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Coronary artery disease (CAD) and cardiac hypertrophy (CH) are two main causes of
ischemic heart disease. Acute CAD may lead to left ventricular hypertrophy (LVH). Long-
term and sustained CH is harmful and can gradually develop into cardiac insufficiency and
heart failure. It is known that metformin (Met) can alleviate CH; however, the molecular
mechanism is not fully understood. Herein, we used high-fat diet (HFD) rats and H9c2 cells
to induce CH and clarify the potential mechanism of Met on CH. We found that Met
treatment significantly decreased the cardiomyocyte size, reduced lactate dehydrogenase
(LDH) release, and downregulated the expressions of hypertrophy markers ANP, VEGF-A,
and GLUT1 either in vivo or in vitro. Meanwhile, the protein levels of HIF-1α and PPAR-γ
were both decreased after Met treatment, and administrations of their agonists,
deferoxamine (DFO) or rosiglitazone (Ros), markedly abolished the protective effect of
Met on CH. In addition, DFO treatment upregulated the expression of PPAR-γ, whereas
Ros treatment did not affect the expression of HIF-1α. In conclusion, Met attenuates CH via
the HIF-1α/PPAR-γ signaling pathway.
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INTRODUCTION

Coronary artery disease (CAD) is one of the major cardiovascular diseases, which has been found to
be the leading cause of death in both developed and developing countries (McCullough, 2007). CAD
is an atherosclerotic disease which is inflammatory in nature, manifested by stable angina, unstable
angina, myocardial infarction (MI), or sudden cardiac death (Malakar et al., 2019). Cardiac
hypertrophy (CH) refers to the cardiac remodeling of the heart in response to various stresses
and stimuli, and it is characterized by the increase of cardiomyocyte size and the thickening of
ventricular walls (Gupta et al., 2007). CH is an adaptive response of the heart to maintain normal
cardiac efficiency and function. However, long-term and persistent CH is harmful and can result in
cardiac insufficiency and heart failure in its further development (Nakamura and Sadoshima, 2018).
CAD and left ventricular hypertrophy (LVH) are two common causes of ischemic heart disease
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(IHD), and LVH can further increase morbidity and mortality
due tomyocardial infarction. Therefore, the latest management of
both the acute and chronic phases of CAD places an increased
emphasis on controlling the predisposing factors to prevent or
reverse LVH (Khalid et al., 2021). Another study reported that in
acute anemic CAD, the hemodynamic changes found may
contribute to LVH if the anemic state persists chronically
(Rymer and Rao, 2018). Therefore, it is of great significance to
find an effective therapeutic strategy for CH and elucidate its
molecular mechanism.

Metformin (Met) has been the first-line oral anti-
hyperglycemic agent for type 2 diabetes mellitus (T2DM) for
decades (Sanchez-Rangel and Inzucchi, 2017). Met has a superior
safety profile and tolerance in T2DM treatment (Foretz et al.,
2014). In addition to its remarkable glucose-lowering effect, Met
has extra advantages in other aspects, including cancers, liver
diseases, and renal diseases (Bhat et al., 2015; Morales andMorris,
2015; Podhorecka et al., 2017; Lv and Guo, 2020), especially in the
cardiovascular system. It is worth noting that Met has a
cardiovascular protective effect on diabetic patients
independent of its blood glucose–lowering effect (Zilov et al.,
2019; Li J. et al., 2020; Mohan et al., 2021). Some studies have
shown that Met can activate AMPK and thereby resist CH by
reducing O-GlcNAcylation (Gélinas et al., 2018a; Gélinas et al.,
2018b), or AMPK activates SIRT2 to decrease aging-related and
Ang II–induced CH (Tang et al., 2017). The protective effect of
Met on CH has not been fully elucidated.

