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A B S T R A C T

Human observers show robust activity in distinct brain networks during movie-viewing. For example, scenes that
emphasize characters’ thoughts evoke activity in the “Theory of Mind” (ToM) network, whereas scenes that
emphasize characters’ bodily sensations evoke activity in the “Pain Matrix.” A prior exploratory fMRI study used
a naturalistic movie-viewing stimulus to study the developmental origins of this functional dissociation, and the
links between cortical and cognitive changes in children’s social development (Richardson et al., 2018). To
replicate and extend this work, the current study utilized a large publicly available dataset (n= 241, ages
5–20 years) (Alexander et al., 2017) who viewed “The Present” (Frey, 2014) and completed a resting state scan
(n=200) while undergoing fMRI. This study provides confirmatory evidence that 1) ToM and pain networks are
functionally dissociated early in development, 2) selectivity increases with age, and in ToM regions, with a
behavioral index of social reasoning. Additionally, while inter-region correlations are similar when measured
during the movie and at rest, only inter-region correlations measured during movie-viewing correlated with
functional maturity. This study demonstrates the scientific benefits of open source data in developmental cog-
nitive neuroscience, and provides insight into the relationship between functional and intrinsic properties of the
developing brain.

1. Introduction

The adult brain is comprised of functional networks of brain regions
that are commonly engaged in particular cognitive tasks (Kanwisher,
2010). The characterization of these functional networks in the adult
brain has paved the way for pediatric studies that aim to understand the
developmental origins of this functional dissociation, and to link neural
changes within these networks to cognitive development in childhood.
Discovering robust neural markers of cognitive development could
provide specific targets for cognitive and clinical interventions. How-
ever, a key challenge for this endeavor is to study the properties of
functional networks in children.

Naturalistic movie-viewing experiments may provide a solution to
this challenge. While functionally selective regions have traditionally
been studied via experiments that measure responses across multiple
trials of experimental and control conditions, movie stimuli can be
tailored in length, are engaging for young children, and minimize
participant motion (Cantlon and Li, 2013; Vanderwal et al., 2015).
Movie-viewing experiments require minimal instruction, and are easily
replicable across research sites. Accumulating evidence from fMRI
studies of adults suggests that movie-viewing experiments can be used

to replicate functional divisions in cortex traditionally characterized
with lengthy, well-controlled experiments (Hasson, 2004; Hasson et al.,
2010; Wagner et al., 2016). For example, Jacoby et al. (2016) used
a< 6min movie (Disney Pixar’s “Partly Cloudy” (Reher and Sohn,
2009)) to localize two functionally dissociated cortical networks for
reasoning about distinct aspects of other people (Jacoby et al., 2016).
One network, comprised of bilateral temporoparietal junction (TPJ),
precuneus, and medial prefrontal cortex (e.g., Saxe and Kanwisher,
2003), is recruited to reason about others’ minds (the “Theory of Mind”
(ToM) network), while a second network, comprised of bilateral insula,
medial frontal gyrus, and secondary sensory motor cortex, and dorsal
anterior middle cingulate cortex (e.g. Zaki et al., 2016), is recruited to
reason about others’ bodies (the “Pain Matrix”).

The functional dissociation between the ToM and Pain networks has
been studied across a wide range of social and experimental contexts.
For example, when considering others’ actions, the ToM network is
recruited to reason about why it was performed (with what intention),
while the Pain Matrix is recruited to reason about how it was performed
(with what muscle movements) (Spunt et al., 2015). When considering
others’ painful experiences, the ToM network is recruited to reason
about emotional pain (negative emotions like grief or sadness), while the
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Pain Matrix is recruited to reason about physical pain (i.e., the bodily
experience itself) (Bruneau et al., 2012, 2013). When viewing others’
suffering, (part of) the ToM network is recruited when observers feel
care and concern towards the other, while the Pain Matrix is recruited
when observers experience vicarious or shared negative feelings (Ashar
et al., 2017; Singer and Klimecki, 2014). Thus, across different ex-
perimental paradigms, labs, and social contexts, ToM and Pain net-
works are recruited to reason about different kinds of internal states: the
internal states of others’ minds (e.g., beliefs, desires (Gallagher et al.,
2000; Saxe and Kanwisher, 2003), and emotions (regardless of valence)
(Koster-Hale et al., 2017; Skerry and Saxe, 2015)), and the internal
states of others’ bodies (e.g., muscle movements (Spunt et al., 2015),
sneezes (Lombardo et al., 2010), and pain (Bruneau et al., 2012)). The
movie stimulus used by Jacoby et al. (2016) (“Partly Cloudy” (Reher
and Sohn, 2009)) is particularly useful for studying responses in the
ToM and Pain networks because it includes scenes that emphasize
characters’ beliefs, desires, and emotions, and scenes that emphasize
characters’ bodily states and physical pain. Additionally, the content
and length of this movie make it an ideal experimental paradigm for
measuring functional responses in young children.

Indeed, a recent exploratory fMRI study of children as young as
three years old (n=122, 3–12 years) measured functional responses in
ToM and Pain brain regions while they viewed “Partly Cloudy”
(Richardson et al., 2018). A key result of this study was that signatures
of the cortical division between ToM and pain brain regions were
present in three-year-old children: responses in ToM brain regions were
more correlated with other ToM regions than with regions in the Pain
Matrix (and vice versa), and responses in three-year-old children in
each network were significantly correlated with the average adult
timecourse. This study also found significant developmental change in
inter-region correlations and functional maturity throughout child-
hood, suggesting continued development and refinement of the func-
tional responses in both networks. The responses in ToM and Pain
networks became increasingly distinct (anti-correlated) over childhood.
While three-year-old timecourses looked similar to those of adults,
some ToM scenes evoked responses in the Pain Matrix, and some pain
scenes evoked responses in the ToM network. Across all children, re-
sponses to a particular ToM scene were positively correlated with
cognitive performance on an independent behavioral test of ToM
(https://osf.io/g5zpv/). If robust, such a neural marker could be a
useful index for designing and evaluating interventions aimed to im-
prove social cognitive abilities.

This prior study provided insights into the development of the
cortical division between ToM and pain networks, and suggested a
plausible neural marker of social cognitive behavior. However, this
study had two key limitations. First, it is critical to use confirmatory
analyses to ensure that the results of exploratory analyses are robust
and replicable. Developing generalizable neural markers of social cog-
nitive behaviors is important for developing and testing the effective-
ness of social cognitive training paradigms and clinical interventions.
The second limitation concerns the link between network properties
and functional responses. Specifically, the prior study found that the
extent to which ToM and Pain brain regions were functionally dis-
sociated, as measured via inter-region correlations within and between
the two networks (i.e., how similar the response in one region is to that
of another region), correlated with the functional maturity of the re-
sponse (i.e., how similar the response was to the average adult re-
sponse). Inter-region correlations are considered to measure functional
or “effective” connectivity (Blank et al., 2014; Hasson, 2004; Hasson
et al., 2010), but could be driven by functional response profiles (e.g.,
two regions activate and deactivate to the same content within the
movie stimulus), or could reflect intrinsic network properties that are
present at rest, i.e., in absence of stimuli (Fox et al., 2005; Greicius
et al., 2003) (e.g., two regions activate and deactivate together re-
gardless of stimulus). Intrinsic networks largely correspond to the
functional divisions in cortex: brain regions that are correlated during

cognitive tasks are also correlated at rest (Cole et al., 2014; Greicius
et al., 2003; Miall and Robertson, 2006).

