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Behavioral anatomy of a hunt

Using dynamic real-world paradigm and computer vision to compare human user-generated
strategies with prey movement varying in predictability
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Abstract
It is commonly thought that the mind constructs predictive models of the environment to plan an appropriate behavioral
response. Therefore a more predictable environment should entail better performance, and prey should move in an
unpredictable (random) manner to evade capture, known as protean motion. To test this, we created a novel experimental
design and analysis in which human participants took the role of predator or prey. The predator was set the task of capturing
the prey, while the prey was set the task of escaping. Participants performed this task standing on separate sides of a board
and controlling a marker representing them. In three conditions, the prey followed a pattern of movement with varying
predictability (predictable, semi-random, and random) and in one condition moved autonomously (user generated). The
user-generated condition illustrated a naturalistic, dynamic environment involving a purposeful agent whose degree of
predictability was not known in advance. The average distance between participants was measured through a video analysis
custom-built in MATLAB. The user-generated condition had the largest average distance. This indicated that, rather than
moving randomly (protean motion), humans may naturally employ a cybernetic escape strategy that dynamically maximizes
perceived distance, regardless of the predictability of this strategy.

Keywords Prediction error · Computer vision · Ethology · Human performance · Cybernetic · Perceptual control theory

Introduction

Understanding the mind has been at the center of
psychology since its inception (Dewey, 1887; Edward,
1896; Wundt, 1859), yet we are still uncertain how it gathers
and disseminates information (Ransom et al., 2017). One
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strategy is that the brain is a hypothesis prediction testing
system. Suppose that you are pursuing an object and your
cognitive system wants to gather information about the
object from the sources you have available. Rather than
being informed by the sources, the system will inform the
sources of what it already thinks the object’s parameters
are. The sources responds with how these predictions are
false, resulting in a prediction update if this is the case.
This update takes into consideration the success or failure
of previous predictions in that context. This is known as
the Prediction Error Minimization Theory (PMT) (Hohwy,
2013). Prediction can be seen here as the core component
of this theory and the feature that unifies it with the
previous literature: theory of mind (Hiatt & Trafton, 2010),
oculomotor control (de Xivry et al., 2008), and visual
perception learning (Stefanics et al., 2014).

Prediction is advantageous when the situation is tem-
porally sensitive and a neurological delay in transmitting
information may be costly, and more so when prior pre-
dictions are highly accurate (Ransom et al., 2017). How-
ever, prediction can be maladaptive when the environment
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is unpredictable or at the very least difficult to predict.
This is a fundamental limitation within the PMT given the
environment contains both predictable and unpredictable
events (Phillips, 2001). In such an environmental context, it
may be more adaptive for both predator and prey to follow
a cybernetic control strategy regardless of the predictabil-
ity of the movement. One possibility is that the prey would
attempt to maximize distance whereas the predator would
attempt to minimize distance. There is convergent evidence
that, in contrast to predictive accounts, this simpler model
may apply to animal behavior, such as robbing and dodging
in rats and crickets (Bell et al., 2015).

We sought to develop an experimental paradigm that
assessed the role of the predictability of the environment
in performance. We selected the predator–prey scenario
because it is a complex, naturalistic activity that is anal-
ogous to other real-world scenarios (e.g., team sports),
and can be studied in the laboratory. Researchers have
begun to employ laboratory experiments rather than field
observations when studying predator and prey behav-
ior (Beauchamp et al., 2007). Secondly, some researchers
have begun to move away from investigating the pur-
suit strategies of animals and have instead investigated the
behavior of humans in comparable contexts (Shaffer et al.,
2013). The reason being, humans can receive instructions
and manage their behavior far better than animal, allowing it
to be represented within a 2D environment making the anal-
ysis more reliable and modeling more accurate (Jones et al.,
2011).

