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The Pythagorean fuzzy hypersoft set (PFHSS) is the most advanced extension of the intuitionistic fuzzy hypersoft set (IFHSS) and
a suitable extension of the Pythagorean fuzzy soft set. In it, we discuss the parameterized family that contracts with the multi-
subattributes of the parameters. The PFHSS is used to correctly assess insufficiencies, anxiety, and hesitancy in decision-making
(DM). It is the most substantial notion for relating fuzzy data in the DM procedure, which can accommodate more uncertainty
compared to available techniques considering membership and nonmembership values of each subattribute of given parameters.
In this paper, we will present the operational laws for Pythagorean fuzzy hypersoft numbers (PFHSNs) and also some fundamental
properties such as idempotency, boundedness, shift-invariance, and homogeneity for Pythagorean fuzzy hypersoft weighted
average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators. Furthermore, a novel multi-
criteria decision-making (MCDM) approach has been established utilizing presented aggregation operators (AOs) to resolve
decision-making complications. To validate the useability and pragmatism of the settled technique, a brief comparative analysis

has been conducted with some existing approaches.

1. Introduction

Decision-making (DM) is one of the enormously charming
apprehensions these days, to pick a proper alternate for any
precise intention. It is pretended that facts about probable
selections are gathered in crisp numbers, but in real cases,
aggregated statistics mostly suppress misinformation. The
decision-maker needs to re-evaluate the choices prospering
by the several indicative stipulations such as intervals and
numbers. However, in quite a lot of instances, it is difficult
for one person to take action because of numerous feedback
loops in the record. One reason is lack of expertise or
paradox. Hence, a chain of assertions had been proposed to

contemplate the measuring along with the scientific method
of the specified negative aspects. Zadeh was the first
mathematician who developed the notion of fuzzy sets (FSs)
[1] to address vague and imprecise information. In general,
we need to keep a watch on membership (MD) as a non-
membership degree (NMD) but FS deals only with the MD.
To overcome this problem, Atanossov [2] defined for the
first time a new set known as intuitionistic fuzzy set (IFSs),
which deals with the MD and NMD both at the same time.
Surely, IFS is the extension of the FS, and also, it deals with
more information compared to FS. Although IFS was a new
domain for work, there were limitations to it. IFSs are unable
to handle data that is irreconcilable and inexact. The theories
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presented above were fairly suggested by experts, and the
sum of two MD and NMD cannot exceed one since the
preceding effort is thought to anticipate the environment
among MD and NMD. If the experts estimated MD and
NMD to be 0.4 and 0.7, then 0.4 + 0.7 > 1, and IFSs would be
unable to manage the issue. By improving MD + NMD <1 to
MD? + NMD? < 1, Yager [3, 4] extended the idea of IFSs to
Pythagorean fuzzy sets (PFSs) to overcome the above-
mentioned issues. To overcome the MCDM challenge,
Zhang and Xu [5] designed operating guidelines for PFSs
and built up the DM approach. Wang and Li [6] proposed
some unique operational laws and AOs for PESs that took
into account their desirable features’ interactions. Gao et al.
[7] developed the concept of PFSs and constructed some
AOs that take into account the interaction. They also pro-
vided a method for multiattribute decision-making
(MADM) based on their existing operators.

Wei [8] created aggregation operators (AO) for PFS
based on well-established operational laws. Talukdar et al.
[9] used linguistic PFSs to make medical diagnoses and
introduced certain distance and accuracy functions. Wang
et al. [10] extended the concept of PFSs by proposing in-
teractive Hamacher AOs and a MADM approach to handle
DM problems. Ejegwa et al. [11] proposed an MCDM
technique and produced a correlation metric for IFSs. Peng
and Yang [12] listed some fundamental PFS operations as
well as their basic characteristics. Based on his derived
logarithmic operational principles, Garg [13] offered various
AOs for PFSs. Based on their developed operational regu-
lations, Arora and Garg [14] introduced prioritized AOs for
linguistic IFSs. Ma and Xu [15] proposed new AOs for PFSs
and provided PFN comparison laws.

The abovementioned ideas and DM approaches are
applied in a variety of domains, including medical diagnosis,
artificial intelligence, and economics. However, due to their
inability to use the parameterization tool, these models have
some limitations. Molodtsov [16] offered the concept of soft
sets (SSs) to address the aforementioned problems when
considering substitution parameterization. Maji et al. [17]
constructed a DM approach to tackle DM challenges using
their produced operations and extended the idea of SSs with
multiple necessary operators and their appropriate assets.
Garg and Arora [18] provided a generalized form of IFSSs
with AOs and a DM approach to handle DM challenges
based on their created AOs. The correlation coefficient (CC)
and the weighted correlation coefficient (WCC) for IFSSs
were developed by Garg and Arora [19]. They also dem-
onstrated how to use the TOPSIS methodology to find
MADM issues using their established correlation metrics.
Zulgarnain et al. [20] expanded on interval-valued IFSSs and
proposed AOs for them. They also presented the CC and
WCC for interval-valued IFSSs as well as the TOPSIS
technique for resolving MADM problems, based on the
correlation measures they offered.

Peng et al. [21] developed the PFSSs’ hypothesis by
combining two existing ideas, PFSs and SSs. Athira et al. [22]
expanded on the concept of PFSSs by introducing new
distance metrics and developing a DM technique. The op-
erating laws for Pythagorean fuzzy soft numbers (PFSNs)
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were advanced by Zulqarnain et al. [23], and the AOs for
PFSNs were planned. They also proposed a MADM strategy
for dealing with these DM worries based on their existing
AOs. Riaz et al. [24] defined m polar PFSSs and proposed the
TOPSIS approach for resolving multiple criteria group
decision-making (MCGDM) problems. In light of the in-
teraction, Zulqarnain et al. [25] developed AOs for PFSSs
and devised a decision-making approach based on their
AOQOs. Riaz et al. [26] introduced PFSS similarity measure-
ments and underlined their critical importance. Zulgarnain
et al. [27] developed the TOPSIS approach based on the CC
and expanded the impression of PFSSs. They also presented
an MCGDM approach for supplier selection, which they
created themselves.

Current research is not able to confirm the situation
wherever some criterion of a set of attributes has sub-
attributes. Samarandche [28] progressed the idea of the
hypersoft set (HSS), which permeates the parameter func-
tion f with multiple subattributes, which is a feature of
Cartesian products with # attributes. The Samarandche HSS
is the most suitable theory comparative to SS and other
existing notions. It can handle uncertain and imprecise
information considering the multi-subattributes of the
considered parameters. Several extensions of HSS with their
decision-making approaches have been presented. Zulqar-
nain et al. [29] extended the notion of neutrosophic HSS
(NHSS) with their necessary properties. Zulgarnain et al.
[30] extended the PFSS and presented the idea of PFHSS
with its basic operations and properties. They also developed
the CC for PFHSS and offered a decision-making meth-
odology based on their developed CC. Samad et al. [31]
prolonged the notion of PFHSS and established the TOPSIS
approach for PFHSS utilizing correlation measures for
PFHSS. They utilized their developed TOPSIS approach to
resolve MCDM complications. Zulgarnain et al. [32] pro-
longed the NHSS to neutrosophic hypersoft matrices with
some basic operations such as necessity, possibility opera-
tions, and logical operations and discussed their desirable
properties. They also proposed a MADM technique to re-
solve decision-making difficulties. Zulqarnain et al. [33, 34]
established the CC, WCC, and AOs for IFHSSs and
established the TOPSIS method to solve MADM problems
based on their developed correlation measures. Zulgarnain
et al. [35] established the TOPSIS approach for PFHSSs
utilizing the CC and WCC. The above-presented are com-
patible only for MD and NMD of the multi-subattributes.
These theories are unable to handle the circumstances
whenever the experts considered the MD=0.7 and
NDM = 0.6. To overcome such types of difficulties, we need
to develop operational laws for PFHSNs and AOs for
PFHSSs based on presented operational laws. The core
objective of the following research is to develop two novel
AOs such as PFHSWA and PFHSWG operators. Further-
more, using the established operators, an MCDM technique
has been offered.