Because inter-region correlations were measured during movie-
viewing, the prior study could not determine the relative contributions
of functional or intrinsic properties to inter-region correlations, and
therefore could not determine the nature of the link between functional
maturity and inter-region correlations. One hypothesis is that the re-
lationship between functional maturity and inter-region correlations is
driven by the stimulus driven response in these two networks during
movie-viewing. That is, systematic functional responses to stimuli or-
ganize these brain regions into two functionally distinct, anti-correlated
networks. Inter-region correlations during functional tasks could sub-
sequently shape intrinsic inter-region correlations. Previous work has
found that stimulus-elicited connectivity predicts resting state con-
nectivity patterns longitudinally (Gabard-Durnam et al., 2016), and
resting state connectivity can be altered via intensive exposure to par-
ticular cognitive tasks (Mackey et al., 2013). Thus, engaging specific
brain regions via functionally specific tasks could drive regions within a
network to become correlated with one another, and anti-correlated
with regions in other networks, and these functional dissociations may
influence the intrinsic connectivity between brain regions at rest. Al-
ternatively, this relationship could be driven by the intrinsic properties of
ToM and pain networks. Intrinsic networks are apparent by the end of
the first year of life (Yeo et al., 2011), if not earlier (van den Heuvel and
Thomason, 2016), and become more distinct over childhood (Chai
et al., 2014). Development of intrinsic networks could plausibly pre-
cede and influence the emergence of systematic functional responses.
Of course, functional responses could be similarly early developing, but
there is much less functional MRI data from infants and young children,
due to the methodological challenges of scanning these populations
while awake (though see Deen et al., 2017).

In order to address these limitations, the current study was con-
ducted with two goals: (1) to use confirmatory analyses to replicate the
results of prior exploratory analyses, and (2) to characterize the nature
of the link between stimulus-driven responses and inter-region corre-
lations within and between the ToM and Pain networks during movie-
viewing. A large, publicly available dataset of five to twenty year olds
(n= 241) (Alexander et al., 2017) who viewed Jacob Frey’s “The
Present” (2014) while undergoing fMRI was analyzed using methods
identical to the prior study. Parents or guardians of participants com-
pleted a behavioral metric of social reasoning: the Social Communica-
tion Questionnaire (SCQ (Rutter et al., 2003)). Confirmatory evidence
strengthens the confidence in results based on exploratory analyses, and
in this case, tests the generalizability of the results to a more hetero-
geneous sample of participants and under a new experimental context
(i.e., a different movie paradigm and behavioral measure of social
reasoning). A large subset of the participants (n=200) additionally
completed a resting state scan, enabling the current study to help clarify
the link between the development of stimulus-driven functional re-
sponses and inter-region correlations. While the current cross-sectional
study cannot determine predictive relationships or causal order of de-
velopment between intrinsic and functional networks, it can test whe-
ther the functional maturity of responses in ToM and pain brain regions
are specifically related to inter-region correlations during movie-
viewing, or are more generally related to inter-region correlations that
are intrinsic, i.e., present at rest.

2. Methods

2.1. Participants

Participants were a subset of participants recruited by the Child
Mind Institute (Alexander et al., 2017). The final sample included 241
participants, 200 of whom additionally had usable resting state data.
Participants who completed both “The Present” in addition to an ana-
tomical (T1) scan were downloaded from Data Releases 1.1 and 2.1
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(n= 322); 314 of these participants additionally completed a resting
state scan. Participants were excluded from analyses for excessive
motion during the scan (Present: n= 7; Rest: n= 45) or failed regis-
tration/lack of sufficient coverage (Present: n= 74; Rest: n= 66, see
fMRI Data Analysis for detailed exclusion criterion). For inter-region
correlation analyses, three additional participants were subsequently
excluded for having outlier correlation values (see Inter-region Corre-
lation section of Methods), leaving n=238 (“Present”) and n=200
(Resting) participants for these analyses.

In order to make comparisons between this sample and a previous
study (Richardson et al., 2018), some analyses were conducted speci-
fically in children (n=186 5–12 year old participants; M(SD) age:
9.1(2.1) years, 60 females, n= 153 right-handed; resting state subset:
n= 151, M(SD) age: 9.3(2.1) years, 50 females, n= 124 right-handed)
and adolescents/young adults (n=55 13–20 year old participants: M
(SD) age: 15.3(1.9) years, 26 females, n= 49 right-handed; resting
state subset: n= 51, M(SD) age: 15.4(1.8) years, 25 females, n= 45
right-handed), separately. A low/matched motion subset of participants
was created in order to directly compare response timecourses during
“The Present” to those at rest (children (ages 5–12 years): n= 81, M
(SD) age: 9.4(2.1), 30 females; full sample (ages 5–19 years: n= 106, M
(SD) age: 10.8(3.1) years, 45 females; see Methods for more details
about the creation of this subset). The low/matched motion subset is
thus slightly older and includes disproportionately fewer male partici-
pants relative to the “full” sample; these variables were not statistically
different between samples (ps> .2).

All participants were recruited by the Child Mind Institute (CMI) via
a community-referred recruitment model (Alexander et al., 2017). Re-
lative to the prior sample, the sample recruited by the CMI appears to
be more representative in terms of non-verbal IQ (see Supplementary
Fig. 1). Additionally, unlike the prior study (Richardson et al., 2018),
which recruited participants with no known cognitive or neural dis-
orders, many of the participants of the current study had or received
clinical diagnoses at the time of testing. The most common diagnosis
among participants was Attention-Deficit/Hyperactivity Disorder; see
Supplemental Materials for visualizations of clinical diagnoses (Sup-
plementary Fig. 2) and for a discussion of subject attrition. All adult
participants gave written consent; parent/guardian consent and child
assent was received for all child participants. The Chesapeake Institu-
tional Review Board approved recruitment and experiment protocols;
the Committee on the Use of Humans as Experimental Subjects
(COUHES) at the Massachusetts Institute of Technology and the Child
Mind Institute approved data access and analyses.

2.2. FMRI stimuli

During the functional MRI scan, participants watched Jacob Frey’s
“The Present” (2014), a 3.5-minute animated movie (https://vimeo.
com/152985022). During the resting state scan, participants were in-
structed to keep their eyes open and fixate on a crosshair in the middle
of the screen. The resting state scan was completed prior to the func-
tional movie-viewing task.

2.3. FMRI data acquisition

Prior to the scan, participants completed a mock scan in order to
become acclimated to the scanner environment, and to learn how to
stay still.

Whole-brain structural and functional MRI data were acquired on a
3-Tesla Siemens Tim Trio scanner located at the Rutgers University
Brain Imaging Center, using the standard Siemens 32-channel head coil
and CMRR simultaneous multi-slice echo planar imaging sequence. T1-
weighted structural images were collected in 224 sagittal slices with
0.8 mm isotropic voxels (%FOV Phase: 100%). Functional data were
collected with a gradient-echo EPI sequence sensitive to Blood Oxygen
Level Dependent (BOLD) contrast in 60 slices covering the whole brain

(TR: 800ms, TE: 30ms, flip angle: 31°, multi-band acceleration: 6).
Functional data during “The Present” were acquired in a single 3.5-
minute run (250 volumes); resting state data were collected across two
5.1-minute runs (375 volumes per run). Primary analyses of resting
state data were conducted on the first 250 volumes, in order to match
amount of data across scan type.

