media reports, ranging

from 5 to 20 times the number of reported positive cases. Given the average incubation period

of 5 days + (2 days for case ascertainment) and doubling period of 3.5 days, factor 2
Tincþ2

Tdouble ¼ 4

applies. Furthermore, the proportion of asymptomatic cases is around 18% based on the data

from Diamond Princess Cruise Ship [66] (mostly older people) and around 33% based on the

more recent study [67]. Population screening tests from Iceland reported 41.6% of all who

tested positive, did not experience any COVID-19 symptoms [68]. Similar asymptomatic ratio

of 43.2% (95% CI 32.2-54.7%) was reported also from a screening study conducted for the Ital-

ian town Vo [69]. Another study on the homeless population in Boston reported even larger

proportion of asymptomatic cases [70]. The model-driven study of [71] found that 74% (95%

CI 70-78%) of SARS-CoV-2 infections proceeded asymptomatically, raising also doubts about

the assumed IFR. However, in this study, we opt for 40%, normally distributed with standard

deviation of 10%. Furthermore, we double the value to account for the initial under-reporting

of symptomatic cases, estimated by [22]. All together, this results in almost 1800 infected peo-

ple in Slovenia by March 12.

Based on the exponential growth in the initial stage of the epidemic and known incubation

period, we randomly generate the infection length of the patients with exponential distribution

with shape factor of Tdouble/log2, so that 131 develop symptoms and are ascertained by March

12. Initial distribution of 1780 infected people by the time-length of their infection is shown in

Fig 5. Note that in reality, due to many imported cases, the actual infection-time distribution

may be slightly different.
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Ensemble of simulations

Ensemble of simulations allows to estimate the uncertainty of the epidemic forecasts and to

infer confidence in those predictions. There are two levels of perturbations in the ensemble: 1)

at the start of each simulation, we perturb parameters, which govern the probability distribu-

tions of all model parameters. Thus, each simulation has slightly different probability distribu-

tions of its parameters. 2) each node in the network has its own transmission probability based

on its number of contacts and each node has its own disease progression drawn from the asso-

ciated probability distributions.

The uncertainty is associated with the impact of the intervention-measures on the social

network connectivity and the uncertainty attributed to the intrinsic (internal, natural) model

uncertainty. The latter can be further divided into:

1. social network uncertainty associated with randomized connections,

2. initial condition uncertainty as random nodes are infected,

3. virus transmission dynamics uncertainty which stems from the uncertainty of parameters,

described in Virus transmission model,

4. disease progression model uncertainty due to the uncertainty of parameters, described in

Disease progression model.

In Slovenia, the intervention measures were imposed at several time instances between

March 13 and March 30 [72]. Their impact is assessed as follows. First, we perturb the social

network connectivity (by perturbing the scale parameter θ in the Gamma distribution of the

number of contacts, Eq 1) at the time instances, when intervention measures took place. Then

we measure the discrepancy of each simulated run from the observed evolution of the number

Fig 5. Distribution of infected by the time since their infection. Distribution of 1780 infected people on March 12, 2020, in

Slovenia, by the time passed since their infection.

https://doi.org/10.1371/journal.pone.0238090.g005
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of hospitalised patients (H), patients in intensive care unit (ICU) and fatal cases (F), using the

cost function

J ¼
XN

i¼0

ðj log yICUðtiÞ � log xICUðtiÞj þ j log yFðtiÞ � log xFðtiÞj þ j log yHðtiÞ � log xHðtiÞjÞ: ð6Þ

Logarithms are used to weigh equally the initial and later phase of the pandemic, as the

number of infected varies by several orders of magnitude.

The final probabilistic forecast only consists of those ensemble members, for which the cost

function J is minimal. In practice, an ensemble of 1000 perturbed simulations was computed.

Among all simulations, only 10% of simulations with smallest J is used to generate the final

probabilistic forecast. The described data assimilation approach allow us to estimate both the

impact of the intervention measures as well as the changes in the distribution of parameters.