Amongst the animal studies of predator–prey behavior,
a frequently documented phenomenon is the erratic evasive
behavior exhibited by prey during a pursuit. This behavior
was termed “protean” by Chance and Russell (1959)
and Humphries and Driver (1967) to classify the erratic
escape trajectories exhibited by prey to evade their pursuer.
Although protean behavior is highly variable in nature
it is not entirely random; it sometimes even benefits
the prey to move towards the predator and close the
distance, making it easier for the prey to monitor the
predator and/or make it more difficult for it to launch an
attack (Eilam, 2005; Godin & Davis, 1995). Many animals
including ducks, rats and crickets have been shown to
display protean behavior (Humphries & Driver, 1967). It
is commonly thought that the unpredictability of protean
behavior makes it adaptive. However, the relationship
between the predictability of prey movement and capture
is complex. For example, a study of jumping spiders found
that the predictability of prey movement only benefited
predators with a ‘docile personality’, whereas prey with
unpredictable movements were better captured by predators
with an ‘aggressive personality’ (Chang et al., 2017).

It is also the case that prediction only benefits the prey
within a certain range of relative speeds of the predator
and prey. Specifically, if the prey is significantly faster
than the predator, then it can easily evade capture. “In
the absence of the prey turning or exploiting features of
the landscape inaccessible to predators, the predator must
simply maintain a speed greater than the prey for a sufficient
time to successfully catch the prey” (Moore & Biewener,
2015). For example, naturalistic studies of animals show
that some prey can often simply outrun predators to evade
capture (Combes et al., 2013; Moore & Biewener, 2015).

We have identified three studies that have explored
the strategy that human participants take in predator–
prey scenarios. Jones et al. (2011) investigated the
effect a predictable pattern of movement from prey
has upon a predator. They investigated whether grouped
prey were less easily captured with protean behavior
compared to predictable behavior. This was investigated
by human participants controlling a digital predator and
attempting to capture computerized targets with protean or
predictable patterns of movement. Targets with predictable
behavior were more likely to be captured than those
with protean behavior. However, there is evidence that
the relationship is more complex in situations in which
the prey move in groups, as is commonly the case in
nature. In a study of human participants pursuing prey
on a computer, prey movement unpredictability interacted
synergistically with the density of the group to reduce
capture performance (Chang et al., 2017). The advantages
of protean behavior also appear to be related to complexity
in recent study that instructed human predators to track
prey in three-dimensions using their head movements within
virtual reality (Richardson et al., 2018). This study revealed
that protean movement reduced predator accuracy only
when combined with predictable movements to generate
more mathematically complex trajectories. Furthermore,
even complex movement trajectories (e.g., spirals) that were
nonetheless mathematically predictable, reduced predator
accuracy.

Most importantly for our aims, none of the above
studies included a benchmark of human prey to establish
whether the degree of unpredictability is the feature that
distinguishes the evasion of capture in real agents. Our study
included a number of novel methodological components
to advance on the earlier literature: human participants in
both the predator and prey roles; a naturalistic design using
a hexagonal grid for the pursuit; computer vision (CV)
analysis to establish movement trajectories.

In CV, dynamic object detection in real-world dynamic
environments is a very difficult problem to solve, as
many different parameters are required to be reconciled
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in one algorithm (Moeslund & Granum, 2001). For
example, a detector capable of handling continuously
varying illumination may find it difficult to cope with
target’s continuously changing appearance due to variations
in viewpoints (Cucchiara et al., 2003). In order to detect
and track both prey and predator’s movements in a fast-
changing dynamic environment, we developed a detector
which considers the distinction of a foreground against the
background. The target can be modeled as a stand-alone
entity (while not as its distinction from the background),
changing effect of light or change of viewpoint can
invalidate the target model (Smeulders et al., 2013). Hence,
in this study a tracking methodology is developed for the
detection of the target using foreground/background color
and intensity discrimination. A discrimination function
is trained for quantification of foreground/background
discrimination.

The aim of the current study was to investigate whether
the predictability of a target’s movement has an effect
upon a pursuer’s pursuit strategy. Furthermore, it aimed
to investigate how this compares to the pursuit strategy
used naturally by humans to pursue another human
(user generated). This was investigated by comparing the
average distance between individuals in a natural pursuit to
benchmarks of distance when the target’s (prey) movements
vary in predictability: from predictable, to semi-random,
to random. We hypothesized a negative linear relationship
between distance and prey movement predictability. We
planned to compare the user-generated condition to these
to judge whether naturalistic prey movement is likely to
adopt the strategy of unpredictable movement and achieve
predator–prey distances approaching the random condition.
Alternatively, if the human prey is superior to all the
pre-programmed conditions varying in predictability, then
a dynamic control strategy may be used that maximizes
distance from the predator, over and above any advantages
of making unpredictable movements.