2.4. FMRI data analysis

FMRI data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm) (Friston, 1994) and custom software written in Matlab and R,
using identical procedures to those used in the study that was the target
for replication (Richardson et al., 2018). Functional images were re-
gistered to the first image of the run; that image was registered to each
participant’s anatomical image, and each participant’s anatomical
image was normalized to the Montreal Neurological Institute (MNI)
template. Registration of each individual’s brain to the MNI template
was visually inspected, including checking the match of the cortical
envelope and internal features like the AC-PC and major sulci. All data
were smoothed using a Gaussian filter (5mm kernel).

Artifact timepoints were identified via the ART toolbox (https://
www.nitrc.org/projects/artifact_detect/) (Whitfield-Gabrieli et al.,
2011) as timepoints for which there was 1) more than 2mm composite
motion relative to the previous timepoint or 2) a fluctuation in global
signal that exceeded a threshold of three standard deviations from the
mean global signal. Data were excluded from analyses if one-third or
more of the timepoints collected (per scan type) were identified as ar-
tifact timepoints (Present: 83 TRs, n=7 participants excluded; Resting:
250 TRs, n= 43 participants excluded; n= 2 additional participants
excluded for> 83 TRs motion in truncated Resting scan). For sub-
sequent analyses of the resting state scan, only the first 250 TRs were
used, in order to match the amount of data analyzed across tasks. The
number of motion artifact timepoints was included as a covariate in all
analyses. In the current dataset, number of artifact timepoints was
highly correlated with mean translation during both scans (rs> .62;
ps< 2.2× 10−12). Because this measure was not normally distributed
(ps< 3.5× 10-16), spearman correlations were used when including
amount of motion as a covariate in partial correlations. Number of
artifact timepoints (henceforth, “Motion”) during “The Present” de-
creased significantly with age in the full sample (Child (n= 186): M
(SD)=14.6(15), Adolescents/Young Adults (n=55): M
(SD)=9.0(9.4), linear regression on motion: effect of age (continuous):
b=-0.21, t=-3.2, p= .001); motion during the truncated resting state
scan decreased marginally with age in the full sample (Child (n=151)
M(SD)=10.3(20.4), A/YA (n= 51) M(SD)=8.3(24.8), linear regres-
sion on motion: effect of age (continuous): b= −.13, t=−1.9,
p= .06). Among 5–12 year old children, motion was significantly ne-
gatively correlated with age in the resting state scan, but not during the
“Present” (spearman correlation test: Present: rs(184)=−.11, p= .13;
Resting: rs(149)=−.17, p= .04). SCQ score was not correlated with
motion during either scan (spearman correlation test: Present:
rs=−.05, p= .51; Resting: rs=−.01, p= .88). See Supplementary
Figure 6 for a visualization of the amount of motion in this sample.

A low- and matched-motion subset of participants (n=106 parti-
cipants, including n=81 5–12 year old children) was used to directly
compare inter-region correlations during “The Present” and at rest.
Participants were first selected for inclusion in this subset if they had
fewer than 10% of timepoints identified as motion artifact in both scans
(< 25 timepoints). Participants were subsequently excluded based on
the difference in motion between the two scans, until a motion-matched
sample was obtained (two-tailed paired t-test on number of artifact
timepoints: children: t(80)=−.46, p= .64; full sample: t(105)=−.34,
p= .74). Finally, because this sample was specifically created to test for
significant task-by-age interactions on inter-region correlations, the
four oldest participants with the largest difference in motion between
the two scans were excluded, such that the task-by-age interaction on
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amount of motion was non-significant (children: NS effect of task-by-
age interaction: p= .12; regression on motion without interaction: NS
effect of task: p= .65, NS effect of age: p= .07; full sample: NS effect of
task-by-age interaction: p= .18; regression on motion without inter-
action: NS effect of task: p= .74, effect of age: p= .001).

Region of interest (ROI) analyses were conducted using group ROIs.
ToM and Pain Matrix group ROIs were created in an independent group
of adults (n=20), scanned by Evelina Fedorenko and colleagues, as
previously described (Richardson et al., 2018). These group ROIs were
used for easy comparison to the previous study. Note that while Pain
Matrix ROIs are referred to as such, prior studies suggest that these
regions are recruited when adults and children think about bodily
sensations other than/in addition to physical pain (e.g., muscle move-
ments (Spunt et al., 2015), sneezes (Lombardo et al., 2010)).

All timecourse analyses were conducted by extracting the scaled,
preprocessed timecourse from each voxel per group ROI. Nearest
neighbor interpolation over artifact timepoints was applied (for meth-
odological considerations on interpolating over artifacts before ap-
plying temporal filters, see Carp, 2013; Hallquist et al., 2013), and two
kinds of nuisance covariates were regressed out in order to reduce the
influence of motion artifacts: 1) motion artifact timepoints, and 2) five
principle component analysis (PCA)-based noise regressors generated
using CompCor within individual subject white matter masks (Behzadi
et al., 2007). White matter masks were eroded by two voxels in each
direction, in order to avoid partial voluming with cortex. CompCor
regressors were defined using scrubbed data (i.e. artifact timepoints
were identified and interpolated over prior to running CompCor). The
residual timecourses were then high-pass filtered with a cutoff of 100 s.
Timecourses from all voxels within an ROI were averaged, creating one
timecourse per group ROI, and artifact timepoints were subsequently
excluded (NaNed).

2.4.1. Inter-region correlation analyses
In inter-region correlation analyses, each ROI timecourse (excluding

the first three timepoints) was correlated with every other ROI’s time-
course, per subject, and these correlation values were Fisher z-trans-
formed. Within-ToM correlations were the average correlation from
each ToM ROI to every other ToM ROI, within-Pain correlations were
the average correlation from each Pain ROI to every other Pain ROI,
and across-network correlations were the average correlation from each
ToM ROI to each Pain ROI. Based on the previous study, a range of
expected values for inter-region correlations was calculated as the
average within-ToM, within-Pain, and across-ToM Pain correlation in
the 5–12 year old and adult participants from the original study, plus or
minus three standard deviations (wi-ToM: −.03 – .83; wi-Pain: −.05 –
.75; ac-ToM-Pain: −.55 – .51). Adults as well as 5–12 year old children
were included in this calculation in order to better suit the current
sample (ages 5–20 years old). Data points outside of this range were
considered outliers and excluded from inter-region correlation analyses
(Present: n= 3; Resting: n= 11). During both types of scans, within-
ToM correlations were normally distributed (Present: p= .06; Rest:
p= .10; Shapiro-Wilk normality test), but within-Pain and across-net-
work correlation measures were not (Present: ps< .0002; Rest:
ps< .00005).

In order to test for developmental change in within- and across-
network correlations, linear regressions were used to test for 1) sig-
nificant effects of age (as a continuous variable) in the full sample (ages
5–20 years), in regressions that additionally included number of artifact
timepoints as a predictor, and 2) significant effects of age (as a con-
tinuous variable), SCQ, and number of artifact timepoints among chil-
dren. In order to test whether ToM and pain networks are functionally
dissociated early in childhood, t-tests were conducted to compare
within- versus across-network correlations in five-year-old children
(n=16).