Hypoxia-inducible factor 1 (HIF-1), a transcription factor, is a
key regulator of oxygen homeostasis genes in metazoan species
(Semenza, 2014). HIF-1 binds to hypoxia response elements, and
thereafter activates the transcription of many genes, including
hematopoiesis, angiogenesis, vascular endothelial growth factor,
nitric oxide synthases, glycolytic enzymes, glucose transporters,
iron metabolism, and so on (O’Rourke et al., 1999). HIF-1
controls both oxygen delivery by regulating angiogenesis and
vascular remodeling, and oxygen utilization by regulating glucose
metabolism and redox homeostasis (O’Rourke et al., 1999). HIF-1
is a heterodimer that is composed of an O2-regulated HIF-1α
subunit and a constitutively expressed HIF1-β subunit (Wang
et al., 1995). The activation of HIF-1 is mediated predominantly
by post-translational processes of the α subunit (Huang et al.,
1996). For decades, scientists have explored the role of HIF-1α in
cardiovascular protection. For example, HIF-1 has been shown to
play a key protective role in the pathophysiology of ischemic heart
disease and stress-induced heart failure (Sousa Fialho et al., 2019);
other studies have shown that partial HIF-1α deficiency is
harmful and may lead to congenital heart defects in humans;
Gao et al., 2015 have demonstrated that when cardiomyocytes are
exposed to high glucose in vitro, HIF-1α is involved in regulating
SOX9 expression and thus effectively regulating and protecting
cardiomyocyte hypertrophy; and another study has confirmed
that HIF-1α can regulate pathological CH and participate in the
regulation of cardiac remodeling (Passariello et al., 2015). It is
reported that partial HIF-1α deficiency may be associated with
congenital heart defects in humans (Lage et al., 2012). Therefore,
studies on the protective effect of HIF-1α on cardiovascular and
cardiac functions still have conflicting results, and the mechanism

through which HIF-1α regulates HFD-induced CH in animals
remains unclear, which requires further research to clarify.

Peroxisome proliferator-activated receptor γ (PPAR-γ), an
important regulator of adipocyte differentiation and
metabolism, is a member of the nuclear receptor superfamily
(Lefterova et al., 2014). PPAR-γ is implicated in insulin sensitivity
and metabolic syndrome; therefore, studies pay attention to its
therapeutic potential in T2DM. A recent study has shown that the
PPAR-γ-PI3K/AKT-GLUT4 signaling pathway plays a role in
increasing glucose uptake and decreasing insulin resistance in
HFD-fed mice and 3T3-L1 adipocytes (Chen et al., 2019).
Meanwhile, the role of PPAR-γ has been studied in the field
of diabetic cardiomyopathy (DCM). Interestingly, the role of
PPAR-γ in DCM is controversial. Yan et al. (2018) demonstrated
that PPAR-γ activation in the heart of obese diabetic mice can
decrease heart fibrosis. On the other hand, rosiglitazone (Ros), an
activator of PPAR-γ, promoted hypertrophy in primary neonatal
rat cardiomyocytes (NRCM) (Pharaon et al., 2017). Therefore, it
is essential to further clarify the role of PPAR-γ in the progression
of CH.

The interaction between Met and the HIF-1α or PPAR-γ
signaling pathway during CH has not been reported yet. In
this study, we intend to examine the protective effect of Met
on CH and clarify whether the mechanism is related to the HIF-
1α or PPAR-γ signaling pathway.

MATERIALS AND METHODS

Animals
Male Sprague–Dawley (SD) rats weighing 180–200 g were
purchased from the Military Academy of the Medical Science
Laboratory Animal Center (Beijing, China). Room temperature
was maintained at 22–24°C and the rats were housed on a 12-h
light-dark cycle. Eighteen rats were randomly divided into two
groups, namely, the normal diet (Con, n = 6) group and the high-
fat diet (HFD) (initial HFD, n = 12) group. Rats in the Con group
received normal diet feeding and HFD rats received high-fat diet
(D12492, New Brunswick, NJ) feeding. After feeding for 28
weeks, the rats in the initial HFD group were further
randomized into the following two groups: rats treated with
metformin (30 mg/kg/day [Jaikumkao et al., 2018]) (HFD +
Met, n = 6) or without metformin (HFD, n = 6) for another 6
weeks. All rats were sacrificed on the 34th week, and the rats’
hearts, blood, and adipose tissues were collected for further
assessments. All animal experiments were performed strictly
following the guidelines on laboratory animals of Nankai
University, and were approved by the Institute Research Ethics
Committee at the Nankai University (Permit number: 10011).