Method

Design

A pair of participants was randomly allocated to their role
of predator or prey and completed a series of pursuit and
evasion tasks. The interaction between participants was
video recorded for later analysis. The design was a repeated-
measure one-way ANOVA with the independent variable
being the prey participant’s pattern of movement. This
consisted of four levels: predictable (P), semi-predictable
(S), random (R) and user generated (U). The conditions
were counterbalanced as such: PSRU, UPSR, RUPS, SRUP.

The dependent variable was the mean distance between the
participant’s markers (laser and magnet) in each condition.

Participants

Forty participants (25 males, 15 females) were recruited
through opportunity and volunteer sampling at the Univer-
sity of Manchester.

Materials

Piloting - board

Piloting the experiment resulted in several changes to
the design of the apparatus and procedure. Firstly, the
landscape/map in which participants would have interacted
upon was initially a large circle with a radius of 20 cm
made up of hexagons with a diameter of 1.5 cm. The prey
and predator’s starting position was at the center of circle
at 2 hexagons apart. The prey were instructed to reach the
edge of the circle to escape successfully, while the predator
was instructed to pursuit and catch the prey by keeping as
close as possible. This test exposed two limitations of this
design: one, the escape space available to the predator was
limited and, two, the magnets representing each participant
interfered with each other. As a result of the circular map,
the prey’s escape trajectories were limited to a 180◦ area
away from the predator’s starting position. Furthermore, the
prey trajectories were increasingly limited given that the risk
of being caught increased the closer the escape trajectories
approached 90◦ to the predator’s position. Consequently, a
circular map was abandoned in favor of a rectangular map
whereby the predator and prey started on the left side of the
map and traversed across. The prey reaching the right side
of the map was considered a successful escape and end of
the trial.

Board

A wooden frame (94 × 61 cm) was built with a slot for two
transparent Perspex sheets in order to enclose the double-
sided hexagonal graph paper placed within the frame (see
Fig. 2). This will be referred to as the board from here
onwards. The board was placed on top of a table to allow
the participants to interact while standing.

Piloting – trajectory patterns

One of the pre-determined patterns of movement was a sinu-
soidal wave form (predictable), however, piloting revealed
that varying the frequency and amplitude significantly
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affected the predator’s ability to extract the predictable pat-
tern wave form. Given the landscape participants interacted
upon was made up of hexagons the sinusoidal pattern con-
formed to this hexagonal configuration, in other words, the
wave form was not mathematically sinusoidal but an imita-
tion with straight lines. Nonetheless, piloting found that a
sinusoidal wave with a frequency that was too small or too
large impeded upon the prominence of the sinusoidal wave
form, putting the validity of the predictive condition at risk.
Piloting revealed an optimal sinusoidal wave frequency of
0.19 Hz with an amplitude of 7.5 cm (2.5 hexagons).

Trajectory patterns

Three strips of clear acetate were constructed with pre-
determined patterns of movement printed onto them with
varying degrees of predictability: predictable, semi-random,
and random. Each strip was placed individually, according
to their respective condition, upon the hexagonal graph
paper at a standardized location, resting between the
hexagonal graph paper and Perspex sheet (see Fig. 1).

Piloting – participant representation

Initially, each participant had a magnetic stylus to control
their magnet on the opposing side of the board. However, at
a minimal distance the magnet of the opposing participant
would become attracted to the incorrect magnetic stylus.
In other words, the predator participant’s magnetic stylus
would become attracted to the prey participant’s magnet

which lies on the predator’s side of the board and vice
versa. Therefore, the prey’s representation on the board
became a laser point emitted from a laser pen. Only the
prey’s representation was changed to allow for a clear
differentiation between the predator and prey.