2.4.2. Reverse correlation analyses
Initial reverse correlation analyses of “The Present” task were con-

ducted on adolescent/young adult participants only (n=55), for
identification of events. Each ROI timecourse was z-normalized, and
timecourses within each network were averaged across ROIs, resulting
in one timecourse for the ToM network and one timecourse for the Pain
Matrix per participant. Except for the first five timepoints (4 s), the
residual signal values across adult subjects for each timepoint were
tested against baseline (0) using a one-tailed t-test. Events were defined
as five or more consecutive significantly positive timepoints within
each network (i.e., as in the previous study (Richardson et al., 2018),
events were at least 4 s in duration). Because reverse correlation ana-
lyses compare responses across participants to baseline, identified
events should be considered to drive responses in the regions of interest
relative to other moments in the stimulus. Events were rank-ordered
according to the average magnitude of response to the peak timepoint,
and labeled according to the ordering (i.e. event T01 is the ToM event
that evoked the highest magnitude of response in the ToM network).

In order to test for developmental effects in the magnitude of re-
sponse to ToM and pain events, a peak timepoint was defined for each
event as the timepoint with the highest average signal value in adults,
and the correlation between the magnitude of response at peak time-
points and age (as a continuous variable), including amount of motion
(number of artifact timepoints) as a covariate, was measured. Response
magnitude to eight of ten events was normally distributed (all ps> .06,
Shapiro-Wilk normality test); response magnitude to events T03 and
P02 were non-normally distributed among children (ps< .02). Because
the number of artifact timepoints is a non-normally distributed mea-
sure, spearman correlation tests were used for all events. For ToM re-
gions only, linear regressions were used to test for a significant re-
lationship between peak magnitude of response and score on the Social
Communication Questionnaire (SCQ). A Bonferroni correction was used
to correct for multiple comparisons (age: 10 events tested; SCQ: 7
events tested). As in the previous study (Richardson et al., 2018), the
reverse correlation analysis was also conducted in the youngest chil-
dren scanned (five-year-old participants; n= 16).

2.4.3. Functional maturity
Finally, the correlation between the functional maturity of each

child’s timecourse responses (i.e. similarity to adolescents/young
adults) during “The Present” and inter-region network correlations was
measured. The Pearson correlation between each child’s ToM time-
course (averaged across ROIs) and the average adult ToM timecourse
was calculated; the same procedure was used to calculate functional
maturity in the Pain Matrix. The timecourses used for this analysis were
the same as those used for the reverse correlation analysis, prior to z-
normalization (TRs 6:250). Correlation tests were conducted to test if,
across children, this measure of functional maturity per network was
correlated with within-network and across-network inter-region corre-
lations, or to SCQ score. The functional maturity measure was normally
distributed in the Pain (p= .10, Shapiro-Wilk normality test) but not
ToM network (p= .004). The Pearson correlation between the average
timecourse of children (all children, and five year olds separately) and
the average adolescent/young adult timecourse was also measured.

Linear regressions were used to test for correlations between func-
tional maturity and inter-region correlations as measured during movie-
viewing and during rest. These regressions controlled for age (con-
tinuous variable) and motion.

2.5. Comparison to previous results

For easy comparison to the prior study, the data from that study
were reanalyzed in 5–12 year old children only (i.e., excluding 3–4 year
olds). The analysis procedures were identical to those described above;
the participants and experimental paradigm were described previously
(Richardson et al., 2018). The results of these analyses are included in
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the Supplementary Materials.

2.6. Behavioral measures

The Social Communication (SCQ (Rutter et al., 2003)) score was
used to measure individual differences in social cognition. The SCQ is a
parent questionnaire that is often used to screen individuals for Autism
Spectrum Disorder. Items tap a wide array of social behaviors, including
aspects of conversation, interests, physical behaviors (e.g., flapping
fingers, but also pointing/gesturing), sharing, helping, and empathic
responses. Two phenotypic measurements collected by the Child Mind
Institute that characterize social behavior were initially downloaded:
the SCQ and the Social Responsiveness Scale (SRS (Constantino and
Gruber, 2012)). While the Child Mind Institute is additionally con-
ducting ADOS screening (Lord et al., 2000), these data are not yet
publicly available. The SRS and SCQ measures were significantly po-
sitively correlated in the current sample (rs(191)= .70,
p < 2.2× 10−16), even when including age as a covariate
(p < 2×1016). Neither of these measures were normally distributed
(Shapiro-Wilk normality test: ps< 3.4× 10-7). Because these measures
were highly correlated, and the SCQ task is identical for all participants
(whereas younger participants complete a different version of the SRS),
SCQ scores were used as the behavioral measure of individual differ-
ences in social cognition.

3. Results

This study first sought to confirm results of a previous exploratory
study on children (n=122, 3–12 years) and adults (n=33) who
watched Pixar’s animated short “Partly Cloudy” while undergoing
fMRI. The previous study found that 1) ToM and pain networks are
functionally dissociated by age three years, 2) network differentiation
increases throughout childhood, 3) the magnitude of response during
one scene is correlated with cognitive performance on a test of ToM,
and 4) the “functional maturity” of the response timecourse is corre-
lated with the inter-region correlations of the networks. The current
study tested whether these results replicate in an independent, large,
and heterogeneous sample of participants who viewed a different movie
(Jacob Frey’s “The Present” (2014)) while undergoing fMRI.

3.1. Replication: inter-region correlation analyses

As in the original study, ToM and Pain brain regions were sig-
nificantly more correlated with within-network brain regions, com-
pared to brain regions in the opposite network. A significantly positive
within – across network correlation difference is one indication of a
functional dissociation. Among adolescents and young adults (A/YA),
within-network correlations (M(SE) Wi-ToM: .34(.02), Wi-Pain:
.23(.01)) were significantly higher than across-network correlations in
both networks (M(SE) ac-TP: -.15(.01); within vs. across-network two-
tailed paired t-tests: ToM: t(52)= 21.4, p < 2.2×10−16; Pain: t
(52)= 22.9, p < 2.2× 10−16). Within-network correlations were
significantly positive (ps< 2.2× 10−16) and the across-network cor-
relation was significantly negative (t(52)=−12.8, p < 2.2×10−16);
see Fig. 1.

The current study also tested for developmental change in inter-
region correlations. Because the age range of the current sample (ages
5–20 years) differs from that of the previous study (ages 3–12 years, and
adults), primary inter-region correlation analyses were conducted in
the full sample, and results from the age-matched child sample
(5–12 year olds) are additionally reported. See Supplementary
Materials for the results of age-matched analyses in the prior study.
Consistent with the previous results, within-network inter-region cor-
relations increased significantly with age and across network inter-re-
gion correlations decreased significantly with age (full sample:
ps< .005); see Fig. 1 and Supplementary Fig. 3 for visualizations, see

Table 1 for statistics. Within-network age effects become marginal in
the low/matched motion sample (ps< .1); the across-network age ef-
fect remains significant (p= .02). In both studies, developmental
change with age was less apparent in the narrower, matched age range
(5–12 year old children): there was not significant evidence for devel-
opmental change in 5–12 year old children in within- or across-network
correlations, but all correlations showed developmental trends in the
predicted directions (Table 1 and Supplementary materials). Age cor-
relations among 13–20 year old participants were non-significant
(ps> .15).