Echocardiography
Left ventricle (LV) geometry and functions were evaluated in the
rats by two-dimensional (2D)–guided M-mode
echocardiography (VisualSonics Vevo 2100, 30 MHz linear
signal transducer, Visual Sonics). Averaged M-mode
measurements from parasternal long-axis images were
recorded. Interventricular septal thickness (IVS), left
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ventricular posterior wall (LVPW) dimensions, left ventricular
internal dimensions (LVID), and the left atrial volume index (LV
Vol) were taken in diastole and systole.

Quantitative Real-Time Polymerase Chain
Reaction
The protocol for qPCR was described previously (Feng et al.,
2022). Briefly, the total RNA of rats’ heart samples was isolated
using Trizol reagent (Takara Bio, Japan.). For cDNA synthesis,
1.0 µg RNA was used and the reactions were carried out using the
reverse transcription system (Promega, China). The qPCR was
performed using SYBR Green Master Mix (Promega, China) in a
Bio-Rad IQ5 detection system, and the cycle threshold (CT)
values were automatically determined in triplicates and averaged.

H-E Staining
The left ventricles were fixed with 4% paraformaldehyde for 24 h
at room temperature. The tissues were dehydrated and embedded
in paraffin. Then, 5-mm sections were cut from the paraffin
blocks and stained with hematoxylin and eosin (H-E) for
histopathological examination.

Cell Culture
The fetal rat cardiomyocyte-derived cell line (H9c2) was
purchased from Shanghai Institutes for Biological Sciences
(Shanghai, China). H9c2 cells were cultured in Dulbecco’s
minimal essential medium (DMEM, pH 7.2) supplemented
with 10% heat-inactivated fetal bovine serum (FBS), 100 U/mL
of penicillin, and 100 μg/ml of streptomycin in 95% air and 5%
CO2 at 37°C. The culture medium was changed every 2 days and
the cells were subcultured once they attained 80% confluence.

H9c2 cells were divided into five groups, namely, the control
(Con) group, palmitate treatment (Pa, 75 μM for 3 h [Yamamoto
et al., 2020], Sigma) group, deferoxamine treatment (DFO,
150 μM for 18 h [Hopfner et al., 2020], Sigma) group,
palmitate plus metformin treatment (Pa + Met, Met, 1 mM for
18 h [Zhang et al., 2018], Sigma) group, and palmitate plus
metformin and deferoxamine combination treatment (Pa +
Met + DFO) group.

In another in vitro experiment, H9c2 cells were divided into
five groups, namely, the Con group, Pa group, rosiglitazone
treatment (Ros, 100 μM for 48 h (Pharaon et al., 2017), MCE)
group, Pa + Met group, and palmitate plus metformin and
rosiglitazone combination treatment (Pa + Met + Ros) group.

Western Blot Analysis
The protocol forWestern blot analysis was described previously (Li
G. et al., 2020). In brief, left ventricle samples and cell samples were
lysed in ice-cold RIPA lysis buffer and centrifuged. The
concentration of total protein was measured by using a BCA
protein assay kit (Thermo, United States). The protein sample
(20–50 µg) was separated by 10% SDS-PAGE and then transferred
onto a polyvinylidene fluoride membrane (Merck KGaA,
Darmstadt, Germany). After blocking with 5% BSA for 2 h at
room temperature, the membranes were incubated overnight at
4°C with the following primary antibodies: HIF-1α (Cell signaling

technology, United States), PPAR-γ (Immunoway, United States),
GLUT1 (Abcam, United Kingdom), VEGF-A (Abcam,
United Kingdom), ANP, and ß-actin (Santa Cruz, CA). The
results were expressed as fold changes normalized to ß-actin.
Anti-rabbit and anti-mouse IgG with a peroxidase-conjugated
antibody were used as secondary antibodies (Promega,
Shanghai). Band densities were quantified using ImageJ software.

