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SPOC (spontaneous oscillatory contraction) is a phenom-
enon observed in striated muscle under intermediate 
activation conditions. Recently, we constructed a theo-
retical model of SPOC for a sarcomere, a unit sarcomere 
model, which explains the behavior of SPOC at each sar-
comere level. We also constructed a single myofibril model, 
which visco- elastically connects the unit model in series, 
and explains the behaviors of SPOC at the myofibril level. 
In the present study, to understand the SPOC properties 
in a bundle of myofibrils, we extended the single myofi-
bril model to a two-dimensional (2D) model and a three- 
dimensional (3D) model, in which myofibrils were elasti-
cally connected side-by-side through cross-linkers between 
the Z-lines and M-lines. These 2D and 3D myofibril 
models could reproduce various patterns of SPOC waves 
experimentally observed in a 2D sheet and a 3D bundle 
of myofibrils only by choosing different values of elastic 
constants of the cross-linkers and the external spring. 
The results of these 2D and 3D myo fibril models provide 
insight into the SPOC properties of the higher-ordered 
assembly of myofibrils.
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Muscle contraction is explained based on a sliding mech-
anism of thick (myosin) and thin (actin) filaments [1–3]. The 
sliding of the two filaments occurs through the coordinated 
interaction between molecular motors (myosin II) and actin 
filaments. Contraction (On-state) and relaxation (Off-state) 
are regulated by the concentration of free Ca2+ in vivo [4]. 
On the other hand, it is known that in the contractile sys-
tem of a muscle (a skinned muscle model prepared by the 
removal of membrane systems), spontaneous oscillatory 
contraction (termed SPOC) occurs under the intermediate 
activation conditions between the On- and Off-states, which 
can be controlled by ionic conditions in vitro [5,6]. Thus, the 
SPOC phenomenon is observed in both skeletal and cardiac 
myofibrils and in muscle fibers at intermediate Ca2+ concen-
trations for activation, of which the ionic condition is physio-
logical [7] and also in the presence of high concentrations of 
MgADP and inorganic phosphate (Pi) with MgATP in Ca2+ 
free conditions, which are not evident physiologically [8]. 
We termed the former, Ca-SPOC and the latter, ADP-SPOC 
[5,6]. The 3D state diagram constructed against the concen-
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gle myofibril model previously proposed [11]. The extended 
parts are twofold: (i) Two to three myofibrils are bundled at 
the sides of myofibrils to arrange the myofibrils in parallel. 
As illustrated in Figure 1A, one end of the bundle of myofi-
brils is fixed to a stiff needle and another end is attached to a 
flexible needle, X, of which the elastic constant is K. Here, 
the end compliance of myofibrils is introduced through a 
simple spring having an elastic constant ka. In practice, the 
end compliance should exist at both ends of myofibrils, but 
it was introduced only at one end for simplicity in our model, 
because the results of simulation were essentially the same. 
(ii) The Z-lines (and the M-lines) of adjacent myofibrils are 
connected through an elastic spring having an elastic con-
stant kz, in which the elastic force is assumed to work only in 
a longitudinal direction. The natural length of both springs 
with the elastic constants, ka and kz, is assumed to be 0. The 

trations of Ca2+, Pi and MgADP, in the presence of a fixed 
concentration of MgATP (covering not only physiological 
but also non-physiological conditions), showed that SPOC is 
considered as the third state of the contractile system of mus-
cle; the SPOC region in the state diagram is sandwiched in 
between contraction and relaxation regions. The Ca-SPOC 
and ADP-SPOC regions are located at opposite ends of the 
SPOC region, implying that the Ca- and ADP-SPOCs occur 
at extreme conditions within the intermediate activation 
conditions. In the SPOC state, each sarcomere length (SL) 
changes with a saw tooth waveform, composed of a slow 
shortening phase and a rapid lengthening phase. The length-
ening phase of sarcomeres sometimes travels to adjacent 
sarcom eres one by one along a myofibril, forming a travel-
ing wave. There is a report showing that the auto-oscillation 
occurs even in an in vitro pure actomyosin motility system 
[9].