The previous study found evidence for functionally dissociated ToM
and Pain networks in children as young as three years old. In the cur-
rent sample, the youngest children scanned were five years old. In these
children, within-network correlations were significantly greater than
across-network correlations (n=16 5yo; M(SE) within-ToM: .25(.04),
within-Pain: .19(.03), across-ToM-Pain: -.07(.04); within vs. across-
network correlation paired two-tailed t-test: ToM: t(15)= 7.3,
p=2.7× 10−6, Pain: t(15)= 7.0, p=4.5×10−6). Given the small
sample size, these results were confirmed with non-parametric
Wilcoxon signed rank tests (Vs= 136, ps< .00005). As with the ado-
lescents and young adults, within-network correlations were sig-
nificantly positive (ps< .00005). However, the across-network corre-
lation did not differ significantly from zero (t(15)=−1.7, p= .10).

The previous study found a significant relationship between beha-
vioral performance on a ToM behavioral battery and within-ToM and
across-ToM-Pain inter-region correlations, but these relationships did
not remain significant when additionally controlling for age. The cur-
rent study used scores on the Social Communication Questionnaire
(SCQ (Rutter et al., 2003)), a parent report questionnaire, as a measure
of social cognitive reasoning. Scores on the Social Communication
Questionnaire significantly correlated with age in the full sample
(rs(193)= .19, p= .01), reflecting more variable and high scores
among older participants who contributed fMRI data; this correlation
was marginal in the child sample (rs(151)= .16, p= .05). There were
no significant correlations between within-ToM or across-ToM-Pain
inter-region correlations and SCQ scores among children (partial cor-
relations including motion as covariate: rs< |.11|, ps> .2), or in the
full sample (rs< |.06|, ps> .4).

3.2. Replication: reverse correlation analyses

Reverse correlation analyses offer a data-driven way to determine
what kinds of stimuli drive responses in particular brain regions. A
reverse correlation analysis was conducted on the neural responses in
adolescent and young adult participants (n= 55) while they watched
“The Present” (Frey, 2014). This analysis produced seven ToM events
(40 s total, M(SD) length: 5.7(3.0) seconds) and three Pain events
(21.6 s total, M(SD) length: 7.2(1.4) seconds); see Fig. 2. Six of the
seven ToM events clearly depicted moments that involved reasoning
about mental states (beliefs, goals, emotions) of the characters (e.g.,
boy curiously opening present, boy expressing annoyance, and gaining
a new understanding of the boy, upon realizing that he, like the puppy,
has lost his leg). The remaining ToM event introduced the boy character
and showed him playing video games. The three Pain events depicted
moments involving physical pain or bodily clumsiness (due to the
missing leg). See Supplementary Table 1 for more information about
the timing and content of the events. Note that while these events are
referred to as “Pain events” in order to refer to the Pain Matrix ROIs
used for analysis, the content that evokes responses in these regions is
not limited to physical pain, but also includes moments that focus on
bodily movements and sensations (as in prior studies (Lombardo et al.,
2010; Spunt et al., 2015)). Out of the 245 timepoints tested (all but the
first 5 TRs (4 s)), there were zero timepoints that reliably evoked sig-
nificantly positive responses in both ToM and Pain events.

Responses to one ToM event (T01) increased significantly with age
among 5–12 year old children (partial spearman correlation test,
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including motion as a covariate: rs(175)= .23, p= .0024; Bonferroni
correction for multiple comparisons α= .005, for ten events; event
P02: rs(175)= .19, p= .009; all other events: ps> .02). Responses to a
second ToM event (T02) positively correlated with SCQ score in a linear
regression that included age and motion as covariates (effect of SCQ:
-.21, t=-2.4, p= .018, effect of age: b= .19, t= 2.3, p= .02, NS effect
of motion: b=-.05, t=-.57, p= .57; all other events SCQ ps> .12); this
relationship did not survive Bonferroni correction for multiple com-
parisons (α= .007, for seven ToM events).

As in the previous study, a reverse correlation analysis was also
conducted on the youngest participants scanned (age 5 years old,
n= 16). Responses in five year olds were generally highly correlated
with the average adolescent/young adult timecourse (M(SE) of Pearson
correlation: ToM: .23(.04), Pain: .22(.04); one sample t-tests against
zero: ts(15)= 6.1, ps< 2.2×10−5). In five year olds, the reverse
correlation analysis identified two of the seven ToM events and one of
the three Pain events defined in the adolescent/young adult partici-
pants; see Fig. 2. These events made up a majority of the timepoints
identified as events in the five year olds (18/32 TRs). Three of the re-
maining 14 TRs immediately preceded or followed these events. The
remaining 11 TRs comprised one ToM event and one Pain event, which
shared a single timepoint (6 TRs each); neither of these events were
identified in the adolescent/young adult sample. See Supplementary
Figure 5 and Supplementary Table 1 for more information about all
events.

3.3. Replication: functional maturity

The current dataset included adolescents/young adults (13–20 years
old), rather than adults (in the previous study: ages 18–39 years old).
Response timecourses among 5–12 year old children were generally
positively correlated with the average timecourse of adolescents and
young adults (n=186 5-12yo: M(SE) Pearson correlation value (r):
ToM: .30(.01), Pain: .27(.01)). However, as in the previous study,
functional maturity (i.e., similarity to responses in adolescents/young
adults) in ToM and Pain networks increased with age among 5–12 year
old children (spearman partial correlations including motion as a cov-
ariate: ToM: rs(182)= .20, p= .006; Pain: rs(182)= .19, p= .01).

Functional maturity in the ToM network was not significantly corre-
lated with SCQ score (spearman partial correlation including motion as
a covariate: rs(150)= .08, p= .35).

There were significant effects of within- and across-network corre-
lations on functional maturity in the ToM network; see Fig. 3a for vi-
sualization and Table 2 for statistics. In the Pain network, only the
across-network correlation significantly predicted functional maturity
(Fig. 3a, Table 2). This same pattern of results was apparent in a low/
matched motion subset of participants who contributed fMRI data to
the movie and resting state scans (n= 106; including n=81 5-12yo).
In this subset, functional maturity in both networks was predicted by
the anti-correlation between the two networks (Table 2). VIF scores for
all predictors were<2 in these regressions.

3.4. Extension: inter-region correlations during resting state

A subset of the sample completed a resting state scan (n= 200),
enabling this study to test if the pattern of results from the inter-region
correlation analyses were specific to functional responses during a so-
cial, naturalistic movie-viewing paradigm. Within-network correlations
(M(SE) within-ToM: .51(.02), within-Pain: .29(.02)) were higher than
across-network correlations (M(SE) across-ToM-Pain:-.23(.02)) during
rest in adolescents/young adults (within vs. across-network correlation
paired two-tailed t-test: ToM: t(48)= 21, p < 2.2× 10−16; Pain: t
(48)= 19.2, p < 2.2× 10−16).