Immunofluorescence Staining
After drug treatment, H9c2 cells were seeded on coverslips and
permeabilized with 0.5% Triton X-100 for 15min at room
temperature, blocked with 5% goat serum for 1 h at room
temperature and incubated with appropriate primary antibodies,
ANP or α-actin (Thermo Fisher Scientific, United States),
overnight at 4°C. The samples were washed three times with
TBST followed by incubation with Alexa Fluor 488– or Alexa
Fluor 594–conjugated secondary antibodies (1:200, Cell signaling
technology, United States) for 1 h at room temperature. Nuclei
were stained with DAPI (Sigma, United States) for 2 min at room
temperature. Images were acquired with an FV1000 confocal
microscope (Olympus, Japan) and analyzed with ImageJ software.

TUNEL Staining
Terminal deoxynucleotidyl transferase-mediated nick end
labeling (TUNEL) staining in H9c2 cells was performed
according to the protocol of the TUNEL staining kit (Roche,
United States) to determine the apoptosis of cardiomyocytes as
previously described (Tian et al., 2020).

LDH and CK-MB Release
Serum lactate dehydrogenase (LDH) and creatine kinase
isoenzyme (CK-MB) activities were measured by using an
automated clinical chemistry analyzer (DRI-CHEM NX500,
Fujifilm, Japan). The LDH level in the cell culture supernatant
was determined using an LDH assay kit (Nanjing Jiancheng,
China) with a microplate reader (Thermo, China).

Statistical Analysis
Results are expressed as mean ± SEM. One-way ANOVA followed
by an LSD test was performed in the experiment (SPSS ver. 17). A
value of p < 0.05 was accepted as statistically significant.

RESULTS

Met Treatment Decreased BodyWeight, Fat
Accumulation, and Triglyceride Level in
HFD Rats
Figure 1A shows the growth curve for three different groups. We
found that Met treatment resulted in a significant weight loss in
the 34th week in HFD rats. The body weight in the HFD group is
778.2 ± 21.5 g higher than those in the Con group (679.7 ± 31.6 g)
in the 34th week, whereas Met treatment significantly reduced the
rats’ body weight (681.3 ± 13.3 g in the Met group vs. 778.2 ±
21.5 g in theHFD group) (Figure 1B). Similar to the results of body
weight, HFD rats showed higher epididymis adipose mass and
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triglyceride levels in comparison with Con rats. In contrast, Met
treatment reduced epididymis adiposemass and serum triglyceride
levels when compared with the HFD rats (Figures 1C,D).

Met Treatment Attenuated
HFD-Induced CH
All rats were sacrificed in the 34th week. The rats’ hearts were
isolated and heart sizes were measured (Figure 2A). We found
that the value of the heart weight to femur length (HW/FL) in the
HFD group was significantly higher than that in the Con group,
indicating that HFD feeding caused CH. In contrast, HW/FL was
markedly decreased in the HFD + Met group (Figure 2B).
Consistent with the aforementioned results, H-E staining also
showed that the size of cardiomyocytes in the HFD group was
larger than that in the Con group, but after the treatment with
Met, the cell size significantly became smaller in comparison with
the HFD group (Figures 2C,D). Furthermore, the mRNA levels
of two markers for CH, namely, ß-MHC and ANP, were
examined and quantified. As shown in Figures 2E,F, the
mRNA levels of ß-MHC and ANP were all elevated in the
HFD group in comparison with the Con group, whereas their
levels were significantly alleviated in the HFD + Met group.

Met Attenuated HFD-Induced LV
Dysfunction
Echocardiography was performed in the 34th week to observe CH
and assess myocardial function (Figure 3A). HFD rats showed
significant incrassation of the ventricular wall and the LVPW,
and Met treatment markedly decreased the LVPW when
compared with the HFD group (Figures 3A,B). HFD feeding

decreased the levels of LVID and LV Vol, and increased the IVS
level in comparison with normal diet feeding, while these
undesirable changes were notably improved in the HFD + Met
group (Figures 3C–E). Meanwhile, Met treatment significantly
decreased HFD-induced upregulation of the BNP mRNA level
and inhibited the release of LDH and CK-MB in serum (Figures
3F–H). These findings indicated that Met could prevent HFD-
induced cardiac LV dysfunction.