Exclusion experiments

We perform exclusion experiments to assess the contribution of the above-mentioned model

components uncertainty to the total forecast uncertainty. For example, to estimate the contri-

bution of the randomized social network to the total forecast uncertainty, we run an ensemble

of simulations with the same social network, i.e. we exclude the social network perturbation.

The proxy for forecast uncertainty is the relative spread, i.e. the spread of the forecast

ensemble, divided by the median value of the forecasts at each time instance. As the spread is

approximately symmetric on the logarithmic axis for phenomena with exponential dynamics

[73], we compute the relative spread as:

RSðtÞ ¼
logP75ð~xðtÞÞ � logP25ð~xðtÞÞ

logmedianð~xðtÞÞ
; ð7Þ

where P75 and P25 indicate 75th and 25th percentiles of population~x at time t.

Results

Prediction for Slovenia issued on May 5, 2020

Every day, new data is used to correct the COVID-19 forecast. Fig 6 shows an example of the

ensemble prediction issued on May 5, 2020, simulated from the initial condition on March 12,

2020. The shown forecast is issued in the already declining stage of the epidemic and assumes

ongoing intervention measures. Fig 6a shows 100 members (out of 1000), whose evolution

least deviates from the observed data. Fig 6b shows the associated probabilistic forecast. The

infectious population has the largest uncertainty relative to its value, however the number of

infectious is not constrained by any measurements. Thus, its relative uncertainty roughly

reflects the uncertainty in the hospitalisation, ICU and IFR ratios. The total number of infected

to date approaches 11000 people (90% CI 7000-17000), in line with the estimate of the under-

reporting of symptomatic cases (only 17% of cases reported) at the time [41] and the estimated

asymptomatic ratio of coronavirus infections [69].

In April 2020, a National COVID-19 prevalence survey has been completed, which reported

2 actively infected out of 1367 tested (prevalence 0.15%, 95% CI 0.03–0.47%) [74] and 41 posi-

tive for coronavirus antibodies out of 1318 tested (3.1% prevalence, 95% CI 2.2-4%) [75]. How-

ever at the time, the survey added little extra information to better constrain the forecast. First,

the number of actively infected is associated with large confidence interval, and second, the

antibody tests have significant false-positive rate and varying sensitivity [76]. Accounting for
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Fig 6. Forecast of COVID-19 epidemic in Slovenia. Forecast of COVID-19 epidemic in Slovenia issued on May 5, 2020 and comparison with real

data. a) 100 ensemble members which best fit the observed data (dots) are shown. b) Probabilistic forecast: median value, interquartile range (50%;

25th-75th percentile) and 90% range are shown.

https://doi.org/10.1371/journal.pone.0238090.g006
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the latter, the posterior estimate of the SARS-CoV-2 seroprevalence was later estimated at

0.8% (95% CI 0-2.8%) [77].

In the social network model, the current reproduction number R can be directly measured.

For each infectious node, we count the number of nodes it infects. Then we assign the counts

to the time instance corresponding to the end of the infectious period. Fig 7 shows the repro-

duction number falling below 1 on March 20, 2020, which marks the transition into decaying

stage of the epidemic. Current estimate of R is at around 0.75, in line with the recent estimate

for Slovenia of [72]. Fig 7 also shows that the infection is currently much more likely to trans-

mit within households than outside households. If the current intervention measures continue,

the reproduction number would start to rapidly decline at the end of May without any extra

intervention measures, which indicates effective virus containment when the virus would be

transmitted only within some of the household clusters.

The members of the ensemble, which minimize the cost function, can also be used to

inverse estimate the posterior distribution of clinical parameters, such as hospitalisation ratio,

ICU ratio, ratio of severe infection, and IFR, as well as disease progress parameters such as the

probability distribution of the time-span of hospital admission to death. For example, accord-

ing to Fig 8a, the true hospitalisation rate is slightly smaller than the first guess, while the infec-

tion fatality rate is 0.1% higher in the posterior analysis. As another example, Fig 8b shows that

the posterior estimate of the mean hospital admission to death duration is 7.5 days, half a day

longer than the first guess estimate. This inverse technique was also used to estimate the

impact of intervention measures on the social network connectivity. However, at the time,

virus transmission parameters and some disease progress parameters (e.g. IFR) could not be

constrained due to the lack of reliable data on the infectious population and total infected

population.