The organization of the following paper is given as
follows: in Section 2, we discuss some fundamental concepts
which help us to develop the structure of the following
article. In Section 3, we proposed novel operational laws for
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PFHSS and utilized the developed operational laws to es-
tablish PFHSWA and PFHSWG operators. A DM technique
has been organized to solve MCDM problems based on
offered AOs in Section 4. Furthermore, a comprehensive
comparative discussion has been presented to ensure the
validity and pragmatism of the proposed MCDM approach
in Section 5.

2. Preliminaries

In this section, we remember some fundamental notions
such as SS, HSS, IFHSS, and PFHSS.

Definition 1 (see [16]). Let % and & be the universe of
discourse and set of attributes, respectively. Let 9 (%) be the
power set of % and &/ Ce. A pair (F, &) is called a SS over %,
and its mapping expressed as follows:

Fod — P(U). (1)
Also, it can be defined as follows:
(F,A)={F () e P(U): ece,F(e) =Dife ¢ A}
(2)

Definition 2 (see [28]). Let % be a universe of discourse and
P (U) be a power set of %, and k = {k,, k, k,..., k,}, (n>1),
and K; represented the set of attributes and their corre-
sponding subattributes such as K;NK; = ¢, where i # j for
each n>1 and iandj€({1,2,3,...n}. Assume that
KixKy,xKyx...xK, =9 ={dy, xdyx...xd,} is a
collection of subattributes, where 1 < h < a, 1 < k < 3, and
1<I<y, and &, B, and y € N. Then, the pair (%,
K, xK,xK;x...xK,=(ZF, o) is known as HSS, defined
as follows:

F: K, xKyxKyx...xK,=d — P(U). (3)

It is also defined as

(F.d0) ={d 7, (@ ded d7 (@ € 2@} @

Definition 3 (see [28]). Let % be a universe of discourse and
P(U) be a power set of %, and k=1{k,, k,, ks,.... k,}, (n>1),
and K; represented the set of attributes and their corre-
sponding subattributes such as K; N K; = ¢, where i # j for
each n>1 and iandj€{1,2,3,...n}. Assume that
KixKyxKyx...xK,=d ={d, xdyx...xd,} is a
collection of subattributes, where 1 < h < a, 1 < k < 8, and
1< l<yanda,fB, andy €N, and IFS? be a collection of all
fuzzy ~ subsets  over  %.  Then, the  pair
(F,K, xKyxKyx...xK, = (F,9) is known as IFHSS,
defined as follows:

F: K, x K, x Ky % =d — IFS”.  (5)

It is also defined as

(i) ={(d 7, (@) de st 7, e w5” e [0, 1},
(6)
where
F o (dd) ={8, T 53y (8), Ty (8): S e}, (7)

where T 7 (4) and L@ (9) signify the Mem and NMem
values of the attributes: T g 4 (9), F g4 (8)€ [0, 1], and
0<T @0+ Iz (0L

Whenever the sum of MD and NMD of the multi-
subattributes of the alternatives exceeded one, then the
above-defined IFHSS is unable to handle the circumstances.
To handle this scenario, Zulqarnain et al. [34] developed the
PFHSS given as follows.

Definition 4 (see [34]). Let % be a universe of discourse and
P (U) be a power set of %, and k = {k,, k, ks,..., k,}, (n>1),
and K; represented the set of attributes and their corre-
sponding subattributes such as K;NK; = ¢, where i # j for
each n>1 and iandj€({1,2,3,...n}. Assume that
KixKyxKyx...xK, =9 ={dy, xdy x...xd,} is a
collection of subattributes, where 1<h<a, 1<k<f, and
1<l<yanda, B, and y € N and PFS¥ be a collection of all
fuzzy subsets over %. Then, the pair (#,K; x K,x Kj x
= (&, d) is known as PFHSS, deﬁned as follows:

F: K, xKyxKyx...xK, =d — PES”.  (8)
It is also defined as
(F.dl) ={(d. 7, (@D): d e 4,7, (d) e PFS” € [0, 11},
9)
where

Fo(d) ={{8, T 53 (8), T5(5(®)): deu},  (10)

where 7 5 3 (6) and F o 7 () (9) signify the Mem and NMem
values of the attributes: I J(d}((?) L@ (8) €€ [0, 1], and
0< (7 F(d) (5)) + (jg(d (6) <1

A Pythagorean fuzzy hypersoft number (PFHSN) can be

stated  as ={(T 5@ (O Fg@ O}, where
0< (T 5 (0))* + (jj(d (8)’<1.
Remark 1. If (T 4 % (d) () + (F 7w (8))? and T 7 (8) +

7@ <1 both hold then PFHSS was reduced to IFHSS
[33].

For readers’ suitability, the PFHSN 9-‘51,(& )=

{(T0) 00 o) @8 €%} can be witten as

Sfj = <‘79(aij)’ jg(ai}')

ij
expressed as follows:

. The score function for F; is
2

§<6d> RS S S(ﬁd;) € [-1, 1].
(11)

But, sometimes, the scoring function such as
=(0.4,0.7) and Sd}z=<0‘5’ 0.8) cannot provide



suitable outcomes to compute the PFHSNs. It is difficult to
conclude  which  alternative is  more  suitable
S(F d, )=03=S(J d ). To intimidate such complications,
the accuracy function had been developed:

H(SJI‘J') - gg(d;j)z +jg(d;j)2) H(S@j) € [0, 1].

(12)
The following comparison laws have been projected to
compute two PFHSNs §; and ¥ :
ij ij
@) 1t S(fj’dvil_) > S(‘ld;j)) then Sd:_j >z
(2) IfS(ﬁdv ) =S(Z,; ), then
() If H(F, )>H(
(ii) IfH(Jd )=H(Z,

) then dd d
) then Jd = ~d

3. Aggregation Operators for Pythagorean
Fuzzy Hypersoft Numbers

In the following section, we will prove some fundamental
properties for PFHSWA and PFHSWG operators such as
idempotency,  boundedness,  shift-invariance, = and
homogeneity.

3.1. Operational Laws for PFHSNs

DeﬁmtzonS Letljd = (Jdk jd) ljd = (Jd ,jd ), and
Ba, = (T4, 4, )represent the PFHSNs andoclsaposmve
real number. Then, operational laws for PFHSNs can be
expressed as follows:

cg . g . — (72 g . _ g . g . - -
(1) B, @3, = <\/" 6 T TaTa Tali,)
(2) 3,131@3{{12 =
o . G . . .
<J aTap et L, ~FaT e, >

PFHSWA (S, Sy s Sa4) =

11 12
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(3 0y, = (1= -T2 75 )
— 3 2\«
@ g5 = (7 (=720 )
In the following, we will describe some AOs for PFHSNs
using the above-presented operational laws.