Met Inhibited HIF-1α and PPAR-γ Signaling
Pathway in HFD Rats
First, we examined the expression of ANP, a recognized marker
for CH. We found that Met treatment obviously downregulated
the expression of ANP, indicating that Met can alleviate obesity-
induced CH. To investigate howMet attenuated CH in HFD rats,
we determined the expressions of key molecules related to HIF-1α
and the PPAR-γ signaling pathway. We found that the
expressions of HIF-1α, PPAR-γ, VEGF-A, and GLUT1 were
all upregulated after HFD feeding, whereas Met treatment
reversed these upregulations (Figure 4).

Activation of HIF-1α Abolished the
Protective Effect of Met on CH in Rat
Cardiomyocytes
Palmitate (Pa) was used to mimic HFD-feeding in vitro
experiments. DFO, an agonist for HIF-1α, was added to the
culture medium to increase the activity of HIF-1α. Consistent
with the results in vivo, Pa increased the release of LDH, whereas
Met treatment significantly decreased LDH release in the culture
supernatant. Interestingly, DFO treatment significantly abolished

FIGURE 1 |Met treatment decreased the body weight, fat accumulation, and triglyceride level in HFD rats. (A)Growth curves. (B) Body weight in the 34th week for
each group. (C) Epididymis adipose mass in the 34th week for each group. (D) Serum triglyceride was measured for each group. Graphs represent mean ± SEM (n = 6).
*p < 0.05, ***p < 0.001.
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the weakening effect of Met on LDH release (Figure 5A). Next,
we performed an immunofluorescence test for α-actin to label the
cytoskeleton and ANP to reflect the degree of cardiomyocyte
hypertrophy. As shown in Figures 5B,D, the cells in the Pa group
and the DFO group revealed significant hypertrophy, which
appealed in the size of the cell and ANP fluorescence
intensity, in comparison with the Con group, whereas the cells
in the Pa + Met group maintained normal cell morphology. DFO
treatment (Pa + Met + DFO) obviously reversed the protective
effect of Met on hypertrophy (Figures 5B,D). To examine the
CH-induced apoptosis, TUNEL staining was performed in H9c2
cells. Few TUNEL-positive cells were observed in the Con group.
In contrast, numerous TUNEL-positive cells were found in the Pa
group. Met treatment significantly reduced apoptotic cells in
comparison with the Pa group and DFO treatment abolished
the protective effect of Met on cardiomyocytes (Figures 5C,E).

Activation of PPAR-γ Abolished the
Protective Effect of Met on CH in Rat
Cardiomyocytes
To further clarify whether the protective effect of Met on CH is
related to the PPAR-γ signaling pathway, an immunofluorescence

test and TUNEL staining were performed in vitro. Rosiglitazone
(Ros), an activator of PPAR-γ, was used to confirm the role of
PPAR-γ in CH. Cells in the Pa or Ros group showed significant
hypertrophy and apoptosis in comparison with those in the Con
group (Figures 6A–D). Met treatment alleviated hypertrophy and
decreased the number of TUNEL-positive cells when compared
with the Pa group, whereas the combination of Met and Ros
abolished the protective effect of Met in H9c2 cells (Figures 6A–D).

Met Attenuated CH Through the HIF-1α/
PPAR-γ Signaling Pathway
To investigate the role of the HIF-1α/PPAR-γ signaling pathway
in Met reducing CH, we upregulated the expression of HIF-1α or
PPAR-γ by using their agonists, namely, DFO and Ros in H9c2
cells, respectively.