Secondly, using a laser point to represent the prey
although overcome one limitation introduced another; an
unfair advantage of speed. The prey participant’s laser
point was capable of traveling a greater speed than the
predator’s counterpart. As a result of the laser pen’s light
weight and small size, it had considerable maneuverability,
whereas the friction from the magnet and magnetic stylus
against the board limited the predator’s speed. In order to
overcome this limitation the speed of both the prey and
predator were standardized with a metronome, allowing
both participants to travel at an equal speed. The optimal
metronome setting was 70 bpm (beat per minutes). A
lower bpm allowed participants an excessive amount of
time to consider their next position in relation to the other
participant; lacking ecological validity of natural pursuits. A
higher bpm inhibited participants traveling at one hexagon
per beat, resulting in unstandardized speeds and deviations
from the pre-determined patterns of movement.

Participant representation

A magnetic stylus and magnet were provided for the
predator participant and a laser pen was provided for the
prey participant (see Figure 2 and Appendix). A digital
metronome set at 70 beats per minute was used in order to

Fig. 1 Experimental setup and four trajectory patterns. 1 = Laser pen, 2 = Metronome, 3 = Video camera, 4 = Magnets and 5 = Board
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standardize the speed of each participant’s movement (see
Fig. 2).

Videoing equipment

A Nikon D5200 DSLR (digital single-lens reflex) camera
was placed at a distance of 110 cm perpendicular to the
center of the board and recorded at 50 frames per second
(image resolution 1280 × 720) the participants’ interaction
on the board (Fig. 1).

Tracking software development

Before we explain the development of tracking soft-
ware, we want to mention that a MATLAB function
‘hex-grid-generator’ was developed and made publicly
available on https://www.mathworks.com/matlabcentral/
fileexchange/67680-hex grid generator. The version of this
function fall under an open-source GNU general public
license (GPL). Scientists can contact author TG or WM to
obtain the executive file of the full-software to test on videos
recorded under variable conditions. This software function
and executive file of full software remains intellectual prop-
erty of TG and WM and it will not be published on any other
websites without permission.

The extraction of the prey/predator movements from trial
videos requires a computer vision (CV) software. The CV
software development relies on a series of image processing
and CV based steps to extract information from the recorded
videos in order to determine prey/predator movements.
These steps consisted of (i) spatiotemporal cropping of
videos, (ii) unsupervised detection of the centers of
hexagonal grid points on the board, (iii) motion tracking
of prey/predator movements, (iv) trajectory formation of

Fig. 2 The prey’s side of the board displaying the prey’s laser point,
predictable pattern of movement and the predator’s corresponding
black magnet

movement points for both the prey and the predator. Here we
provide detailed information per individual processing step.

Spatiotemporal cropping

A spatiotemporal cropping of video frames was required
in order to remove clutter and color artifacts, e.g., brown
color of wooden border, light reflections, etc. Therefore
each video was cropped to a fixed region of interest (in our
case the frontal looking hexagonal grid board) and removing
irrelevant background objects. Videos were also cropped in
time by removing the stationary paradigms (start and end
of the trial). The start of the videos often contained an
increase in the prey’s movements (flickering laser pointer’s
light intensity or sometimes reflections from the board’s
corner) and the end tended to contain prey’s (laser pointer’s)
unnecessary movements, as participants anticipated the end
of recording.

Hexagonal grid detection

A module was developed in our software to detect the
centers of the hexagonal grid cells on the board. The
hexagonal grid has identical and equidistant flat topped
hexagons (cells) as shown in the Fig. 1 whose width
w = 2 × size and height h = √

3 × size, where
size in our case is 1.5 cm. The edges or the line
segments of the hexagonal grid were obtained using Canny’s
edge detection method (Canny, 1987). The edges were
traced and exterior boundaries of all the hexagons were
obtained using MATLAB’s ‘bwboundaries’ function. The
intersection point of all individual boundary points was
taken as the center point of a hexagonal cell (as shown in
Fig. 3a, b). Further, a customized function was developed to
check the accuracy and consistency of the obtained center
points of the hexagons. The distance of the center points of
the cells to their corners at 45◦, 90◦, 135◦, 225◦, 270◦, 315◦
was calculated and if the distance fell under unacceptable
range, the points were considered as noisy and were
replaced by the points consistent with the corner distance
and nearest-neighbor distance to the adjacent and accurately
estimated center points. This detection method worked well
for all the frames of the trials and the cell points were saved
as individual trial files.