Definition 6. Let 3; = (Jd fd ) be a PFHSN, €); and y;
be weight vectors for experts and multi- subattrlbutes of the
considered attributes consistently under definite sur-
roundings Q,>0, ", Q; = 1, ;>0,and 3, y; = 1. Then,
PFHSWA: A" — A defined as follows

PFHSWA (3> S,y Ba,) = ﬂ’;'ile(@?:leSij )
(13)

Theorem 1. Let ljd = (./d fd) be a PFHSN, where
=12,...,mn and] =1,2,..., m. Then, using equation
(13), the obtained aggregated values are also PFHSNs and

PFHSWA (3> 3y 3,

{ H(n(v))n( (fd:j)o')yj>’

j=1

(14)

where Q; and y; are weight vectors for experts and sub-
attributes of the parameters.

Proof. Employing the mathematical induction PFHSWA
operator can be proved as follows:
For n =1, we get Q; = 1. Then, we have

PFHSWA (§;» Sy Sa ) = <\1 -T]
j=1

(15)

For m = 1, we get y, = 1. Then, we have
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PFHSWA (S > G- Sar ) =91, Q8
1 12 nm ij
n Q n a
O T107a) " TT0a)")
i=1 i=1 (16)
1 n Q Vi n Q, Vi
P11 02" (110" )
=1 \i=1 i j=1 \i=l !
So, forn = 1 and m = 1, equation, (14) satisfies. Consider
that equation (14) holds for m = 8, + 1, n = ,, m = 3, and
n=[5,+1, such as
8 8 B+l By Q. Vi B+l B, Q. Vi
1 i i
®j=1 Yj<®i:19i3d;j) :<\1— < <1—f7diz_) ) , < <fd},-> > >,
j=1 \ i=1 Y j=1 \ i=1
(17)
8 B Byl Q. Vi B B+l Q. Vi
1 +1 i i
softrns)-(f-f([(- ) f(fe)
=1\ i=1 =1\ i=1

Form =, +1 and n= 3, + 1, we have

1 1 1
@55 Yj(e;,/iz; Qngf[}.) = @’?S Yj<@?=21Qisd'ij@QﬁZHSd(ﬁ;ﬂ)j)

_ Pl B & Pl & .
=&, EBi:le‘Qiddij@j:l YjQﬁerllSd(ﬁzﬂ)j

e i) )

j=1

&' =d, xd, ={d,), d\,} x{dy, dp}
={(di> da1)s (dyys dn)s (dyas dyy), (dyps diy) |

Hence, it is true for m =, + 1 and n = f3, + 1.

Example 1. Let % ={u,, u,, u;} represent the set of experts (19)
with weights Q, = (0.143,0.514, 0.343)". Experts express the  where &' = {dezs d}) d4} represents the set of multi-
beauty of a house under a defined set of attributes  subattributes with their weights
Z'={d, =lawn, d, = security system} with their corre-  y = (0.35,0.15,0.2,0.3)". Experts’ opinion for each
sponding subattributes lawn=d, ={d,, = with grass, d,, = multi-subattribute in the form of PFHSNs

without grass} and security system= d,={d,, = guards, ~ oy <G~ ) ) > L )
d,, = cameras}. Let &' =d, x d, be a set of subattributes: (3, Z)=(Tdp Fa,) Isgivenas follows:

3x4
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(0.3,0.8) (0.4,0.6) (0.3, 0.6) (0.5,0.6) Using equation (14),
(§.<") = (0.8,0.3) (0.7,0.4) (0.7,0.3) (0.4,0.8) |.
(0.3,0.6) (0.5,0.7) (0.6,0.5) (0.5,0.4)
(20)

4
PFHSWA (F» Sy S,) <\l1 -11
=1

J

((C-=)") Tr(n(e))) )

\j ( {(0.91)0.143 (0.36)0'514 (0.91)0.343 }0-35{ (0.84)0'143 (0.51)0.514 (0.75)0.343}0-15{ (0.91)0.143 (0’51)0.514 (0.64)0'343}0'2 )
1-

[(0.84)"% (0.64)°°"* (0.84)}"’

: < {(0.8)°1 (0.3)° (0.6} (0.6)1 (0.4 (0.7} *{ (0.6)1* (0.3)°" (0.5)*}
{(0.5)0.143 (0.4)0.514 (0.5)0_343}0,3
=(0.7183, 0.4839).
(21)

Some properties have been presented for the PFHSWA  Proof. As we know thatall §; =F ;= (7 ;7,7 ), then by
operator based on Theorem 1. equation (14), ! ! !

3.2. Properties of PFHSWA Operator

(T j,F i )Vi, j, then

ij ij

3.2.1. Idempotency. If J; =F;=
ij
PFHSWA (3‘{11, delz’ s 3[{ )= SH

m
PEHSWA (S > Sup-- > S ) = <\1 -T1
j=1

T O e A

3.2.2. Boundedness. Let §; be a collection of PFHSNs and max max min min
i i i 5 P <
j < {9 di,-}’ {j d{)} ; then, dcd,-j <

3, :<m?n i Y e mfx{jd_}> and T = i
ij i i +

j i
J 1 J ij PFHSWA (Sd‘u, Sd'lz,..., 3,1;,”)53[{;]
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Proof: Asweknow that §; = (7 ;,.7; ) bea PFHSN, then
1 1 1
minmjn{eofdvz } ST p < maxmax{?/‘d@}
] 1 ij ij ] 1 ij
=]l-maxmax{J 5 <1-9 ;, <1 -minmin{J ,
Pl &, &, il a2
Q; Q. Q;
@(l—maxmax{9d§}> £(1—9d~2> S(l—minmin{?fﬂﬂ»)
j i ij ij j i ij
" n Q; ZMQ;'
(:)<1—maxmax{9dvz}) < (1—.0742) < 1—minmjn{9d~z}
j i ij i1 ij j i ij
vioom [ on o\ Vi (23a)
ol 1- maxmax{gda} e H <1 ,/d2> <{1- minm'in{g;_} '
j i ij i1 i1 ij j i ij
m n o Vi 5
ﬁl—mﬁxmflx{gd~?j}sn <1_gdi2j> sl—rrlj;nnqiln{gli;j}
=1 \i=1
m n Q Vi
@mjjnlqm{?]d?j}sl—n (1—9{%) < m]axmiax{g'fl;j}
j=1 \i=1
m n Q Vi
@minmin{?]db} < |\|1- 1—[ (1 - Jd?) < maxmax{gdvj}
;o =1\ i=1 K ;o
Similarly, Let PFHSWA (Fy;, Sy Sa ) = {Af/vd'a, fd'5> =
" ) o\ 3 i then, (23a) and (231)) inequalities can be Written in‘the
min min{fdj} < H (jd > ) < maxmax{jdj}. following form:
j i ij i-1 i1 J j i ij
(23b)
min m'in{.?'di} < 97(;5 < maxmax{?/‘dj} and min min{jdj} Sfdv(S < maxmax{jdj}, (24)
j i ij j i ij j i i j i if
respectively. Using equation (11), we get
S(Sda) = 9‘{% - jd'g < mjaxmiax{gc/”[ij} - mjinmiin{jd;j} = S(S@j),
(25)
Cg . — g . _ - H 3 (o — - — [o- 308
S(ddﬁ) = */dg jd; > mjln mim{,/ ds} m]axmiax{fda} = S(‘Sd{,-)'
Then i < PFHSWA(S,;» Sa- o> S ) < Sa  (26)
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3.2.3. Shift Invariance. 1f §; = <9~d5, fdv§> be a PFHSN,  Proof: Consider §; and § 34, be two PFHSNs. Then, using
then Definition 5 (1), we have