Fig 7. Effective reproduction number. Evolution of the estimated effective reproduction number R(t), decomposed into

reproduction number associated with household transmission and transmission outside households. The shaded regions

indicate the interquartile ranges.

https://doi.org/10.1371/journal.pone.0238090.g007
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Forecast uncertainty decomposition

Using the exclusion experiments, we evaluated the contribution of different epidemic model

components to the total forecast uncertainty of the total number of infected and infectious

population. For instance, the ensemble experiment where the social network and the initial

condition are fixed (not perturbed) is termed NONET, the experiment without virus transmis-

sion dynamics perturbation is called NOTRANS, while the experiment without disease pro-

gression model perturbation is named NODIS.

We perform exclusion experiments for two different cases: uncontrolled epidemic and

controlled epidemic with intervention measures and low infected population. The results

are shown in Fig 9. We observe, that in the uncontrolled epidemic, the forecast uncertainty

is most reduced when the transmission dynamic parameters are not perturbed (experiment

NOTRANS in Fig 9a and 9b). This also reduces the uncertainty in the epidemic peak and

later stages of the epidemic. Fixing disease progression parameters (such as ratio of asymp-

tomatic infections and duration of infectiousness) also significantly reduces uncertainty

(experiment NODIS). Fixing initial condition and social network structure reduces the

uncertainty only in the initial stage of the epidemic (until around day 10), when the number

of infected individuals is small (experiment NONET) and homogeneous mixing is an

invalid assumption. In the later stage, the uncertainty becomes similar to the basic experi-

ment with all parameters perturbed (experiment ALL). These experiments indicate that the

largest contributor to the forecast uncertainty in the uncontrolled epidemic is virus trans-

mission dynamics.

In the controlled epidemic with low number of infected, though, fixing the social network

and initial condition (NONET, Fig 9c) reduces the forecast uncertainty the most (the impact is

amplified again in the initial stage), followed by fixing the disease progression parameters,

with the impact amplified again in the early part of the simulation. This suggests that the struc-

ture of the network and the initial distribution of infected nodes drastically affects the evolu-

tion due to heterogeneous mixing and randomized irregular social network. The result

suggests that the epidemic forecast can be improved (i.e. its uncertainty decreased) the most

by constructing a more realistic model of our social network.

Fig 8. Prior/posterior distributions of disease outcome ratios. a) Prior and posterior distributions of hospitalisation ratio, intensive care unit (ICU)

ratio, ratio of severe symptoms (requiring hospitalisation), and infection fatality ratio (IFR). b) The probability distribution of the duration of hospital

admission to death.

https://doi.org/10.1371/journal.pone.0238090.g008
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Discussion, conclusions and further outlook

In this study, we have developed a virus transmission model on the simplified social network

of Slovenia with 2 million nodes organised into home/care center clusters. A detailed disease

progression model is coupled with the virus transmission model. The model probabilistic pre-

diction has been regularly updated on Sledilnik webpage [50] since the end of March and is

occasionally communicated to the Expert Group that provides support to the Government of

the Republic of Slovenia for the containment and control of the COVID-19. The model soft-

ware is available in S1 File.

We have developed a simple data assimilation procedure, which minimizes the cost func-

tion measuring the deviation from the observed ICU, hospitalisation and fatality values. The

procedure constrains the forecast trajectories closer to the observed values, while it also con-

strains the model parameters. Our approach somewhat mimics the established variational data

assimilation (DA) approach in Numerical Weather Prediction (NWP) [78, 79]. Several others

have utilised variational DA in epidemiology [80], ensemble DA [81] with Ensemble Adjust-

ment Kalman Filter [82]. Most recently, a comprehensive assessment of the COVID-19

Fig 9. Relative forecast spread. Relative forecast spread, measured by Eq 7, for uncontrolled epidemic (a,b) and controlled epidemic with low number

of infected (c,d), as shown in Fig 6. The basic experiment with all parameters perturbed is termed ALL. NONET stands for no social network and initial

condition perturbation, NOTRANS stands for no transmission dynamics parameters perturbations, while NODIS means no disease progress model

parameters perturbations.

https://doi.org/10.1371/journal.pone.0238090.g009
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pandemic was performed using iterative ensemble smoother [83]—the ensemble smoother

with multiple data assimilation [84].