Object detection (prey/predator)

The predator (magnet) was wrapped with thick black tape
making it visible as a black dot, where as prey produced
a bright red light feature on the board (as shown in
Fig. 2). An object detection algorithm was developed in
MATLAB using image processing and computer vision
system toolboxes, to detect and track prey and predator’s
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Fig. 3 Center point of each hexagon on the hexagonal grid are detected, shown in red

movements on the board during the trial. The object
detection algorithm performed two processes in parallel.
The first process was aimed to detect prey as a bright
red object. The ‘Red’ color channel was separated from
the RGB frame and a median filter (3×3) was applied to
the resultant ‘Red’ object to remove the noise. A ‘circular
Hough transform’ (Pei & Horng, 1995) (‘imfindcircles’
MATLAB function) was applied to the red object pixels and
a circle was drawn (Barnstedt et al., 2015), the center point
of the circle was obtained (in 2D xy coordinates) and were
considered as prey’s movement points. The second process
was designed to detect a moving black dot (as predator)
on the white board. This was achieved by conversion
of the frame into binary format, removing all connected
components fewer than ten pixels, and later morphological

close operation, i.e., dilation followed by an erosion was
performed to make black dot prominent. Similar to the first
process, a circle was fitted to the resultant points and the
center point was obtained and tracked as predator moved on
the board as shown in Fig. 4.

Trajectory formation of prey and predator

The 2D (x, y) positions of the prey and the predator for
each trial were recorded. In order to map the 2D positions
of the prey and predator on the grid, the movements of prey
and predator in time were associated to the each hexagonal
grid’s center position. For every trial, two trajectories were
obtained, manifesting prey and predator movements over
the course of trial (as shown in Fig. 5). The start and end

Fig. 4 Prey and predator were detected and tracked in motion through out the trial’s videos, represented by blue and red circles, respectively
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Fig. 5 Prey and predator pursuit analysis snapshot. The solid black line is the prescribed trajectory. The center points of hexagonal grid cells are
green dots, the blue and red trajectories are of prey and predator, respectively. The red squares are the possible predator movements. The pink
asterisks are the actual predator movements

frame of the trial video was selected manually, to make sure
that the predator and prey were always present in the video
frames (to obtain a continuity of the natural trajectories).

Comparison of manual vs. computer vision-based
trajectory extraction

To verify the performance of the proposed computer vision-
based detector, we compared it with the results obtained
by two independent coders (one author and one volunteer).
The proposed computer vision method was programmed
with MATLAB. All experiments were implemented on Intel
Core i7-6500 CPU at 3.19 GHz and 16-GB RAM. The
two coders then assessed and coded the trajectories in the

video (manually, frame by frame) by applying a template
and recorded x and y locations of predator and prey at
each beat. Although the trajectories are subjected to error
and are bias intrinsic to subjective estimation, the human
coders manual results are a particularly valid comparison
being a direct estimation of the target phenomena of
both prey and predator detection in images. To visually
compare the accuracy of our detection method and manual
detections, we have shown the both trajectories in Fig. 6a, b.
We observed that human coders made errors on several
occasions one of which is shown in Fig. 6b. We also verified
the error by visually observing the video and comparing
both trajectories and came to the conclusion that computer
vision-based results were more accurate. A total of 68 (x, y)

Fig. 6 Pursuit trajectories analysis. a The black and blue trajectories are of prey and predator, respectively. Green and yellow trajectories are the
associated trajectories with the hexagonal grid center points. The center points of hexagonal grid cells are red dots. b The red and green trajectories
are of prey and predator, respectively. The visible trajectory erroneous area is encircled black. The associated true trajectory can be seen in (a)
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points were detected for each prey and predator movements
using computer vision, whereas human coder detected 59
points. It took a human coder 2 h (7200 s) to complete
the task, whereas computer vision took 180 s or 3 min to
complete the same task.

Results

In Fig. 7 descriptive statistics of the average distance
between the predator and prey within each condition
has been shown. A repeated one-way ANOVA (Huck &

Fig. 7 Results of the experiments. a The average distance between the predator and prey across the four different conditions of movement with
95% confidence intervals. b Boxplot for all conditions; the red line is mean data
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McLean, 1975) revealed a significant difference between
the conditions means, F(1.19, 34.53) = 75.2, p < .001
(Geisser et al., 1959; Abdi, 2010). This represented a large
effect size; η2 = 0.669, revealing that 67% of the average
distance between the predator and prey was accounted by
the user-generated movement and varying predictability of
the prey’s movement.