Pa treatment significantly upregulated the expressions of HIF-
1α, PPAR-γ, VEGF-A, and GLUT1 in H9c2 cells. Lower
expressions of HIF-1α, PPAR-γ, VEGF-A, and GLUT1 were
found in the Pa + Met group in comparison with the Pa or
DFO group. In contrast, downregulations of these genes were
markedly increased in the Pa + Met + DFO group when
compared with the Pa + Met group. (Figures 7A,B).

FIGURE 2 | Met treatment attenuated HFD-induced CH. (A) Heart morphology. (B) Heart weight/femur length. (C) HE staining of heart tissue (scale bar: 50 µm).
(D) Quantification of cardiomyocyte size. (E,F) mRNA expression levels of ß-MHC and ANP. Graphs represent mean ± SEM (n = 6). *p < 0.05, **p < 0.01.
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Interestingly, treatment with Ros, an agonist of PPAR-γ,
significantly upregulated the expressions of PPAR-γ, VEGF-A,
and GLUT1 in comparison with the Con group, but did not affect
the expression of HIF-1α in H9c2 cells. We found that the
expressions of HIF-1α, PPAR-γ, VEGF-A, and GLUT1 were
downregulated after treatment with Met alone. The
combination of Met and Ros significantly increased the
expressions of PPAR-γ, VEGF-A, and GLUT1 in comparison
with the Pa + Met group, whereas the combination treatment did
not rescue the expression of HIF-1α (Figures 7C,D).

Schematic Model of This Study
Taken together, we found a new signaling pathway for the
protective effect of Met on CH. Met attenuates CH via the
downregulation of the HIF-1α/PPAR-γ signaling pathway, and
then reduces angiogenesis and glycolysis to protect the heart.

Therefore, the HIF-1α/PPAR-γ signaling pathway can be used as
a potential cardioprotective molecular target in CH.

DISCUSSION

Met has a significant anti-diabetic effect on T2DM patients with
a low price. Therefore, it is used as the first-line oral drug for the
treatment of T2DM. Met exerts therapeutic effects against
various diseases. Our group found that Met protected the
heart against ischemia–reperfusion injury through the
activation of the AMPK/antioxidant enzyme signaling
pathway (Wang et al., 2017). We also verified that Met
inhibited the growth of pancreatic cancer via the
downregulation of VEGF-B (Zhu et al., 2016). However, the
mechanism of Met on CH is not fully understood. In this study,

FIGURE 3 | Met attenuated HFD-induced LV dysfunction. (A) Representative echocardiography. (B–E) Assessment of the left ventricular posterior wall, left
ventricular internal dimensions, interventricular septal, and left atrial volume index. (F)mRNA expression levels of ANP. (G,H) Serum LDH and CK-MBwere measured for
each group. Graphs represent mean ± SEM (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.
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we used HFD rats and H9c2 cells to investigate the effect of Met
on CH both in vivo and in vitro.

Accumulating pieces of evidence showed that a HFD could
result in various forms of cardiac abnormalities, including cardiac
inflammation, CH, and fibrosis (Sorop et al., 2020; Wali et al.,
2020; Zhang and Cai, 2020; Oduro et al., 2022); therefore, an HFD
rat is an appropriate animal model for studying CH. We found
that HFD rats revealed hallmarks of CH, including increased
volume of cardiomyocyte size, upregulated expressions of ß-
MHC and ANP (Figure 2), and LV dysfunction (Figure 3). It
is reported that the administration of Met could prevent weight
gain not only in animals but also in humans, especially in obesity-
related T2DM patients (Yerevanian and Soukas, 2019; Coll et al.,
2020; Chen et al., 2021). In this study, as expected, Met treatment
significantly reduced body weight and fat accumulation in
comparison with HFD rats (Figure 1). In addition, our results
showed that Met treatment significantly reduced CH (Figure 2,
Figures 3A,B,F), improved LV functions (Figures 3A–E), and

attenuated injury of cardiomyocytes (Figures 3G,H) in HFD rats.
Meanwhile, reduced expressions of ANP and decreased TUNEL-
positive cells were also observed after Met treatment in H9c2 cells
(Figures 5B,C, Figures 6A,B). These results indicated that Met
markedly attenuated CH-induced LV dysfunction and cardiac
injury either in vivo or in vitro.