In the full sample (ages 5–20 years), within-network inter-region
correlations during rest increased significantly with age (ps< .0005),
and across-network inter-region correlations decreased significantly
with age (p= 5.4× 10−1) see Table 1 and Fig. 4. An analysis of resting
state data in the low/matched motion subset of participants (n=106)
yielded the same pattern of results. Among 5–12 year old children,
within-ToM and within-Pain network correlations did not increase
significantly with age in the full sample or in the low/motion-matched
sample, consistent with the results from the movie-viewing task
(Table 1). Across-network correlations during rest decreased with age
in the full sample of 5–12 year old children (p= .0005); this result was
not significant in the low/motion-matched 5–12 year old sample
(p= .23; Table 1). Age effects among 13–20 year old participants were

Fig. 1. Developmental Change in Inter-region Correlations. a) Average z-scored correlation matrices across all ToM and pain brain regions of interest (see y-axis)
per age group (5yo: n=16; 6yo: n= 20; 7yo: n= 26; 8-12yo: n=123; adolescents/young adults (YA; 13–20 years): n=53), as measured during movie-viewing.
Regions are in the same order along the X-axes and Y-axes. b) Z-scored inter-region correlations (y-axis) by age (x-axis) within the ToM network (left, red), within the
Pain network (middle, green), and across the ToM-Pain networks (right, blue). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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not significant (ps> .15). There were no significant correlations be-
tween within-ToM or across-ToM-Pain inter-region correlations mea-
sured at rest and SCQ scores among children (partial correlations in-
cluding motion as covariate: rs< |.08|, ps> .4), or in the full sample
(rs< |.04|, ps> .6).

Very few five year olds were included in the resting state sample
(n= 7). However, even in this small sample, within-network correla-
tions (M(SE) within-ToM: .32(.03), within-Pain: .26(.04)) were sig-
nificantly higher than across network correlations (M(SE): -.08(.08);
within vs. across-network correlation paired two-tailed t-test: ToM: t
(6)= 4.0, p= .008; Pain: t(6)= 4.0, p= .007). Given the small
sample, these results were confirmed with non-parametric Wilcoxon
signed rank tests (ToM: V=27, p= .03, Pain: V=28, p= .02). As in
the movie-viewing task, within-network correlations were significantly
positive (ps< .001), and across-network correlations did not differ
from zero (t(6)=-.99, p= .36).

3.5. Extension: inter-region correlations during resting state vs. movie-
viewing

In the low/matched-motion sample, all inter-region correlation
measures were highly correlated across movie-viewing and rest scans,
even when controlling for age and motion (Rest IRCs as predictors of
movie-viewing IRCs: within-ToM: b= .50, t= 5.2, p=1.04×10−6,
age and motion effects: ps> .7; within-Pain: b= .49, t= 5.2,
p=9.3× 10-7, age and motion effects: ps> .4; across-ToM-Pain:
b= .47, t= 4.5, p= 1.7×10-5, age and motion effects: ps> .6;
Movie-Viewing IRCs as predictors of Rest IRCs: within-ToM:
b= .43, t= 5.2, p= 1.04× 10−6, age: b= .18, t= 2.2, p= .03,
motion: b=-.24, t=-2.9, p= .004; within-Pain: b= .43, t= 5.2,
p=9.3× 10-7, age: b= .13, t= 1.5, p= .15, motion: b=-.23, t=-2.7,
p= .008; across-ToM-Pain: b= .36, t= 4.5, p= 1.7×10-5, age:
b=-.30, t=-3.6, p= .0005, motion: b= .25, t= 3.0, p= .003; Note:
all age x IRC interactions were non-significant and not included in these
regressions); see Supplementary Fig. 4.

The collection of resting state data in addition to movie-viewing
data enabled testing if the developmental separation of functional re-
sponses (i.e. within – across network correlation difference) in the ToM
and pain networks differed by task (“The Present” vs. resting state).
This analysis was conducted on a subset of participants (n=106; in-
cluding n=81 5-12yo) who had low and matched amount of motion in
these scans. Mixed effect regressions were used to test for main effects
of age, task (movie vs. rest), motion, and a task-by-age interaction, on
the within – across network correlation difference, per network. If the
task-by-age interaction was non-significant, the regression was repeated
without the interaction term and statistical evidence was reported from
this second regression. Regressions included a subject identifier as a
random effect in order to account for non-independence of data across
the two tasks.

In the full sample (n=106), the within – across network correlation
difference in both networks was larger during the resting state scan, and
there was a significant task-by-age interaction such that the positive
effect of age on the within – across difference was stronger as measured
during rest (effects of task: ps< .0005, task-by-age interactions:
ps< .01, see Table 3). Among 5–12 year old children (n=81), the
within – across network difference in both networks did not increase
significantly with age, and was larger as measured during rest (effects
of task: ps< .05, Table 3); see Fig. 4. The within – across network
difference was similarly not significantly correlated with age among
13–20 year old participants (ps> .15).

Follow-up analyses were conducted to determine which aspect of
the within – across network difference drove the developmental in-
crease in network dissociation at rest. In the motion-matched sample,
there was a significant task-by-age interaction on the across-network
correlation, such that the across-ToM-Pain network correlation de-
creased more with age as measured at rest (p= .001, see Table 3).Ta
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There were not significant task-by-age interactions on the within-ToM
and within-Pain network correlations (ToM: p= .07; Pain: p= .21,
interaction terms not included in final regressions). There were no
significant task-by-age interactions on the across-ToM-Pain, within-
ToM, or within-Pain network correlations among the 5–12 year old
subset (ps> .7).

Finally, linear regressions were conducted to test if inter-region
correlations measured at rest were correlated with the “functional
maturity” of the response (as measured during movie-viewing), among
children (5–12 years old). In both networks, neither within-network or
across-network inter-region correlations were significantly correlated
with functional maturity (ps> .3). The same pattern of evidence was
apparent in the low/matched-motion subset of participants; see Fig. 3b

for visualization and Table 2 for statistics. All age-by-inter-region cor-
relation interaction terms were non-significant (ps> .24) and not in-
cluded in these regressions, and VIF scores for all predictors in these
regressions were<2.

Linear regressions in the low-motion subset of participants
(n= 106) were used to simultaneously test for effects of inter-region
correlations as measured at rest and as measured during movie-viewing
on functional maturity, per network. The predictors included in these
regressions were: across-TP-movie, across-TP-rest, within-[ToM or
Pain]-movie, within-[ToM or Pain]-rest, age, motion (average number
of artifact timepoints across the movie and resting state scans). In the
ToM network, functional maturity was predicted by the across-ToM-
Pain correlation as measured during movie-viewing (p= .005; all VIF

Fig. 2. Functional Timecourses during “The Present.” a) The average timecourse per age group for the ToM network (top) and Pain matrix (bottom), during
viewing of Jacob Frey’s “The Present” (2014). Each timepoint along the x-axis corresponds to a single TR (800ms); the entire movie was 250 TRs (< 4min). Shaded
blocks show timepoints identified as ToM (red) and Pain (green) events in a reverse correlation analysis conducted on adolescent/young adult participants
(13–20 year olds; n= 55); timepoints within the gray block were not analyzed. Dark red and green borders show timepoints identified as ToM and pain events,
respectively, in 5-year-old children (n=16). Event labels (e.g., T01, P01) indicate ranking of average peak magnitude of response in adolescents/young adults. Black
asterisk indicates significant positive correlation between peak magnitude of response and age (continuous variable) among children, after correcting for multiple
comparisons (10 ToM/Pain events, α= .005). Red asterisk indicates significant positive correlation between peak magnitude of response and SCQ score (continuous
variable) among children; this correlation does not survive correcting for multiple comparisons (7 ToM events; α= .007, p= .02). b) Example frames and de-
scriptions for the five events with the highest magnitude of response in adolescents/young adults, per network (see Supplementary Fig. 5 for all events, and
Supplementary Table 1 for full event descriptions and timing and duration information). Thumbnail images used with permission from Jacob Frey (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article).
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scores< 2.2). In the Pain Matrix, functional maturity was predicted by
the across-ToM-Pain correlation as measured during the movie and at
rest (effect of across-TP-movie: b=-.54, t=-4.7, p= 1.2×10−5, effect
of across-TP-rest: b= .33, t= 2.5, p= .02; all VIF scores< 2); see
Table 4 for full statistics. Although the VIF scores for these regressions
were low, the sign flip on the across-TP-rest predictor for the Pain
Matrix regression and the within-ToM-rest predictor for the ToM re-
gression may reflect the multi-collinearity of the predictors (Yoo et al.,
2014). Given this, this pattern of results was confirmed using lasso
regressions; see Supplementary Materials.