We recently constructed a unit sarcomere model [10] and 
a single myofibril model [11] that can capture the main char-
acteristics of SPOC, including the phase diagram consisting 
of relaxation, contraction, and SPOC states, which shows 
various patterns of oscillation, i.e., in-phase oscillation, trav-
eling wave, disrupted wave and out-of-phase oscillation, and 
contraction without oscillation. SPOC studies have two main 
purposes: one is to clarify how SPOC is self-controlled, i.e., 
the autonomous control mechanism of SPOC (note that there 
are several theoretical works in addition to our work on the 
mechanism of SPOC [12–15]), and the other is to determine 
whether SPOC has physiological significance, especially, in 
heartbeat. In the present study, we intended to construct a 
SPOC model to understand the 2D and 3D patterns of SPOC 
observed in a bundle of striated myofibrils, i.e., the contrac-
tile system of a muscle with the membrane system removed. 
It is to be noted here that myofibrils are three-dimensionally 
bundled in muscle fibers; in some cases, however, such as in 
cultured embryonic muscle cells, myofibrils are arranged 
relatively two-dimensionally, like a sheet of myofibrils. The 
present model is an extended version of a single myofibril 
model previously proposed [11]. That is, the single myofibril 
model was connected through simple elastic cross-linkers 
between the adjacent Z-lines and M-lines in the myofibrils, 
which are aligned side-by-side. To introduce a freedom of 
motion to the bundle of myofibrils, the end compliance was 
assumed to exist at one end of each myofibril. Here, the 
 elastic constants for the elastic cross-linkers and the end 
compliance were represented by kz and ka, respectively. 
Based on the results of the simulation, we discuss the roles 
in SPOC of cross-linkers that are introduced in the present 
2D and 3D myofibril models.

Results and Discussion
Theoretical framework of the 2D and 3D myofibril 
models

The present mathematical model is the extension of a sin-

Figure 1 Schematic representation of a model on a bundle of myo-
fibrils. (A) Myofibrils are connected side-by-side through an elastic 
spring having an elastic constant kz between adjacent sarcomeres and to 
a flexible needle X, through an elastic spring ka. Half-sarcomeres are 
connected alternatively in the series across the Z- and M-lines. (B) 
Cross-sectional view of a bundle of myofibrils when they are three- 
dimensionally connected (3D connection). Three myofibrils are equiv-
alent to each other. (C) Cross-sectional view of a bundle of myofibrils 
when they are two-dimensionally connected (2D connection). The 
three myofibrils are not equivalent to each other. (D) Schematic illus-
tration showing a unit model composed of a pair of thick and thin fila-
ments, which is taken from Figure 1(b) in [11]. (E) Classification of 
patterns of SPOC wave obtained in the present model simulation, 
which is shown from the point of view of phase difference in sarcomere 
oscillation with laterally and longitudinally adjacent sarcomeres. For 
more details, see the text.
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tion realized at smaller α1 and larger β0.
Equation (2) shows the force balance along the long axis. 

Fex j represents an external force imposed on the j th myofi-
bril, which takes a positive value when it works in the direc-
tion for extension. Fex j is expressed as Eq. (7).

Fex j = ka{x(t)–∑N
i=1SLij}, (7)

where x is the position of X and SLij is the length of the i th 
sarcomere in the j th myofibril. As the value of ka becomes 
larger, the length of every myofibril approaches x, implying 
that the length of every myofibril becomes equal. The sec-
ond and the third terms of Eq. (2) are the active and frictional 
forces generated by cross-bridges, respectively, where a is 
the strength of mean active force generated by a single cross-
bridge and s0 is a spatial interval between adjacent myosin 
heads along the thick filament. ξij is the length of overlap 
between the thick and thin filaments, which is related with 
the sarcomere length SLij as SLij=SL(0)–ξij, where SL(0) is the 
sarcomere length at no overlap. Note in Eq. (2) that the 
quantity ξijPij/s0 represents the total number of cross-bridges 
in the i th sarcomere in the j th myofibril. Although the 
molecular friction constant, η, is reported to be asymmetrical 
against lengthening and shortening of sarcomeres, at least 
under a rigor condition [17], we assumed η as a constant. 
Finally, the last term of Eq. (2) represents the interaction 
between the laterally adjacent sarcomeres through the posi-
tion of the Z-line (or the M-line). Here Zij is the position of 
the Z-line (or the M-line) of i th sarcomere in the j th myo-
fibril, which is expressed as Zij=∑i

k=1SLkj. kz in Eq. (2) is the 
spring constant that laterally connects sarcomeres in adja-
cent myofibrils. Note that the force derived from an elastic 
protein such as connectin/titin is not considered in the pres-
ent model. In skeletal muscle, in practice, it has been shown 
that connectin/titin is not essential for SPOC to occur [18–20].

Equation (3) shows the force balance along the short axis. 
Here four types of force are considered. The first term shows 
the elastic force generated by cross-bridges, where km and lm 
are, respectively, the elastic constant of cross-bridges and 
the natural length of myosin heads, both of which are some 
positive constants. The second term is attributable to various 
interaction effects between the thick and thin filaments, and 
to the elastic force working to maintain the lattice structures 
of the Z- and M-lines [16], and osmotic pressure [21], and so 
on, of which the elastic constant is expressed as kr. lr is the 
natural length of sarcomere lattice spacing in the relaxing 
condition. Based on the experimental observations showing 
that the lattice spacing, lr, decreases as the SL increases [16], 
lr is considered as an increasing function of overlap length ξij 
between the two myofilaments. The first part in the second 
term can be expressed as a linear function,

lr(ξij) = lr0+ lr1ξij, (8)

where lr0 represents the lattice spacing where there is no 

present model is represented by the following set of ordinary 
differential equations:

dPij

dt  = α(dij)(1–Pij)–β(dij)Pij (1)