PFHSWA (F; €3> 3. 834> 34 34
(Jdu lsda Jdlz dd& Jdnm dd&) (27) Srj&@‘l&sdb = < \/9d§ + 9{% - gzgfj 5 jd“ajt{l]> (28)
= PFHSWA (3d11’ 36{12’ e de )ealCKdvls

Therefore,

PFHSWA (8,084, 84,084, 8, 884,) = ;(01.0(34,954,) )

j=1 i=
= PFHSWA (S, v S )84,
(29)
3.24. Homogeneity Prove  that PFHSWA (a3, . “SJ,-}- =< 1 _(1 - ‘G]d?j> ) jd?j>' (30)
dd e (led ) = «PFHSWA (dd , Jd s l5%1)
where a be a positive real number. So,
Proof:  Let Jd be a PFHSN and >0; then, by using Defi-
nition 5 (3), we have
m [ n a,\V m [ n a0, \V
PFHSWA(“Sdln“Sdlz""’“31):<\1_H< (1_9JZ> > ’ H( <j42> ) >
" =1 \i=1 i =1 \i=1 i
m n Q AN m n Q; Yi\* (31)
=< (T T1(1-72) ATT(TT(74) >
=1 \ =1 Y j=1 \i=1 !

Definition 7. Let § 34, = (Jd ]d )bea PFHSN, Q;andy;  definite surroundings Q;>0, },Q;=1, y,>0, and
be weight vectors for experts and multi- subattrlbutes Z] 1¥j = 1. Then, PFHSWG A" — A is defined as
of the considered attributes consistently under  follows:
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~ o ~ \_ om n o0 \V Theorem 2. Let dd = (Jd fd) be a PFHSN, where
PFHSWG (Jdu’ B ‘Sdnm) B ®J‘:1(®i:1‘5dv ) : =1,2,...,mandj=1,2,..., m Then, obtained aggre-
(32) gated values using equation (32) are also a PFHSN, and

=

m n Q Vi m o, Vi
PFHSWG (5. Sdiz,...,sd;m)=<]_[< (9‘%) > , 1—]_[( (1—;{%) ) > (33)
i i=1

j=1

where Q; and y; are weight vectors for experts and sub-  Proof: Employing mathematical induction PFHSWG op-
attributes of the parameters. erator can be proved as follows:
For n =1, we get Q, = 1. Then, we have

11

.,
PFHSWG (> B> Sa, ) = ®745 »

PFHSWG (S Sy S

11

9]
i/
1l
S
=
—~
Y
2
=
=
|
—=
/N
N
R
N
=
\/

j=1 j=1 (34)
m 1 Q, Vi m 1 o) Vi
(e ) ()" ) )
j=1 i=1 j=1 i=1
For m = 1, we have y, = 1. Then,
‘Q‘i
PFHSWG (s, G- Sa,) = ©14(3)
n 0 n Q
- (M -110-7,)")
i=1 i=1 (35)
1 n Q Vi 1 n Q Yj
— g —_ —
(e ) eT1(f0-7)"))
j=1 i=1 j=1 i=1
For n=1 and m =1, equation (33) satisfies for the
PFHSWG operator. Let equation (33) hold for m = f3; +1
and n =5, and m = 3, and n = 3, + 1, such as
I a\Vi /Bl (B o\ B+l [ B o\
® 11<®,._21<3d-‘”> ) = (9‘1’) s\ - <1—fdz> >
g j=1 i=1 ! j=1 i=1 Y
(36)
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For m =, + 1 and n = f3, + 1, we have

Q;\Vi
1 1 2 1 '
o (®f—1+ <3d‘,.j> ) =

|
®
~.
[
/
®
T

Il
P
L +

VS
- =
L G

ey

N

Y
N———
kel
~
=
—
|
=

T

/N
- =
1%

/
—
|
)
N
N————
Q
~_
=
\/

Hence, it is true for m =, + Ll and n = f3, + 1. where £’ = {Ell,c;lz, ds, 514} represents the set of multi-

subattributes with their weights y;=(0.35,0.15,0.2, 0.3)".

Example 2. Let % ={u,, u,, u,;} represents the set of experts ~ Experts’ opinion for each multi-subattribute in the form of
with weights Q; = (0.143,0.514, 0.343)". Experts expressthe ~ PFHSNs (J, &)= (9' dyp 5 d}j> is given as follows:

beauty of a house under a defined set of attributes

' ={d, = lawn, d, = security system} with their corre- | (0.3,0.8) (0.4,0.6) (0.3,0.6) (0.5,0.6)
sponding subattributes (3, &) =| (0.8,0.3) (0.7,0.4) (0.7,0.3) (0.4,0.8) |.
lawn=d, ={d,, = with grass, d,, = without grass} and se- (0.3,0.6) (0.5,0.7) (0.6,0.5) (0.5,0.4)

curity ~system=d, ={d,, = guards, d,, = cameras}. Let

Z'= d, xd, be a set of subattributes: (39)
P =d, xdy ={dy, dy} x{dyy, dop) By using equation (33),
={ (di dn)s (d11> dp) (diy> )y (dip dp) b
(38)

4 3 a\” 4 3 a\”
ernswa(, 5,52 - (T1(11(74)" )\ -T1(110-7)") )
j=1 \(i=1 j=1 \/i=1
( {(0.3)0.143 (0.8)0'514 (0‘3)0.343}0-35{ (014)0.143 (0‘7)0.514 (0.5)0.343 }0~15{ (0.3)0.143 (0.7)0.514 (().6)0'343}0'2 )

{041 (0.6)3 (0.4)"*%} "

< { (0.36)43 (0.91)! (0.64)0‘343}0'35{ (0.64)*1 (0.84)"514 (0.51)0.343}0.15{ (0.64)*1 (0.91)°14 (0_75)0,343}0.2 >
1-
{ (0'75)0.143 (0.84)0'514 (0.75)0,343}0.3

=(0.5646, 0.5836),
(40)
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which established some basic properties for PFHSNs using
the PFHSWG operator using Theorem 2.

3.3. Properties of PFHSWG Operator

(7 fd) V i, j, then
:("

3.3.1. Idempotency 15 =3;=
L 8a) =54,

PFHSWG (dd , dd .

v

3.3.2. Boundedness. Let §; be a collection of PFHSNs and
ij
Si = <m4inm'in{9‘dj}, maxmax{jdj}> and  J; =
ij i j 1 1] ij

] 1

<maxmax{9dj_}, mjnmjn{fljj_}>; then,
J 1 i ] 1 )

Sd:] <PFHSWG (Sdil’ Sd;z""’ Sdn )< S

U

3.3.3. Shift Invariance. 1f §; = <9‘dv§, fdv§> be a PFHSN,
then

PFHSWA (G 4, 34,854, -
= PFHSWA (S, Sup-- > Su )04,

nm

3.34. Homogeneity Prove  that  PFHSWA (a3, ,

dd so. aF ;) = aPFHSWA (Jd )dd s dd ) for
any posmve real number a.