An indispensable part of the prediction is its uncertainty. In this study, we evaluated the

contribution of the virus transmission uncertainty (e.g. reproduction number and its deriva-

tives), network and initial condition uncertainty and uncertainty of the disease progress model

to the total uncertainty of the epidemic forecast. We found that in the uncontrolled epidemic,

the intrinsic uncertainty mostly originates from the uncertainty of the virus transmission,

while the randomness of the social network has only minor impact of the final size of the epi-

demic. The latter is in line with a study, where the social network was constructed based on

extensive contact survey data, and which reported only minor impact of reshaping the network

structure or removing the variance of connection weights on the final size of the epidemic. On

the opposite, in the controlled epidemic with low infected population, the randomness of the

social network becomes the major source of forecast uncertainty. We also show, that the

uncertainty of the forecast and the associated risk is extremely asymmetric (roughly symmetric

on a logarithmic axis) with long exponential tails, reaching a similar conclusion to the recent

study of [73].

There are some limitations of our model which reduce its predictive ability and its useful-

ness to simulate the impact of intervention measures in advance. Our social network model is

too simplified: the connections among nodes outside households are quasi-static in time, but

have no realistic topological structure. Thus, the average clustering in our network model is

most likely too low, as in the real-world social networks people typically interact within

densely connected social groups [11]. In the real-world social networks, some connections are

more risky than other, while our model does not account for that by e.g. weighting the network

connections. Furthermore, regional work/education clustering based on work/education

mobility data is not included in the present social network. The nodes do not have attributions

such as age, sex or employment status and the social mixing data [18, 52, 85, 86] is not

accounted for yet. Given the high attack rate within households, the social mixing within

households is of special importance, thus it is also vital to include the age-distribution of the

residents of different household sizes. A more sophisticated treatment of the secondary attack

rate is also needed, for example the infectiousness could be modeled as a function of time [61,

87]. Further work should alleviate some of the mentioned limitations to allow more robust

simulation of the intervention measures.

The ongoing COVID-19 epidemic has revealed a major gap in our ability to forecast the

evolution of the epidemic. No operational center for infectious disease prediction, similar to

those employed for the weather predictions (e.g. European Centre for Medium-Range Fore-

casts or National Center for Environmental Prediction), exists, despite the gigantic societal,

economical and health impact of the ongoing epidemic. While the epidemic dynamics is gov-

erned by the human social behaviour and its modeling is arguably messier than weather fore-

casting [88], a coordinated modeling effort which borrows the established methods used for

Numerical Weather Prediction (NWP) would likely improve our prediction [81]. Accurate

models of the real-world social networks are needed to realistically simulate the virus transmis-

sion dynamics. Similarly to NWP models [89], the real-time clinical patient data, mobility data

[90] and connectivity data (obtained by e.g. postprocessing the bluetooth-generated anony-

mous contact data [91]), should be rapidly assimilated into the virus spread prognostic model

[92] to evaluate the changes in contact patterns [93]. This would allow 1) to estimate the criti-

cal virus spread parameters and their uncertainty, 2) to forecast the evolution of the epidemic

more accurately and based on that forecasts, 3) to implement optimal worldwide-concerted

measures to minimize the virus spread. We should be ready for the next big pandemic!.
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Supporting information

S1 File. Model software. The core program korona_final.py is written in Python 2.7

and requires standard scipy, numpy and matplotlib. The most time-consuming proce-

dures of the software are written in Fortran 90. Python binding are created using F2PY [94]:

f2py -c generate_connections.f90 -m generate_connections.

(ZIP)
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