–Fex j+ a ξijPij

s0
– ηξijPij(dξij/dt)

s0
–kz(Zi j+1+Zi j–1–2Zij) = 0

 (2)

km
Pijξij

s0
(lm–dij)+kr{lr(ξij)–dij}

–ηd
ddij

dt +kMZ(di+1 j+di–1 j–2dij) = 0 (3)

ηn
dx
dt  = K{Y0–x(t)}–∑M

j=1 ka{x(t)–∑N
i=1 SLij}. (4)

The suffix, i, means the number of sarcomeres in each 
 myofibril, and j means the number of myofibrils. The total 
number of sarcomeres in each myofibril is N, and the total 
number of myofibrils, M. Thus this model is expressed by 
3N∙M+1 differential equations. The meaning of Eqs. (1)–(4) 
is explained below in order.

Equation (1) is the time evolution equation for the fraction 
of attached myosin heads (cross-bridges) to the total number 
of myosin heads in the i th sarcomere in the j th myofibril, 
Pij. Here, we have assumed that myosin heads take only two 
states, attached and detached states, i.e., the so-called two 
state model (see Fig. 1D). The transition rates between the 
two states are given by α (attachment rate) and β (detach-
ment rate). One of the characteristics of our model is that α 
and β depend on the sarcomere lattice spacing d, which dif-
fers for each sarcomere, i.e., d=dij [10,11,16], namely, these 
are expressed by functions of dij as α(dij) and β(dij). Their 
explicit forms are expressed as the following Eqs. (5) and 
(6):

α(dij) = –α1(dij–d0)Θ(d0–dij) (5)

β(dij) = β0 (6)

where α1, d0 and β0 are some positive constants. Θ(x) is the 
Heaviside step function defined by Θ(x)=1 for x>0 and 
Θ(x)=0 otherwise. α(d) represents the attachment rate con-
stant of myosin heads. It is assumed that α linearly decreases 
depending on its lattice spacing d and reaches 0 at the limit 
distance above which cross-bridge formation is prohibited 
because d exceeds the maximum length of myosin heads. 
We consider that β(d) is also a function of d, but it is assumed 
as a constant for simplicity. The value of α1 represents the 
activation level of myofibrils. In muscle, the values of α1 and 
β0 should depend on the environmental conditions such as 
the composition of solutions and temperature, and so on. β0 
may also depend on how much external force is applied to 
the cross-bridges. Two extremes are a contraction condition 
realized at larger α1 and smaller β0, and a relaxation condi-
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where the first term of the right side is the total length of 
myofibril, and the second and third terms are extensions of 
the springs ka and K, respectively. M is the number of myofi-
brils. Thus, the three variables, Y0, ξ and F0 in Eq. (9) are 
related to each other, and therefore we can specify the values 
of other variables if one of three values can be determined. 
Here, the value of F0 will be used for the specification of Y0. 
The term on the left side in Eq. (4) is the friction force the 
flexible needle bears, where ηn is estimated to be a small 
positive constant.

The meaning and the values of the parameters contained 
in this model are summarized in Table 1. The initial con-
ditions used here are given by adding a random number  
δ ϵ [–0.0001, 0.0001] to a stationary solution (P, ξ, d ) for  
a given F0. The numerical simulations of this model were 
performed with sufficiently high precision.

With this model, we considered two types of boundary 
conditions, a circular connection (periodic boundary condi-
tion) (Fig. 1B) and a sheet-type connection (Neumann bound-
ary condition) (Fig. 1C). In the present study, we investi-
gated the characteristics derived from various values of 
parameters, e.g., a cross-linker stiffness kz, a needle’s stiff-
ness K, and boundary conditions. As a result, several SPOC 
patterns experimentally observed have been revealed in the 
present model simulation as summarized in Figure 1E.

overlap between the two myofilaments in the relaxed state, 
and lr1 means the slope of the lattice spacing vs. overlap rela-
tionship. The third term in Eq. (3) is the friction force that 
the filament lattice bears along the short axis, where ηd is 
assumed to be a small positive constant. The last term in Eq. 
(3) represents the interaction between longitudinally adja-
cent sarcomeres through the lattice spacing. The value of kMZ 
is the activity coefficient that couples between adjacent sar-
comeres along the long axis of myofibrils.