4. Multicriteria Decision-Making Model under
PFHSS Information

In the following section, we shall present the MCDM ap-
proach using the proposed PFHSWA and PFHSWG oper-
ators in the PFHSS environment.

nxo

) <o~<g) @)
(RO, ) =7 Ty,

Step 2. Obtain the normalized decision matrices using
normalization rules such as

3%; cost type parameter, (43)
- 3; benefittype parameter.
)

Step 3. By means of developed AOs, compute the
collective decision matrix &

Step 4. Analyze the score values to each alternate
employing equation (11)

Step 5. Indicate the premium alternate through a su-
preme score value &

11

4.1. Proposed Decision-Making Approach. DM is a pre-
determined strategy for choosing logical alternatives between
multiple substances. DM blends an essential part in the factual
situation. A good decision can change the course of our
professional life. A sophisticated expert also analyzes the
benefits and drawbacks of options then encourages a final
decision. Here, we will explicate the scientific cause of the
proposed approach for MCDM under the PFHSS environ-
ment. The general concept and step-by-step algorithmic rule of
the projected approach are given as follows:

Consider N= {NR!, X% R’ ..., N’} be a set of s alter-
nativesand % = {4, 9,, &5, .. ., 8 } be a set of n experts The
weights of experts are given as Q= (Q;, Q,,..., Q )7 and
Q;>0, Y, Q; =1. Let = {d|, d,,..., d,} be expressed
the set of attributes with their corresponding multi-sub-
attributes such as &' = {(d X dy, X mp) for allp € {1,

, t} } with weights y = (ylp, sza y3p, . ymp) such as

Z 1 Yp=1=1, and can be stated  as
{da Je {1, 2 ..,m}} The group of experts {x': i=1,
2, ..., n} assess the alternatives {X@: z=1, 2, ..., s} under
the chosen subattrrbutes {da 0=1,2,...,k}in the form of
PFHSNs such as (Nd D) om = (T ; jd Dysns Where 0
< Ty, Fq, < 1and0 < (T )"+ (jd) <1foralliandk.
The experts provide their opinion in the form of PFHSNs
& for each alternative and present the step-wise algorithm
to obtain the most suitable alternative.

yp>0

Step 1. Develop decision matrices D® =
(7 i » F i Dusm in form of PFHSNSs for each alternative:
i i

d12’ dlZ d;a’ dl
g (2) @) ... (g® (2)
) (J dy’ jdzz) (J dyy’ jdza) . (42)
o (2) (2) o (2) (z)
) (‘Jd;z’ jdnz) (‘/d;a’jd;a>

Step 6. Rank the alternatives

The above-presented algorithm can be represented
graphically in Figure 1.

4.2. Numerical Example of the Proposed MCDM Model.
Let {RD, R RO R@ RO} be a set of substitutes and
R ={d, = Superiority,  d, = Delivery, d; = Services, d, =
Troposphere, d; = Commercial societal concern} be a col-
lection of considered attributes given as Superiority = d, =
{d,, = nationallevel, d,, = internationallevel}, ~ Delivery=
d,={d,, =bycarriar, d,, = byhand}, Services= d;={d;, =
services},  Troposphere=d,=  {d, =friendly, d,,=
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[ Input alternatives, attributes (sub-attributes) ]

v

‘ Develop the decision matrix for each alternative in ’

form of PFHSNs

v

[ Develop normalized decision matrixs ]

¥

Aggregate the collective decision matrix by using
the PFHSWA or PFHSWG operators

v

Find score values for each alternative by using
Equation 1

v

Choose the best alternative with the maximum score
value

v

[ Analyze the alternatives ranking

FiGure 1: Flowchart of presented PFHSWA or PFHSWG operators.

nonserious}, and Commercial societal concern=
ds=1{ds, = Commercial societal concern}. Let ¥'=d, xd,x
dyxd, xds be a set of subattributes:

&' =dy xdyxdyxdyxds ={di1, dio} x{dyys dp} x{dsy, day} x{dyy } x{ds}
:{ (dv> days dsys days dsy), (dyys days sy days dsy), (dyys Aoy sy dags dsy)s (dyys dops sy, days dsy) } (44)
(dip> dyys sy, dyys dsy)s (dyys dyys sy, dyys dsy)s (dygs Aoy sy dyys dsy)s (dyas doys sy dyys ds))

where &' = {Jl,dz, ds, d,, ds, dg, d,, cfs} be a set of all Step 1. The experts summarize their priorities as well as
subattributes  with  weights  (0.12,0.18,0.1,0.15,0.05, their score values in Tables 1-3 in the form of PFHSNG.
0.22,0.08,0.1)". Let {u;, u,, us} be a set of three experts with
weights (0.143,0.514,0.343)" to judge the optimum alter-
native. Specialists provide their preferences in form of PFHSNs

Step 2. No need to normalize because all attributes are
the same type.

Step 3. By means of equation (14), specialists’ judgment
can be concise like this:

4.2.1. By Using PFHSWA Operator

(0‘91)04143 (0'51)0.514 (0.75)0.343}0-12{ (0'51)0.143 (0'91)0.514 (0.36)0‘343}0‘18

2, :< ) {{(0.64)0‘143 (0.64)0‘514 (0_51)0,343}00:5{(0.75)0.143 (0.91)04514 (0.84)0‘343}0(;1252
{(0.96)"1* (0.75)%° (0.84)***} 7 (0.84)'* (0.84)** (0.96)*** }~
{(0 75)0 143 (0.51) 0.514 (0. 36)0343}008{(0 19 0143(0 91)0514(0 51 0343}01
{(0 8)0 143 (0. 6)0 514 (0. 7)0 343} {(0 3)o 143 (. 4)0 514 (0. 5)0 343}0 18
{(0 7)0143 0. 5)0514 0.4) 0343} {(0 4) 0.143 () 9)0514 () 3)0 343}0‘15 >
{(0 4)0 143 (0. 4)0 514 (0. 9)0 343} 05{(0 6)0 143 (. 6)0.514 (0. 4)0343}0-22
{

(0. 8)0 143 (0. 5)0 514 (0.4 0343}008{(0 3)0 143(0 8)0514(0 5) 0343}
&, =(0.5555, 0.5197),

0.1

(45)



Computational Intelligence and Neuroscience 13
TasLE 1: PFHS decision matrix for u,.

d, d, d; d, ds dg d, dy
x® (0.3, 0.8) (0.7, 0.3) (0.6, 0.7) (0.5, 0.4) (0.2,0.4) (0.4,0.6) (0.5, 0.8) (0.9, 0.3)
N (0.6, 0.7) (0.4,0.6) (0.3,0.4) (0.9,0.2) (0.3,0.8) (0.2, 0.4) (0.7,0.5) (0.4,0.5)
NS (0.7,0.3) (0.2,0.5) (0.1,0.6) (0.3,0.4) (0.4,0.6) (0.8, 0.4) (0.6,0.7) (0.2,0.5)
N (0.8,0.4) (0.2,0.9) (0.2,0.4) (0.4,0.6) (0.6,0.5) (0.5,0.6) (0.4,0.5) (0.8,0.3)
NS (0.5,0.7) (0.8,0.5) (0.7,0.4) (0.4,0.3) (0.4,0.9) (0.2,0.4) (0.8,0.4) (0.7,0.5)