Prompted by visualizing the data (Fig. 3), additional exploratory
analyses found greater variance in inter-region correlation measures
during rest, relative to during movie-viewing (F tests comparing wi-
ToM measured during movie/at rest: F(105)= .61, p= .01; wi-Pain: F
(105)= .60, p= .01; across-TP: F(105)= .43, p=2.6×10−5;
5–12 year olds only: wi-ToM: F(80)= .65, p= .06; wi-Pain: F
(80)= .69, p= .09; across-TP: F(80)= .56, p= .01).

4. Discussion

One challenge in developmental cognitive neuroscience, develop-
mental psychology, and cognitive neuroscience is to design and execute
studies that are easily replicable (Munafò et al., 2017) as well as gen-
eralizable to diverse samples (Falk et al., 2013). “Big Data” offers one
way to address this challenge, by providing large datasets that enable
discovery and replication of patterns or principles of brain develop-
ment. The current study involved analyzing a large, publicly available
fMRI dataset (Alexander et al., 2017) in order to replicate and extend
the results of a previous exploratory fMRI study. A key goal was to
determine the robustness of previously identified neural markers of
brain development that relate to behavioral measures of social cogni-
tion.

This study provides confirmatory evidence that two networks in-
volved in social responding, the ToM and pain networks, are func-
tionally dissociated in children as young as five years of age. Inter-

region correlation analyses revealed strong, positive correlations be-
tween brain regions within each network, and anti-correlated responses
across the two networks. Reverse correlation analyses identified distinct
events that evoked responses in each network; these events were con-
sistent with previous evidence that ToM brain regions preferentially
respond to scenes that highlight mental states (beliefs, desires, emo-
tions), and the “Pain Matrix” preferentially responds to scenes that
highlight bodily sensations (e.g., physical pain, bodily movements).

While responses in both networks in children were generally highly
correlated with the average timecourse of responses in adolescents and
young adults, there was significant developmental change in functional
responses to the movie. Responses to one ToM event (T01) increased
significantly with age. This event showed the boy, who had previously
expressed annoyance at the three-legged puppy his mother gave him,
softening, and feeling conflicted about softening, while watching the
puppy. As in the previous study, the event that showed change with age
was a relatively long event, requiring complicated mental state rea-
soning, and was the event with the highest response magnitude in
adults.

One benefit of conducting confirmatory analyses in publicly avail-
able datasets is that it tests the generalizability of results to samples that
are more heterogeneous than those typically acquired by a single lab.
Indeed, the current sample had a large range of SCQ scores, and in-
cluded participants whose scores are above typical cut-offs indicating
social difficulties. Given the range and variability of SCQ scores, this
dataset could offer a more sensitive test case for how real world
variability relates to variability in neural responses. In fact, just like the
in previous study, the magnitude of response to a particular ToM event
(T02) correlated with SCQ score. While this result does not survive
correcting for multiple comparisons across all seven ToM events, event
T02 bears the most resemblance to the kind of event that was related to
ToM behavior in the prior study (Richardson et al., 2018). Event T02
involves the revelation (for the audience members) that the boy, too, is
missing a leg. In the context of the movie, this scene provides insight
into the boy’s behavior: he was initially put off by the puppy’s missing

Fig. 3. Relating Functional Maturity to
Inter-region Correlations. Scatterplots show
timecourse maturity (i.e., how correlated each
child’s timecourse is to the average adolescent/
young adult timecourse (Pearson’s r, x-axis)
while viewing Jacob Frey’s “The Present”
(2014). The y-axis shows z-scored inter-region
correlation values within-ToM (red), within-
Pain (green), and across-ToM-Pain (blue) net-
works, as measured while viewing a) “The
Present”, or b) at rest. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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leg because he is adapting to his own physical limitations, but even-
tually warms up to the puppy and feels encouraged to play outside
rather than sit inside and play video games all day. As in the previous
study, increased activity in ToM regions during this event may reflect
children’s improved ability to spontaneously consider the relevance of
the current scene for past beliefs or emotions that are not explicitly
marked. Together, these results suggest that measures of spontaneous
mental state reasoning may be ideal for relating behavioral and neural
measures of ToM (Rice and Redcay, 2015).

Given the large range and variability of SCQ scores, why isn’t this
measure more sensitive to other aspects of the functional response in
ToM regions? In the previous study, proportion of correct responses on
a ToM task was correlated with inter-region correlations, functional
maturity, and response magnitude to a ToM event in the ToM network;
the correlation with response magnitude remained significant when
additionally controlling for age. In the current study, SCQ score was
correlated with the response magnitude to one ToM event (described
above), but uncorrelated with the other neural measures. One possible
explanation for the overall weak relationship is that the SCQ measure is
not optimal for measuring individual differences in social cognition that
are relevant for these neural responses. The SCQ is a parent ques-
tionnaire comprised of Yes/No questions about their child’s social and
communication skills (Rutter et al., 2003). Many questions ask parents
to “focus on the time period between the child’s fourth and fifth
birthday,” which could be challenging, especially for parents of the
oldest participants (twelve year old children, requiring memories from
eight years earlier). By contrast, the previous study used a publicly
available ToM behavioral battery to measure ToM reasoning (https://
osf.io/g5zpv/), which requires children to answer prediction and ex-
planation questions that draw on multiple concepts in ToM (e.g., si-
milar/diverse desires, true/false beliefs, knowledge access, moral
blameworthiness, mistaken referents, non-literal speech). In a prior
study, performance on this task correlated with response selectivity in
right temporo-parietal junction (Gweon et al., 2012). Thus, variability
in performance on the booklet task might more sensitively index in-
dividual differences in ToM than the SCQ. A second possible explana-
tion is that the two measures were designed to be differentially sensitive
to change with age: the ToM booklet measure aims to reflect develop-
mental change with age in addition to individual differences in ToM
(i.e., a “state” measure), while the SCQ was designed to be sensitive to
stable individual differences (i.e., a “trait” measure), and includes items
that ask about a child’s social cognitive abilities at various ages (as
described above). A third possible explanation is that apparent deficits
captured by the SCQ are not caused by differences in basic processing of
social stimuli, as reflected by inter-region correlations and properties of
the functional response in ToM brain regions (Kliemann et al., 2018).
Instead, these deficits may be better captured by measures of other
neural systems, like those underlying social motivation, or by measures
of the interactions between different neural systems (Kennedy and
Adolphs, 2012). In any case, it is clear that the behavioral task choice is
important for measuring correlations between cognitive and neural
measures. While it is difficult to constrain or tease apart specific social
cognitive concepts used while viewing a movie stimulus, behavioral
tasks can help to clarify the components of social cognitive reasoning
that are captured by neural individual differences. Researchers should
look to relevant tasks used in developmental literature (Decety et al.,
2008; Gweon et al., 2012; Richardson et al., 2018; Sabbagh et al.,
2009), and consider adapting tasks that reflect neural individual dif-
ferences in adults (Kanske et al., 2015; Rice and Redcay, 2015).