Equation (4) shows the equation of motion of the flexible 
needle X, of which the position is denoted by x. The first 
term on the right side in Eq. (4) represents the elastic force 
which is the result of the elasticity of the flexible needle, 
and the second term represents the total force coming from 
springs with ka. Y0 is the specific value of x when the flexible 
needle is not bent, that is, when no force is imposed on X. By 
changing Y0, we can control the external force acting on the 
bundle of myofibrils. For a given Y0, there is a stationary 
state where all sarcomeres have the same length SL=SL(0)–ξ 
and the same active force F0=aξP/s0, where ξ and P are sta-
tionary solutions of ξij and Pij obtained by solving the equa-
tions (1)–(4) for the given Y0. These quantities Y0, ξ and F0 
satisfy the following relation:

Y0 = (SL(0)–ξ )N +
F0

ka
+

MF0

K , (9)

Table 1 Summary of parameters used in the present model simulation

Parameter  
[dimensiona] Meaning Value

a [Fx] Average active force per each cross-bridge 1 [pN]
s0 [Lx] Interval between adjacent cross-bridges along the thick filament 0.01 [μm]
η [Fx∙T/Lx] Molecular frictional constant for cross-bridges 1.5 [pN∙sec/μm]
km [Fy/Ly] Lateral elastic constant of cross-bridges 1 [(a.u.)b/nm]
lm [Ly] Average natural length of cross-bridges 23 [nm]
ηd [Fy∙T/Ly] Frictional constant of the sarcomeric structure 0.0005 [(a.u.)b∙sec/nm]
kr [Fy/Ly] Lateral elastic constant of the sarcomeric structure 60 [(a.u.)b/nm]
α1 [1/T∙Ly] Slope of the attachment rate vs. lattice spacing relationship  

(the indicator of the activation level in model simulations)
19 [1/sec∙nm]

β0 [1/T] Detachment rate of cross-bridges 20 [1/sec]
d0 [Ly] Lattice spacing beyond which the activation does not occur 25.3 [nm]
SL(0) [Lx] SL at no overlap between the thick and thin filaments 3.6 [μm]
lr0 [Ly] Lattice spacing at no overlap in the relaxed state 23 [nm]
lr1 [Ly/Lx] Slope of the lattice spacing vs. SL relationship 2.53 [nm/μm]
F0 Constant part of the auxotonic force 10 [pN]
K [Fx/Lx] Spring constant of the flexible needle X 0.01–10.0d [pN/μm]
kMZ [Fy/Ly] Elastic modulus of the Z- and M-lines 0.5 [(a.u.)b/nm]
N Number of sarcomeres for each myofibril 24
M Number of myofibrils 1–3d

kz [Fx/Lx] Elastic constant of the cross-linkers connecting the Z- and M-lines 0.0–10.0d [pN/μm]
ka [Fx/Lx] Elastic constant of the spring that connects the end of each myofibril to a flexible needle X 20–100d [pN/μm]
ηn [Fx∙T/Lx] Frictional constant of the flexible needle X 0.0005 [pN∙sec/µm]
a Dimensions are represented by [Lx] (for the length along the long axis; μm), [Ly] (for the length along the short axis; nm), [T] (for time; sec), [Fx] 
(for force along the long axis; pN) and [Fy] (for force along the short axis; arbitrary units). b The unit of force along the short axis is arbitrary (a.u.), 
because precise measurements of the force have not been performed yet. c In our model, only one pair of the thick and thin filaments is considered. 
Hence this value corresponds to the contractile force generated by one pair of the filaments at a stationary state. To apply this model to an actual 
myofibril, this value needs to be multiplied by several thousands. d Variable in this range.
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in one direction, suggesting that kz has a function to match 
the direction of traveling waves in the two myofibrils.

As the value of kz is further increased, the in-phase travel-
ing wave becomes dominant (Fig. 3B–D). At larger kz, the 
phase difference of oscillation between the adjacent sarco-
meres tends to become smaller, so that the oscillation pat-
terns tend to be in order. It is noted that the disrupted wave 
region is mixed here and there with the in-phase traveling 
wave region (Fig. 3C). This result suggests that some uncer-
tainty exists in the present model simulation; one reason is 
that we have introduced a randomness, δ ϵ [–0.0001, 0.0001], 
for the initial values of parameters because there must be 
some fluctuation in the parameters, e.g., SL dispersion (in 
practice, the SL in heart muscle has a distribution of about 
10% even in the relaxing conditions [22]). Therefore, the 

Model simulation of SPOC patterns in a single myofibril
First, to confirm that the present model contains the single 

myofibril model previously presented [11], we performed a 
model simulation for the case of a single myofibril. The dif-
ference between the two models is that the present model 
(Fig. 2A) contains end compliance, whereas the previous 
one does not (Fig. 2B).

The previous model should be equivalent to the case when 
the value of ka in the present model is extremely large. Then, 
the comparison was made with large ka, and F0=10 and 20 
(previously used). As a result, we could confirm that the 
present model is consistent with the previous one. As the 
value of K increases, all of the SPOC patterns presented in 
the phase diagram (Fig. 3 of [11]), i.e., in-phase synchroni-
zation, traveling wave, disrupted traveling wave and out-of-
phase synchronization, appeared in this order. That is, the 
result shown in Figure 2C corresponds to that at N=24 in 
Figure 3 of [11], and the results shown in Figure 2E, F, G and 
H, respectively, correspond to those in Figure 2(a), (b), (c) 
and (d) of [11].