TaBLE 2: PFHS decision matrix for u,.

d, d, ds d, ds dg d, dy
x® (0.7,0.6) (0.3,0.4) (0.6, 0.5) (0.3,0.9) (0.5, 0.4) (0.4,0.6) (0.7,0.5) (0.4,0.8)
N (0.8,0.5) (0.7,0.4) (0.9,0.2) (0.7,0.4) (0.4,0.5) (0.9,0.3) (0.2,0.7) (0.3,0.8)
N (0.3,0.7) (0.4,0.5) (0.4,0.8) (0.3,0.4) (0.6,0.7) (0.3,0.4) (0.9,0.2) (0.7,0.2)
N (0.5,0.4) (0.7,0.6) (0.9,0.3) (0.8,0.5) (0.9,0.2) (0.2,0.4) (0.4,0.6) (0.6,0.5)
R® (0.8,0.5) (0.7,0.4) (0.8,0.5) (0.5,0.2) (0.5,0.7) (0.7,0.5) (0.7,0.6) (0.6,0.4)

TaBLE 3: PFHS decision matrix for u;.

d, d, d, d, ds dq d; dy
x® (0.5,0.7) (0.8,0.5) (0.7,0.4) (0.4,0.3) (0.4,0.9) (0.2,0.4) (0.8,0.4) (0.7,0.5)
N (0.8,0.5) (0.7,0.4) (0.8,0.5) (0.5,0.2) (0.5,0.7) (0.7,0.5) (0.7,0.6) (0.6,0.4)
N (0.6, 0.8) (0.4,0.5) (0.6,0.5) (0.6,0.4) (0.7,0.5) (0.8,0.4) (0.5, 0.8) (0.4,0.5)
@ (0.5,0.7) (0.9,0.3) (0.3,0.5) (0.5,0.7) (0.3,0.5) (0.8,0.5) (0.7,0.5) (0.2,0.5)
RO (0.5,0.4) (0.4,0.8) (0.5,0.6) (0.3,0.4) (0.7,0.6) (0.7,0.5) (0.4,0.9) (0.5,0.2)

{071 05 (0.5} *{ (0.6 (0.)° (0.4}
{ (0.4)™1 (0.2)%5 (0-5)0.343}0 1{ (0.2)"1%3 (0.4)°4 (0'2)0‘343} .
{

{
{(0 91)0 143 (0. 19)0 514(0 36)0343}01{(0 19)0 143 (0. 51)0514 (0. 75)0 343} -
|

(0. 64)0 143 (0. 36)0 514 (0. 36)0 343}0 12{ (0. 84)0 143 (0. 51)0 514 (0. 51)0 343}0‘18
0.15

(0. 91)0 143 (0. 84)0 514 (0. 75)0 343}0 05{ (0. 96)0 143 (0. 19)0 514 (0. 51)0 343}022

{(0.51)0.143 (0.96)0‘514(0.51 0343}008{(0 84) 0.143 (0. 91)0514 (0.64 0343}01

0.18

0.15

(0.8)0‘143 (0.5)0‘514 (0.7)0.343 }0 05{ (0.4)0.143 (0.3)0.514 (0'5)0‘343}0-22 >’

{(0 5)0.143 © 7)04514 (0 6)0.343}0-08{ (0 5)0.143 (0 8)0.514 (0 4)0.343}0-1
<, =(0.7252, 0.4180),

(46)
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(0.51)0.143 (0'91)0.514 (0.64)0'343}0'12{ (0.96)0'143 (0.84)0'514 (0.84)0‘343}0‘18

{

{(0.99)°1 (0.84)°5 (0.64)**}" [ (0.91)"' (0.91)""* (0.64)**} "
{(0.89)°1 (0.64)3 (0.51)*} " (0.36)** (0.91)*7" (0.36)"**}
{ 0.1

(0.64)0'143 (0. 19)0.514 (0.75)0.343}0-08{ (0.96)0‘143 (0.51)0.514 (0.84)0‘343} -
0.18 (47)

022 |’

{ (0.3)%143 (0.7)0514 (0.8)0'343}0'12{ (0.5)"143 (0.5)"514 (0.5)0.343}
{(0.6°1 (0.8 (0.5} [ (0.4 (0.4 (0.9} "
{(0.6)0'143 (0.7)04514 (0‘55)0.343}005{ (0‘4)0.143 (0.4)0.514 (0.4)0,343}0.22 >
{(0.7)0.143 (0.2)°51 (0.8)0'343}0'08{ (0.5)%143 (0.2)"51 (0'5)0.343}0-1
Z5 =40.5667, 0.4609),

(0.36)0'143 (0_75)0.514 (0.75)0.343 }0-12{ (0.96)0'143 (0.51)0.514 (0. 19)0‘343 }0418

{
{(0.96)0'143 (0'19)0.514 (0.91)0.343}0-1{ (0.84)0'143 (0.36)0'514 (0_75)0.343}015
0.143 0.514 0.34370.05 0.143 0.514 0.343

{(0.64)%1 (0.19)™™ (0.91)****}77{ (0.75)*1* (0.96)"*™* (0.36)**°}

\ { (0.84)0'143 (0.84)0'514 (0.51)0,343}0-08{ (0.36)0'143 (0.64)0'514 (0.96)0'343}0‘1
{ (0.4)143 () 4)0514 (0.7)0.343}012{ (0.9)"143 (0.6)514 (0.3)0.343}0‘18 (48)
{(0 4)0 143 (0. 3)0 514(0 5 0343}01{(0 6) 0.143 (0. 5)0514 (0. 7)0343}015
{

(0. 5)o 143 (0. 2)0 514(0 5 0343}005{(0 6) 0.143 (0.4 0514(0 5)0 343}022 >
0.1

022 |’

{(0.5)0.143 (0.6)0'514 (0‘5)0.343}0 08{ (0. 3)0 143 (0. 5)0 514 (0. 5)0 343}
<, =(0.6736, 0.4733),

(0.75)()‘143 (0.36)0'514 (0.75)0.343}0-12{ (0.36)0'143 (0.51)0.514 (0.84)0‘343}0'18

{

{(0'51)0.143 (0.36)0'514 (0.75)0,343}0.1{ (0.84)0'143 (0'75)0.514 (0'91)0,343}0‘15
{0891 075)M (05117 { (0.96)"* (0.61)"*M (0.51)"*}

\ {039 51" 08 { (051" (0.69* (075}
(0.7)0.143 (0.5)0.514 (0'4)04343}0.12{ (0'5)0‘143 (0.4)0.514 (0.8)(),343}0.18 (49)

{(0.4)0.143 (0‘5)0.514 (0.6)0‘343}0'1{ (0. 3)0 143 (0. 2)0 514 (0. 4)o 343}0 15
{(0 9)0 143 (0.7) 0.514 (0.6 0343}005{(04 0.143 (0.5) 0.514 (0. 5)0343}022