Krishnan et al. (2009)reported that HIF-1α and PPAR-γ were
jointly upregulated in hypertrophic cardiomyopathy and
cooperated to mediate key changes in cardiac metabolism.
Under pathologic stress, HIF-1α activated PPAR-γ, which
subsequently resulted in changes in energy metabolism and
cardiac hypertrophy (Krishnan et al., 2009). Boutoual et al.
(2018)revealed that the HIF–PPARγ–UCP2–AMPK axis
played an important role in the metabolic reprogramming of
the MTO1- and GTPBP3-defective cells, and these defects caused
infantile hypertrophic cardiomyopathy with lactic acidosis.
Interestingly, in breast cancer, HIF-1α is activated by PPAR-γ
to induct autophagy, and HIF-1α knockout blocks PPAR-γ

FIGURE 4 |Met inhibited HIF-1α and PPAR-γ signaling pathways in HFD rats. (A,B)Western blot analysis of ANP, HIF-1α, PPAR-γ, VEGF-A, and GLUT1 in heart
tissue. Graphs represent mean ± SEM (n = 6). *p < 0.05, **p < 0.01.
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FIGURE 5 | Activation of HIF-1α abolished the protective effect of Met on CH in rat cardiomyocytes. (A) LDH activity assessment. (B) H9c2 cells were subjected to
an immunofluorescence assay with anti-ANP and anti-α-actin antibodies (scale bar: 20 µm). (C) Detection of apoptotic cells by TUNEL staining (scale bar: 100 µm). (D)
Quantitative data of ANP fluorescence intensity analyzed by Image-Pro Plus 6.0 software. (E) Quantification of apoptotic cells. Graphs represent mean ± SEM (n = 3).
*p < 0.05, **p < 0.01, ***p < 0.001.
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activation–induced autophagosome formation (Zhou et al.,
2009). Therefore, we intend to examine the relationship
between HIF-1α and PPAR-γ in this study.

Several studies reported that chronic increase of VEGF-A in
the heart led to increased cardiac angiogenesis and development
of CH; therefore, VEGF-A has become a recognized marker for
CH (Tirziu et al., 2007; Marneros, 2018; Kivelä et al., 2019). In

some heart disease models, such as congestive heart failure and
valvular heart disease, VEGF-A expression showed a positive
correlation with the expression of HIF-1α (Lee et al., 2019) and
studies have proved that VEGF-A is one of the downstream targets
of HIF-1α indeed (MacDonald et al., 2013; Wen et al., 2019).

Glucose transporters (GLUT) are essential for the heart to
sustain its function. It is markedly affected in cardiac diseases

FIGURE 6 | Activation of PPAR-γ abolished the protective effect of Met on CH in rat cardiomyocytes. (A) H9c2 cells were subjected to an immunofluorescence
assay with anti-ANP and anti-α-actin antibodies (scale bar: 20 µm). (B) Detection of apoptotic cells by TUNEL staining (scale bar: 100 µm). (C) Quantitative data of ANP
fluorescence intensity analyzed by Image-Pro Plus 6.0 software. (D) Quantification of apoptotic cells. Graphs represent mean ± SEM (n = 3). **p < 0.01, ***p < 0.001.
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such as CH, DCM, and heart failure (Heitmeier et al., 2018).
Pathological hypertrophy and its frequent outcome of heart
failure are associated with a metabolic remodeling where
glucose becomes the main and constant ATP-generating
substrate (Lopaschuk and Ussher, 2016; Peterzan et al.,
2017). This alteration is due to a complex reorganization of

the gene expression profile that resembles the fetal pattern, in
which GLUT1 expression is increased and GLUT4 is
downregulated (Bertrand et al., 2020). A study also proved
that GLUT1 was the downstream gene of HIF-1α in T2DM
renal disease (Huang et al., 2020). The increase in GLUT1
expression is conducive to glucose intake, which is an