Model simulation of SPOC patterns in a bundle composed 
of two myofibrils

Next, we examined how the SPOC patterns appear when 
two myofibrils are aligned through the elastic spring having 
kz, connecting the adjacent Z- and M-lines as illustrated in 
Figure 3A. In the case of a bundle composed of two myofi-
brils, 3D and 2D connections are equivalent to each other, 
except that the number of springs in the 3D connection is 
twofold that in the 2D connection. Figure 3B–E are a type  
of two dimensional phase diagram showing how the SPOC 
patterns appear against different values of ka and kz at fixed 
values of K (respectively, 3.0, 1.0, 0.2, 0.01). Different from 
the mode for a single myofibril (Fig. 2), the relationship of 
the oscillation phase between laterally adjacent sarcomeres, 
consisting of different myofibrils, can be obtained. Figure 
3G–K show typical examples of (1) the relationship in the 
oscillation phase of sarcomeres in two myofibrils, (2) the 
time course of the change in amplitude of length oscillation 
in the bundle of myofibrils, and (3) enlarged views of (2).

The SPOC patterns observed in this case are in-phase 
SPOC (Fig. 3G), Type-1 traveling wave (Fig. 3H), disrupted 
wave (Fig. 3I), in-phase traveling wave (Fig. 3J), and in- 
phase disrupted wave (Fig. 3K). The noticeable character-
istics of these phase diagrams were: 1) the in-phase SPOC 
pattern tends to appear when both kz and K are small, and 2) 
the disrupted pattern tends to appear as K becomes larger 
(and ka is larger), which is because the total length of myofi-
brils tends to be fixed, so that the change in the SL is restricted 
by this boundary condition. It was also noticeable that the 
traveling wave region is smaller when compared with the 
case of a single myofibril (Fig. 2C) at kz=0. In the case of a 
disrupted wave observed at kz=0 (Fig. 3B, C), a wave locally 
traveling in an opposite direction is sometimes observed, 
but, as kz is introduced, the traveling wave consistently travels 

Figure 2 Examples of model simulation showing typical patterns 
of sarcomere length (SL) oscillations for a single myofibril in which 24 
sarcomeres are connected in series. (A) Schematic representation of a 
myofibril in the present model. (B) Schematic representation of a myo-
fibril of a previous model [11]. (C) Phase diagram of the SL oscillation 
patterns of a myofibril obtained from the present model simulation. 
Ordinate and abscissa, the spring constant of the external spring K and 
the external force F0, respectively. (D) A correspondence table of colors 
in (C). (E)–(H) Typical examples showing a phase relationship for var-
ious SPOC patterns obtained in the present model simulation: an 
in-phase (E: F0=20, K=0.01), a traveling wave (F: F0=20, K=0.2), a 
disrupted traveling wave (G: F0=20, K=1.0), an out-of-phase (H: 
F0=20, K=3.8). The abscissa is the number of sarcomeres, and the ordi-
nate is an oscillation phase in each sarcomere.
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Another noticeable point is that the in-phase SPOC basi-
cally occurs when the values of both K and kz are small, but 
when the value of K is small and the value of kz is large, we 
found that the in-phase SPOC region again appears (Fig. 
3E). When kz is fixed at a large value, e.g., 10.0 in Fig. 3B–E, 
and as the value of K is increased, the SPOC patterns appear 
in the order of in-phase oscillation, in-phase traveling wave, 
and in-phase disrupted wave, which is similar to the case of 
single myofibrils (Fig. 2). Thus, this result is considered to 
be attributable to the fact that the two myofibrils behave just 
like a single myofibril because of the large mechanical cou-
pling between the laterally adjacent sarcomeres.

Finally, it is to be noted that the oscillation amplitude of 
the total length of myofibrils largely depends on the SPOC 
patterns: in the case of in-phase SPOC (Fig. 3G-2) the ampli-
tude of the total length of myofibrils becomes the sum of the 
oscillation amplitude of each sarcomere, such that the oscil-
lation amplitude of a bundle of myofibrils becomes maximal 
(in the present simulation, the peak-to-peak amplitude 
reached about 15% of the total length, although this depends 

initial conditions of this model simulation are always slightly 
different from each other, which may yield different SPOC 
patterns. Another possibility to explain this uncertainty is 
that the present model simulation may essentially contain 
this uncertainty due to its non-linearity. This problem should 
be clarified in the future.