The results of the current study provide several extensions of the
previous study. First, while the current study generally replicated evi-
dence for developmental change with age, developmental trends were
most apparent in a wide age range of children. For example, in the
previous sample as well as in the current sample, within-network cor-
relations showed moderate (non-significant) developmental increases
between ages five to twelve years. However, expanding the age range to
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include younger participants (as in the previous study) and older par-
ticipants (as in the current study) revealed strong evidence for devel-
opmental change with age. Thus, measuring developmental change in
ToM and pain brain regions may require large samples that utilize wide
age ranges. One challenge for this kind of research is designing an ex-
perimental paradigm that is suited for such wide age ranges. Movie-
viewing paradigms offer one promising solution to this challenge, as
they are generally engaging for participants of many ages.

Second, while functional maturity (i.e., similarity to the average
“adult” timecourse) was significantly correlated with the extent to
which the ToM and pain brain regions were anti-correlated (as reported
by the previous study), this measure was also significantly positively
correlated with the extent to which brain regions within the ToM net-
work were correlated. This pattern of results was also true in the pre-
vious study, when analyzing inter-region correlations in raw time-
courses (see Supplementary Materials). Thus, it is likely that both
within-network and across-network correlations contribute to the ma-
turity of the functional response in ToM and Pain brain regions.

A key goal of this study was to characterize the nature of the link
between the stimulus-driven timecourse in ToM and pain brain regions,
and the inter-region correlations within and between these two net-
works. Inter-region correlations in ToM and pain brain regions were
measured during rest, in order to determine whether the link between

functional maturity and inter-region correlations was specific to sti-
mulus-driven responses, or reflective of intrinsic properties of these two
networks. In the current dataset, the responses in the ToM and pain
brain regions showed high within-network correlations and negative
across-network correlations at rest, and inter-region correlations mea-
sured at rest were significantly positively correlated with those mea-
sured during naturalistic movie-viewing. Interestingly, within-network
correlations were higher in absence of stimuli, relative to during movie-
viewing. Previous studies have suggested that the extent of the corre-
lation within- and across- brain regions varies by task. However, evi-
dence regarding the direction of the effect of tasks on intrinsic corre-
lations is mixed. Some studies report enhanced inter-region correlations
during tasks, relative to rest (Vanderwal et al., 2017). Others, like this
study, show reduced inter-region correlations during task, relative to
rest (Betti et al., 2013; Emerson et al., 2015; Greene et al., 2018). One
possibility is that the direction of this effect depends on the relevance
and specificity of the content of the stimulus for the functional regions
examined (Dixon et al., 2017; Gratton et al., 2016).

Critically, the extent to which ToM and Pain networks were func-
tionally dissociated (i.e., anti-correlated) only during movie-viewing
predicted the functional maturity of the responses in these networks.
This is consistent with previous evidence that the correlations between
“default mode” brain regions are altered during narrative processing

Fig. 4. Inter-region Correlations during Movie-Viewing and at Rest. a) Average z-scored correlation matrices across all ToM and pain brain regions of interest
(see y-axis) in low/matched motion participants, as measured while viewing Jacob Frey’s “The Present” (2014) (top row), or at rest (bottom row), by age group (5–7
years: n= 23; 8–12 years; n= 58; adolescents/young adults (A/YA): n= 25). b) Z-scored inter-region correlations (y-axis) by age (x-axis) within the ToM network
(left, red/purple), within the Pain network (middle, green/orange), and across the ToM-Pain networks (right, blue/grey). Circles show inter-region correlations as
measured during Jacob Frey’s “The Present” (2014); triangles show inter-region correlations as measured during rest. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).
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(Simony et al., 2016). Despite the high correlation between the two
measures (Gratton et al., 2018), the differences between inter-region
correlations measured during a task versus at rest are apparently re-
levant for relating these measures to functional properties of the neural
response. Interestingly, the movie stimulus appeared to reduce variance
in inter-region correlations. The remaining variability in inter-region
correlations during relevant functional tasks or movies may best cap-
ture relevant individual differences in functional response maturity
(Finn et al., 2017).

Given the similarity of inter-region correlations measured during
movie-viewing and during rest, pediatric imaging studies of children
(who are old enough to be awake/engaged by movies) that aim to
characterize functional responses should strongly consider using movie-
viewing paradigms. Functional imaging of pediatric samples is notor-
iously effortful and costly, in particular because it is difficult to com-
pletely prevent participant motion. The current study finds that parti-
cipant attrition and motion is reduced in movie-viewing paradigms
relative to resting state scans (see also (Raschle et al., 2009; Vanderwal
et al., 2015)), and that paradigms that evoke preferential functional
responses are more sensitive to the maturity of functionally selective
brain regions. Thus, movie-viewing paradigms may enable researchers
to conduct previously intractable pediatric studies with less subject
attrition and cost. To date, fMRI studies using movie-viewing paradigms
have measured responses in ToM brain regions in children who pass
and fail false-belief tasks (ages 3–5 years (Richardson et al., 2018)), and
in letter- and number-selective brain regions in children who are
learning to read and do math (ages 4–6 years (Cantlon and Li, 2013)).
Among adults, naturalistic movie-viewing or story-listening paradigms
have been used to study face- and scene-selective brain regions (Hasson,
2004), and networks of brain regions recruited to process language or
complete cognitively challenging tasks (Blank et al., 2014; Paunov
et al., 2017) (in addition to social brain regions: (Hasson, 2004;
Jääskeläinen et al., 2008; Lerner et al., 2011; Nummenmaa et al., 2012;
Richardson et al., 2018; Wilson et al., 2007)). Thus, using movies to
measure functional responses in children is a promising avenue for
future pediatric research. Future directions include conducting long-
itudinal or training studies to clarify the causal order of development of
functional and intrinsic network properties in ToM and pain brain re-
gions (Gabard-Durnam et al., 2016; Mackey et al., 2013), and ex-
amining the relationship between functional and structural brain de-
velopment (e.g., white matter tract development), and the relative
contributions of each to cognitive change.

5. Conclusion

A key challenge for developmental cognitive neuroscience is to

develop experiments that are feasible for children, replicable, and
useful for relating brain development to cognitive change. This study
used a publicly available fMRI dataset to provide confirmatory evidence
for early signatures and developmental change in the cortical dis-
sociation between regions that process information about others’ bodies
(the “Pain Matrix”) and those that process information about others’
minds (the “Theory of Mind” network). In doing so, this study (1)
suggests a replicable neural marker of social cognitive reasoning that is
measureable across multiple movie-viewing-paradigms, and (2) clari-
fies the relationship between inter-region correlations during movie-
viewing, “intrinsic” inter-region correlations present at rest, and func-
tional responses in the developing brain. Further, the current study
demonstrates the promise of naturalistic movie-viewing experiments
for replicating results across research sites and samples, and for future
studies of pediatric and clinical populations.
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