FIGURE 7 | Met attenuated CH through the HIF-1α/PPAR-γ signaling pathway. (A,B) Western blot analysis of HIF-1α, PPAR-γ, VEGF-A, and GLUT1 in different
H9c2 groups. (C,D) Western blot analysis of ANP, HIF-1α, PPAR-γ, VEGF-A, and GLUT1 in different H9c2 groups. Graphs represent mean ± SEM (n = 3).
*p < 0.05, **p < 0.01.
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adaptive response to cardiac hypertrophy; hence, GLUT1 was
already considered to be another marker for CH (Bertrand et al.,
2020). Interestingly, a study found that PPAR-γ suppression
reduced insulin-stimulated glucose uptake in adipocytes, which
was mediated by both GLUT4 and GLUT1 (Liao et al., 2007).
GLUT transgenic and knockout mice have provided valuable

insight into the role of facilitative GLUTs in cardiovascular and
metabolic diseases. Heitmeier et al. (2018) reported that
compensatory metabolic adaptation in response to chronic
GLUT blockade could evade deleterious changes in the failing
heart. In a word, GLUT played an important role in both HIF-1α
and PPAR-γ signaling pathways.

FIGURE 7 | (Continued).
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Although numerous studies have reported the
cardioprotective effect of Met, to our knowledge, this novel
study is the first one to investigate the cardioprotective effect
of Met against CH through the HIF-1α/PPAR-γ signaling
pathway. We first examined the protein expressions of HIF-
1α, PPAR-γ, GLUT1, and VEGF-A in the heart tissue of HFD
rats. The four aforementioned genes showed the same tendency,
that is. they were all increased in HFD rats and reduced after Met
treatment (Figure 4). To further clarify the role of the HIF-1α/
PPAR-γ signaling pathway in CH, we then performed in vitro
experiments in H9c2 cells. According to the results of the LDH
release test and immunofluorescence, we found that the
combination of DFO and Met significantly abolished the
protective effect of Met on cardiac injury (Figure 5A), CH
(Figure 5B), and apoptosis (Figure 5C), indicating that Met
exerted its protective effect on CH in an HIF-1α–dependent
manner. Meanwhile, Ros, the PPAR-γ agonist treatment,
markedly reversed the alleviating effect of Met on CH
(Figure 6A) and apoptosis (Figure 6B) in H9c2 cells,
indicating that Met attenuated CH depending on the
expression of PPAR-γ.

To further investigate the relationship between HIF-1α,
PPAR-γ, GLUT1, and VEGF-A, activation of HIF-1α or
PPAR-γ was performed by DFO or Ros treatment in H9c2
cells, respectively. DFO or Ros treatment significantly
upregulated the expression of HIF-1α or PPAR-γ, VEGF-A,
and GLUT1. Similar to the results in HFD rats, Met treatment
significantly downregulated the expressions of HIF-1α, PPAR-γ,
GLUT1, and VEGF-A. Interestingly, either DFO or Ros treatment

with Met obviously increased the expressions of GLUT1 and
VEGF-A in comparison with treatment with Met alone (Pa +
Met), indicating that GLUT1 and VEGF-A are the down-stream
genes of HIF-1α and PPAR-γ. Importantly, DFO treatment up-
regulated the expression of PPAR-γ, whereas Ros treatment did
not affect the expression of HIF-1α, indicating that HIF-1αmight
be the up-stream of PPAR-γ (Figures 6, 7).

To our knowledge, this is the first time that the relationship
between Met treatment and the HIF-1α/PPAR-γ signaling
pathway during CH is explored. In conclusion, Met treatment
attenuated CH, improved LV function, and reduced apoptosis of
cardiomyocytes not only in HFD rats but also in Pa-treated H9c2
cells. This cardioprotective effect of Met depended on the HIF-
1α/PPAR-γ signaling pathway (Figure 8). Therefore, Met can be
used as a potential cardioprotective adjuvant in CH therapy and
the inhibition of the HIF-1α/PPAR-γ signaling pathway will be a
promising modality for clinical CH therapy.
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