Regarding the effects of ka, it is noticeable that, on increas-
ing the ka value, the SPOC patterns that appear at a region of 
smaller kz values shift toward a larger kz region, whereas the 
region of the in-phase traveling wave shifts toward a smaller 
kz region. This means that the region of Type-1 traveling 
wave becomes narrow, and the sarcomere oscillation tends 
to be in phase between the adjacent myofibrils as ka becomes 
larger.

In the case of in-phase SPOC, the sarcomeres in each 
myofibril were consistently synchronized; it is however con-
ceivable that the oscillation phase between the adjacent two 
myofibrils is unsynchronized. But an unsynchronized 
in-phase SPOC was not found in the present model simula-
tion.

Figure 3 Phase diagram and typical examples of the SL oscillation patterns obtained from the present model simulation in the case of two 
myofibrils connecting in parallel. (A) Schematic representation of the model. Two myofibrils are equivalent to each other. (B)–(E) Phase diagram 
of the SL oscillation patterns from a point of view of elastic constants kz and ka when K=3.0 (B), K=1.0 (C), K=0.2 (D), K=0.01 (E). (F) A correspon-
dence table of colors in (B)–(E). (G-1)–(K-3) Typical examples of in-phase [(G), K=0.01, ka=100, kz=5.0], Type-1 traveling [(H), K=0.5, ka=100, 
kz=0.5], disrupted [(I), K=3.0, ka=20, kz=5.0], in-phase traveling [(J), K=1.0, ka=100, kz=10.0], and in-phase disrupted [(K), K=3.0, ka=20, kz=10.0] 
patterns. (G-1)–(K-1) Typical examples showing a phase relationship of SL oscillation for various SPOC patterns obtained in the present model 
simulation, where the abscissa is the number of sarcomeres, and the ordinate is an oscillation phase of each sarcomere. These phase relationships 
were obtained from the snapshot at t=396 as shown by red arrows in (G-3)–(K-3). (G-2)–(K-2) Typical examples showing time course of the 
changes in x(t). (G-3)–(K-3) show enlarged views of (G-2)–(K-2).
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case of a bundle composed of three myofibrils for different 
combinations of the values of K, ka and kz. First, the case of 
three myofibrils connected three dimensionally was exam-
ined. As a result, as shown in Figure 4, we found a new 
SPOC state in addition to those observed in the bundle of 
two myofibrils. i.e., the traveling velocity of the lengthening 
phase of SL in one myofibril is different from that in the 
other two myofibrils, so that the oscillation pattern does not 
maintain a steady state, but rather it changes with time. We 
termed this traveling wave as “Type-2”, and the traveling 
wave that keeps the mutual phase difference nearly constant 
as “Type-1”. The Type-2 traveling wave tends to appear at 
larger values of kz and ka (Fig. 4B–E).

The phase diagram obtained in the present case is basi-
cally similar to the case of two myofibrils: that is, at kz=0, the 
SPOC pattern changes from the in-phase SPOC to the dis-
rupted SPOC as the value of K is increased. When the kz is 
introduced and increased, Types 1 and 2 traveling wave 

upon the activation conditions). In the other cases, the oscil-
lation amplitude of the total length of a bundle quickly 
decays starting from the initial in-phase oscillation with a 
large amplitude. Only in the case of the in-phase traveling 
wave, the oscillation amplitude remains at about 3% of the 
total length of myofibrils at steady state. If the SPOC dynam-
ics are involved in the heartbeat, the total length of myofi-
brils should change to some extent. In this sense, our inter-
ests are particularly focused on the conditions where the 
in-phase SPOC and the in-phase traveling wave of SPOC 
occur. Also, it is interesting that the total length of a bundle 
largely fluctuates in the case of disrupted SPOC, which may 
correspond to a pathological state.

Model simulation of SPOC patterns in a bundle composed 
of three myofibrils: 1) the case for a 3D (triangular) 
connection