0.22 >

{ (0.4)0.143 (0.6)0.514 (0'9)0.343}0 08{ (0 5)0 143 (0 4)0 514 (0 2)0 343}0 1

L. =(0.6257, 0.4531).

Step 4. Utilizing equation (11), compute the score

values:

Step 5. N? has the highest score value, so N? is the
premium choice.
Step 6. Using the considered operator, the ranking of

S(Z,) = 0.03849,

the alternatives is given as follows: S (32) >S (3’4) >
S(&Z,) = 035119, S(Zs )>§(33)>§(z ). So, R@>RW 5 RO >
S(Z;) = 0.10872, (50) R® >R
S$(Z4) = 022972, 4.2.2. By Using PFHSWG Operator
$(Z5) = 0.18620. Step 1 and Step 2 are similar to 4.2.1.
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Step 3. By means of equation (33), specialists’ judgment
can be concise like this:

0.12 0.18

(0 3)0 143 (0 7 0.514 0 5)0 343} { 0 7)0.143 (0.3)0.514 (0‘8)0.343}

{

o < { (0 6)0 143 (0 6)0 514 (0 7)0 343}0 1{ (0 5)0 143 (0.3)0.514 (0.4)0.343}
{
{

0.15

(0. 2)0 143 (0. 5)0 514 (0. 4)0 343}0 05{ (0. 4)0 143 (0. 4)0 514 (0. 2)0 343}0 .22

(0.5)0.143 (0‘7)0.514 (0.8)0'343 }0 08{ (0.9)0.143 (0.3)0.514 (0.7)0.343} 0.1

{(0 36)0 143(0 64)0514 0. 51)0343} 2{ 0. 91)0 143 (0. 84)0 514(0 75 0343}0 18 1

{(O 51)0 143 (0. 75)0 514 (0. 84)0 343}0 1{ (0. 84)0 143 (0. 19)0 514(0 91)0 343}0 15

{(0.89)"% (0.89)°° (0.19)"}"” [ (0.64)*'* (0.64)"7"* (0.84)***}

\ i { (0.36)0'143 (0.75)0.514 (0.84)0'343 }008{ (0.91)0.143 (0.36)0'514 (0'75)0.343 }0'1

&, =(0.4448, 0.6176),

0 6)0‘143 0 8)0.514 (0 8)0.343}012

{ { (0.4)0.143 (0.7)0.514 (0.7)0‘343}0.18
{
{

(0'9)0.143 (0.7)0.514 (0.5)0.343}015
(0.3)0.143 (0.4)0.514 (0‘5)0.343}005{ (0‘2)0.143 (0.9)0.514 (0.7)0.343}0‘22

(0.7)0.143 (0‘2)0.514 (0.7)0.343}008{ (0.4)0.143 (0.3)0.514 (0.6)0'343}0‘1

{ (0.51)0.143 (0.75)0.514 (0'75)0.343}0-12{ (0.64)0'143 (0.84)0'514 (0.84)0'343}0'18

. { (0.84)0‘143 (0.96)0'514 (0.75)0.343}0.1{ (0.96)0'143 (0.84)0'514 (0.96)0'343}0'15
{(0.36)0‘143 (0.75)%514 (0'51)0‘343}0.05{ (0.84)%143 (0.91)%514 (0.75)0.343}
\ {(0.75)1% (0.51)°° (0.64)™}"* [ (0.75)"1% (0.36)" (0.84)**}

£, =¢0.5990, 0.4947Y,

0.22

0.1

(0. 7)0 143 (0. 3)0 514 (0. 6)0 343}0 12 (0. 2)0 143 (0. 4)0 514 (0. 4)0 343}0 18

{

) < {(0 1)0 143 (0 4)0 514 (0 6)0 343} (0 3)0 143 (0 3)0 514 (0 6)0 343}
{
{

0.15

01{
(0. 4)0 143 (0.6) 0.514 (0. 7)0343}005{ 0.8) 0.143 (0. 3)o 514 (0. 8)0 343}022

(0.6)0'143 (0.9)0 514 (0.5)0 343}0 08{ (0.2)0 143 (0_7)0.514 (0'4)0.343} 0.1

{ (0.91)0‘143 (0.51)0.514 (0.36)0‘343 }0-12{ (0'75)0‘143 (0'75)04514 (0.75)0.343 }0-18

1 { (0.64)0‘143 (0.36)0'514 (0'75)0.343}01{ (0.84)0'143 (0.84)0'514 (0.84)0'343}0'15
{ (0.64)0'143 (0.51)0.514 (0'75)0.343}005{ (0.84)0'143 (0.84)0‘514 (0.84)0'343}0'22
\ { (0.51)04143 (0.96)0'514 (0.36)0‘343}0'08{ (0.75)0‘143 (0.96)0'514 (0‘51)0.343}0-1

&, =(0.4427,0.5516),

15

(51)

(52)

(53)
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0.12 0.18

{(0.8)0‘143 (0'5)0.514 (0'5)0.343} - {(0.2)0.143 (0'7)0,514 (0'9)0‘343
) { (0.2)0‘143 (0.9)0.514 (0'3)0‘343}0-1{ (0'4)0.143 (0.8)0‘514 (0.5)0‘343 0.15
4 0.143 0.514 0.343 0.143 0.514 0.34370.22
{(0.61 (0.9 (0.3} 77 {(0.5)*'* (0.2)*°"* (0.8)**}
{

(0.4)0.143 (0‘4)0.514 (0.7)0.343 0-08{ (0.8)0'143 (0.6)0'514 (0.2)0.343}&1

0.05{

{ (0.84)0'143 (0.84)0‘514 (0'51)0_343}0.12{ 0. 19)0.143 (0.64)0‘514 (0-91)0.343 0.18 (54)

(0.84)0'143 (0_91)0.514 (0.75)0343 0-1{ (0.64)0'143 (0.75)0.514 (0.51)0.343}0415

{
- {(0.75)0'143(0.96)0'514(0.25)0'343 005{(0.64)0'143 (0.84)0‘514 (0-75)0.343}0-22 >’
{

0.1

\ (0.75)*1% (0.64)*°" (0.25)** (0.91)%'* (0.75)*°' (0.75)***

£, =<0.5021,0.5643),

0.08{

(0.5)04 143 (0.8)0'514 (0'5)0.343} { (0.8)0'143 (0'7)0.514 (0.4)04343 0.18

{ 0.12
< { (0.7)0‘143 (0.8)0'514 (0.5)0‘343}0-1{ (0.4)0.143 (0.5)0‘514 (0.3)0‘343
5 =
{
{

0.15

(0.4)04143 (0.5)0.514 (0‘7)0.343}005{ (0‘2)0.143 (0.7)0.514 (0.7)04343}0»22

(0.8)0'143 (0‘7)0.514 (0'4)0.343}008{ (0'7)0.143 (0.6)0'514 (0.5)0.343}0'1

{0511 (0.75)°7 (0.84)"*]"{ (0.75)"1** (0.84)"* (0.36)**} " "* (55)

(0.84)"1%(0.75)° (0.64)*} " [ (0.91)*1 (0.96)*7" (0.84)** )"

\

&5 =(0.5648,0.5415).