Next, we examined how the SPOC patterns appear in the 

Figure 4 Phase diagram of the SL oscillation patterns obtained from the present model simulation in the case of sterically connecting three 
myofibrils and typical examples of each oscillation patterns. (A) A schematic representation of the present model, where three myofibrils are equiv-
alent to each other. (B)–(E) Phase diagram of the SL oscillation patterns from the point of view of elastic constants kz and ka when K=3.0 (B), K=1.0 
(C), K=0.2 (D), K=0.01 (E). (F) A correspondence table of colors in (B)–(E). (G-1)–(L-3) Typical examples of in-phase [(G), K=0.01, ka=100, 
kz=10.0; see Supplementary movie 1 “In-phase.avi”], Type-1 traveling [(H), K=0.2, ka=20, kz=1.0; see Supplementary movie 2 “Type-1 traveling.
avi”], Type-2 traveling [(I), K=1.0, ka=100, kz=1.0; see Supplementary movie 3 “Type-2 traveling.avi”], disrupted [(J), K=3.0, ka=100, kz=0; see 
 Supplementary movie 4 “disrupted.avi”], In-phase traveling [(K), K=0.2, ka=20, kz=10.0; see Supplementary movie 5 “In-phase-traveling.avi”], and 
In-phase disrupted [(L), K=3.0, ka=20, kz=10.0; see Supplementary movie 6 “in-phase-disrupted.avi”] patterns. (G-1)–(L-1) Typical examples 
 showing a phase relationship of SL oscillation for various SPOC patterns obtained in the present model simulation, where abscissa is the number of 
sarcomeres, and ordinate is an oscillation phase of each sarcomere. These phase relationships were obtained from the snapshot at t=396 as shown 
by red arrows in (G-3)–(L-3). (G-2)–(L-2) show typical examples of time course of the changes in x(t). (G-3)–(L-3) show enlarged views of (G-2)–
(L-2).
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muscle (see Supplementary movie 7 “movie_1.avi”); this is 
a Type-1 traveling wave keeping the phase difference of SL 
oscillation nearly constant among adjacent myofibrils. The 
condition for this observation was as follows: KCl 120 mM, 
MgCl2 4 mM, MOPS 20 mM, EGTA 4 mM, ATP 0.1 mM, 
ADP 4 mM, Pi 4 mM, pH 7.0 at room temperature [5,8].

Characteristics of SPOC patterns of a bundle composed 
of three myofibrils obtained in the present model 
 simulation

We can summarize the results as follows (Fig. 7):

SPOCs and then the in-phase traveling wave appear in this 
order independent of the value of ka. And, similarly to the 
case of two myofibrils, the in-phase SPOC appears at large kz 
and small K. This is likely because a bundle of three myofi-
brils behaves just as a single myofibril. Again, when the 
value of ka is small, the states of SPOC are shifted toward the 
side of larger kz, which is a similar occurrence to that in the 
case of two myofibrils. One of the characteristics of the 
Type-2 traveling wave is that the total length of the bundle 
oscillates with some period (about 50 in the case of Fig. 
4I-2) and a small amplitude. Such a traveling pattern in 
which the pattern dynamically changes with time is often 
observed experimentally.

Model simulation of SPOC patterns in a bundle composed 
of three myofibrils: 2) the case for a 2D (planar) connection

Finally, we examined how the SPOC patterns appear in a 
bundle composed of three myofibrils for a planar (2D) con-
nection between sarcomeres in adjacent myofibrils (Fig. 
5A), again under various combinations of the values of K, ka 
and kz (Fig. 5B–E). In muscle tissue which is composed of a 
bundle of muscle cells, the myofibrils, the major compo-
nents of striated muscle, are three-dimensionally arranged 
through cross-linkers connecting the Z- and M-lines. But, in 
some cases such as cultured embryonic muscle cells, myofi-
brils are rather arranged two-dimensionally as a sheet of 
myofibrils. So, it is worth examining the case of 2D connec-
tion [23,24].

As summarized in Figure 5, the results are essentially sim-
ilar to those for the 3D connection (Fig. 4). One major differ-
ence is that in the phase diagram the region of Type-2 travel-
ing wave is significantly larger than that in the 3D connection. 
This is understandable because the three myofibrils are not 
equivalent to each other, that is, the central one is different 
from the two peripheral ones, so that the in-phase traveling 
wave and the Type-1 traveling wave hardly occur. In the case 
of the Type-2 traveling wave, the central myofibril tends to 
show a higher traveling velocity, resulting in a more distinct 
periodicity of oscillation of the total length of a bundle as 
shown in Figure 5G. In the case of the 3D connection (Fig. 
4), the in-phase traveling wave appears as the value of kz is 
increased, but in the 2D connection case, only the disrupted 
pattern appears. And, the Type-1 traveling wave appears 
only in the central small region of the phase diagram (Fig. 
5B–E). Further, the Type-1 traveling wave is divided into 
two types, i.e., the oscillation phase of the central myofibril 
which goes either ahead (a convex-type) or behind (a concave- 
type) the other two peripheral myofibrils.

An example showing the SPOC pattern observed in a 
myofibril bundle

An example of ADP-SPOC pattern, experimentally ob-
served, is shown in Figure 6. A phase-contrast microscopy 
shows that the Type-1 traveling wave occurs in a bundle of 
glycerinated skeletal myofibrils prepared from rabbit psoas 

Figure 5 Phase diagram of the SL oscillation patterns obtained 
from the present model simulation in the case of planar connecting 
three myofibrils. (A) A schematic representation of the present model, 
where three myofibrils are not equivalent to each other. (B)–(E) Phase 
diagram of the SL oscillation patterns from the point of view of elastic 
constants kz and ka when K=3.0 (B), K=1.0 (C), K=0.2 (D), K=0.01 (E). 
(F) A correspondence table of colors in (B)–(E). (G-1)–(G-3) Typical 
example of Type-2 traveling wave (K=3.0, ka=20, kz=3.0). (G-1) shows 
a phase relationship of SL oscillation obtained at t=376 in (G-3) as 
shown by a red arrow, where the abscissa is the number of sarcomeres, 
and the ordinate is an oscillation phase of each sarcomere. (G-2) shows 
a typical example of time course of the changes in x(t). (G-3) shows an 
enlarged view of (G-2).
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traveling SPOCs occur at intermediate values of kz (Fig. 
4B–E). In-phase traveling SPOC occurs at larger kz. 
Thus, as the value of kz is increased, Type-1, Type-2 and 
in-phase traveling SPOCs appear in this order.

We have newly introduced the parameters, kz and ka, in the 
present myofibril bundle model to extend a single myofibril 
model previously presented [11]. The spring, of which an 
elastic constant is kz, connecting sarcomeres belonging to 
different myofibrils tends to reconcile the oscillation phase 
of connected sarcomeres in order. The spring having the 
elastic constant ka, introduced as an end compliance of 
each myofibril, contributes to the coordination of SPOCs in 
the bundle of myofibrils. That is, as elastic constant ka is 
increased, the total length of myofibrils tends to become 
equal, so that ka contributes to the coordinated oscillation of 
myofibrils. The parameter K, which is experimentally con-
trollable, is important for global coupling in the mechanism 
of SPOC as previously described in detail [11].

A possible physiological significance of SPOC patterns 
obtained in the present model simulation

Among several SPOC patterns obtained in the present 
simulation, the pattern showing the largest amplitude of 
oscillation of the total length of myofibrils is the in-phase 
SPOC, and the second largest one is the in-phase traveling 
SPOC. If the SPOC properties have some functions in heart-
beat, those patterns are candidates having a physiological 
role. In other words, the SPOC patterns in which the total 
length of myofibrils is not oscillated or randomly fluctuated 
because of the out-of-phase or disrupted oscillation may be 
non-physiological or pathological. Those discussions are 
still speculative, but it will be worth examining, based on the 
present model simulation, what is a condition for organized 
SPOC or disordered SPOC to occur, and how the transition 
from a normal (healthy) SPOC to an abnormal (pathologi-
cal) SPOC occurs.

The present model only provides a small seed for such a 
line of research approach for the future. But, the present 
model simulation suggests that the disorganized SPOC tends 

1) In-phase SPOC occurs at the regions where the value of 
K is small, and the value of kz is either small or large. As 
the value of ka is smaller, the in-phase SPOC region 
becomes larger. This characteristic is independent of the 
2D and 3D connections (Figs. 4 and 5).

2) Disrupted SPOC occurs at the region where the value of 
K is large and the value of kz is small. In the 3D connec-
tion (Fig. 4B–E), it is to be noted that the disrupted SPOC 
appears here and there at larger kz (as schematically 
shown by several green circles in Fig. 7), although the 
appearance probability is low. This may be attributable to 
the uncertainty of this non-linear model, which includes 
some randomness on the initial values of parameters as 
±δ. In the 2D connection, on the other hand, the disrupted 
SPOC region appears at both smaller and larger values of 
kz, especially at larger K (Fig. 5B–E).

3) Type-1 (phase-locked) and Type-2 (phase-unlocked) 

Figure 6 An example showing a Type-1 traveling wave in a bun-
dle of skinned myofibrils. (A) Phase contrast image of rabbit psoas 
glycerinated myofibrils under an ADP-SPOC condition [8]. Numbers 
shown by arrows indicate the sarcomeres used for image analyses 
shown in (B) and (C). The yellow outlined rectangle on the upper side 
defines “Top”, and on the lower side, “Bottom”. (B) Time course of SL 
changes. The numbers of sarcomeres correspond to those indicated by 
the arrows in (A). The “Top” and “Bottom” also correspond to the rect-
angle regions in (A). (C) Time course of the SL changes in single sar-
comeres in the “Top” and “Bottom” rectangle regions. The red (Top) 
and blue (Bottom) lines, respectively, correspond to the red and blue 
arrows in (A), and the red and blue lines in (B).

Figure 7 Schematic representation of the summary on the phase 
diagram obtained by the present 2D and 3D myofibril model simula-
tions. To construct this summary, some minor uncertainties discussed 
in the text were ignored.
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Natl. Acad. Sci. USA 106, 11954–11959 (2009).
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to occur as 1) the value of K is increased, which may corre-
spond to the stiffening of muscle tissue, and/or 2) the value 
of kz comes out of an optimal region, which may be due to 
stiffening or breakage of the cross-linkers between myofi-
brils.

In the present model, we introduced mainly three parame-
ters, i.e., K, ka and kz. Among these parameters, the value of 
K is experimentally controllable. It may be possible to con-
trol the value of kz by selective cleavage with proteolytic 
enzyme. Thus, there is a possibility that the present model 
simulation presents a guideline for future experimental stud-
ies on muscle physiology.
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