Step 4. Utilizing equation (11), computes the score
values:

S(¥,) = -0.18358,
S(Z,) =0.11407,
S(Z,) = -0.10827,
)
)

(56)
S(Z,) = —0.06633,
S(Z5) = -0.02578.

Step 5. N? has the highest score value, so N? is the
premium choice.

Step 6. Using the considered operator, the ranking of
the alternatives is given as follows: S(&Z,) > S(Z5) >
S(Z,)>S(Z5)>S(Z)). So, R >NO >
R@® >R > RO,

Therefore, from the above computation, we accomplish
that X could be the most appropriate option. Table 4
encompasses the whole categorization of feasible choices by
PFHSWA and PFHSWG operators.

We will check that there is a dissimilarity within the
evaluation results of the two operators. Such variations are
due to distinctive configuration approaches. But, in both
situations, the most productive and the worst correspond at
most same, and this consequence summarizes the atrocity,

| )
{(0.19)1 (0.51)°%1 (0.64)°° 1" (0.8 (0.75)** (0.75)**¢} " | /*
[(0.84)1 (0.64)°° (0.19)™**

0.08{ 0.1

(0.75)%1* (0.84)*°1 (0.96)0'343}

potency, capability, as well as precision of the planned
operators.

5. Comparative Analysis and Discussion

In the next section, we will discuss the usefulness and
practicality of the projected approach with some existing
techniques.

5.1. Advantage of the Planned Technique. Through this sci-
entific research and communication, it is entirely convinced
that the main focus of the planned approach is more general
compared to the other approaches. However, the MCDM
scientific method provides us additional information on the
latest MCDM approach to address the hesitation in the DM
process. Also, multiple mixed processes of FSS had become a
unique feature of PFHSS. After including some suitable
terms, as shown in Table 5, the overall details concerning the
constituents may be declared correctly as well as reasonably.
It could be seen that the consequences procured provide
more information in comparison with existing research.
Taking into consideration the multiple subattributes of the
parameters, the progressed PFHSS can appropriately sup-
press a lot of information. Mixing inaccurate and uncertain
information in the DM process is an extremely simple tool.
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TaBLE 4: Alternatives score values with their ranking.

Method RO R RO R® 1SS Alternatives ranking
PFHSWA operator 0.03849 0.35119 0.10872 0.22972 0.18620 R >RW >N 5RO S RO
PFHSWG operator —0.18358 0.11407 -0.10827 —0.06633 —0.02578 RO >RE >RG5 RO > RO

TaBLE 5: Comparison of PFHSSs with some prevailing models.

Set  Truthiness Falsity Parametrization Attributes Subattributes Limitations
Zadeh [1] ES Y « « Y y Unable to handle t}.1e NMD of multi-
subattributes
Deals with the parametrization of the
Majietal. [36]  FSS v X v X X alternatives but is unable to handle the NMD of
multi-subattributes
Atanassov [2]  IFS Y Y « Y y Unable to handle the multi-subattributes of the
parameters

. Cannot deal with problems that satisfy
Majietal. [37] IFSS V4 v v v X 1 < MD+NMD + < +0
Peng et al. Cannot deal with problems that satisfy
[21] PESS v 4 4 4 % 1 < MD? +NMD? + < +0
Zulqarnain Cannot deal with problems multi-subattributes
et al. [33] [FHSS v v 4 4 v 1+ <+MD+NMD+ < +0
Proposed Cannot deal with problems in which multi-

P h PFHSS v v v v v subattributes of parameters satisfy
approac 1 < MD? + NMD? < 0

TaBLE 6: Comparative analysis with existing operators.
Score values for alternatives .

Method R RO RO R RO Ranking order
PFSWA [23] 0.21173 0.33215 0.22017 0.27008 0.21893 RO >R RO 5RO > RO
PESWG [23] 0.20587 0.32902 0.23066 0.25462 0.21727 RO >RBSRO >R > RO
PFEWA [38] 0.51686 0.60467 0.54833 0.59021 0.51235 RO >RG5 RO 5> RO 5RO
PFEWG [38] 0.54219 0.62190 0.56597 0.59381 0.52209 RO >ROS>RO>RD > RO
IFHSWA [34] 0.41735 0.49830 0.46175 0.43247 0.40935 RP 5RO >RGO > RO > RO
IFHSWG [34] 0.36175 0.42615 0.40790 0.40635 0.35635 RO >ROSRO > RO > RO
PFHSWA operator 0.03849 0.35119 0.10872 0.22972 0.18620 RO >RG5 RO 5RO > RO
PFHSWG operator —0.18358 0.11407 -0.10827 —0.06633 -0.02578 R >RE>KR® 5RO > RO

Therefore, the projected approach is pragmatic and assorted
from the existing fuzzy set hybrid structure.

5.2. Comparative Analysis. Two novel aggregation operators
for PFHSS have been presented with their important
properties and established an MCDM approach based on
our developed operators. Also, we utilized our developed
MCDM approach to solve decision-making complications.
The results showed that the established algorithm delivers
effective and precise information about alternatives com-
parative to existing models. The above calculation shows that
R® is the most suitable alternative rather than other
available alternatives. However, under the accessible MCDM
strategies, the main advantage of the projected approach is
that it provides a lot of information than the available
strategies. Table 6 below gives a comparison between the
existing AOs and our advanced operators.

The available PFSWA and PFSWG [26] operators in the
literature only deal with the parametrized values of the

attributes of the alternatives. Sometimes, experts considered
the multi-subattributes of any attribute; then, existing
PFSWA and PFSWG operators cannot handle the situation.
But on the contrary, our presented AOs competently deal
with such limitations. Similarly, the existing PFEWA and
PFEWG [38] are failed to access the parametrized values of
the alternatives. Also, these operators are unable to handle
the multi-subattributes of the considered parameters. The
prevailing IFHSWA and IFHSWG [34] operators capably
deal comparatively above-discussed operators considering
the multi-subattributes. But, when the sum of Mem and
Nmem values of the multi-subattributes exceeds one, then
the available IFHSS cannot handle the scenario. On the
contrary, our planned PFHSWA and PFHSWG operators
capably accommodate the abovementioned shortcomings.
Therefore, we claim forthcoming extraordinary to the
existing operators we have established to be able to address
the misuse as well as the obscure consequences in the overall
DM procedure. Intentionally assisting with measures related
to the current approach is withholding results for negative
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reasons. Therefore, we are sure that it is a most useful
technique to evaluate inaccurate and uncertain information
in the DM process.

6. Conclusion

In the following article, we concentrate on PFHSS to cope
with unsatisfactory, fuzziness along with disparity compli-
cations by considering MD and NMD on the n-tuple sub-
attributes of the considered attributes. The current scientific
research encourages PFHSS operators such as PFHSWA and
PFHSWG operators which were obtained by operational
laws with their fundamental characteristics. Furthermore,
the DM approach has been developed using PFHSWA and
PFHSWG operators to deal with MCDM difficulties. Be-
sides, comparative analysis has been carried out to confirm
the effectivity and perceptibility of the projected method.
Finally, based on the results procured, it could be decided
that the predetermined technique deduces advanced per-
sistency and practicability for experts in DM procedure. A
subsequent study will also essence on the presentation of
DM techniques using several other operators under PFHSS.
Also, the developed operators can be utilized in pattern
recognition, artificial intelligence, and medical diagnosis.
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