Planned comparisons employing a repeated measure t-
test (Ruxton, 2006) with a Bonferroni correction (Sedgwick,
2012) revealed a statistical difference between the user-
defined condition distances and the predictable (p <

.001), semi-random (p < .001) and random condition
distances (p < .001). These differences had large
effects sizes, d = 2.65, 2.48 and 2.25. In addition, the
random and semi-random condition distances were found
to be statistically different from the predictable condition
distances. Small p values were found between random and
predictable (p = .002) and semi-random and predictable
(p = .001) conditions, (See Fig. 7) revealing medium

effect sizes, d = 0.67 and 0.64. However, no statistical
differences were found between the predictable and semi-
random (p = .339) condition distances (See Fig. 7);
unsurprisingly resulting in a small effect size, d = 0.23. The
predictive condition presented the predator participant with
a predictable pattern of movement, allowing the predator
to intercept the prey as they traveled towards the predators
headed direction (see Fig. 8a, b, c, d). We can observe within
the predictable condition the predator’s pursuit trajectory
interception segments are divided by tracking segments,
whereby the predator simply follows the prey at a distance,
but this pursuit strategy incurs a cost of having a delayed
response to the prey’s change in direction (see Fig. 8a,
b, c, d). This was not the case in the random and semi-
random conditions, where the predictability was harder
to realise and so the predator strictly chased the prey
on the prescribed erratic trajectory, which resulted in a
mean average distance slightly less than the predictable
condition.

Fig. 8 Examples of the trajectories taken by the predator (black trajectory) and prey (blue trajectory) within each condition, as well as, their
relative location to each other throughout the trial. a P - Predictable. b S - Semi-random. c R - Random. d U - User generated
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Discussion

In this study, we presented the development and basic results
obtained from computer vision (CV)-based software aimed
to demonstrate its functionality with experimental evidence:
(i) to detect accurately the prey–predator movements on
the hexagonal grid cells, and (ii) to examine whether
the trajectories obtained are representative under natural
ambient light conditions. The adoption of CV and machine
learning in behavioral experiments saves manual labor-
intensive analysis time and costs associated with decode
video frames. As far as we know, cost–benefit analysis
and accuracy had not yet been reported by previous
studies with a similar experimental setup, a simple color
camera and relatively straight-forward CV algorithms. It
was also found that CV can be more effective and accurate
under similar lighting conditions, no reflections and similar
camera positions across all the trials. Future software
and experimental developments could try to cover such
variabilities.

Moreover, after data analysis, this study had two key
findings in relation to our hypotheses. Firstly, the results
from the predictable (P), semi-random (S), and random
conditions (R) showed that predictable prey were tracked at
a further average distance by the human predator compared
to prey with random, or semi-random movements, contrary
to the idea that the human mind uses prediction to aid
performance (Hohwy, 2013). Two earlier studies did not
show a direct relationship between unpredictable prey
movement and reduced predator accuracy (Chang et al.,
2017; Richardson et al., 2018). Observations of the
individual predator-prey pursuits suggest that our findings
may have resulted from a ‘stalk and intercept’ strategy that
may entail longer average distances as the predator follows
at a distance, and yet may result in successful ‘capture’ of
the prey.

In contrast, the second, and most pronounced finding
was that the user-generated condition produced significantly
larger distances between the predator and prey than
all other conditions. Human prey appeared to operate
in a far more efficient manner than pre-programmed,
or randomly generated, patterns of movement. Human
prey may therefore have utilized an awareness of their
position, relative to the predator’s position, which allowed
them to make trajectory choices impromptu, thereby
significantly increasing the distance between themselves
and the predator. This is a cybernetic strategy (Bell & Pellis,
2011). This finding appears to undermine the importance
of whether the prey movement is predictable, semi-random
or random and it adds an additional factor to those of
group size, complexity and speed that have been studied
to date (Chang et al., 2017; Richardson et al., 2018). The
predator’s ability to use prediction to catch the prey is

undermined by a cybernetic prey, and yet the predator
itself can use a similar approach – to minimize its distance
dynamically, when the predator has control of a variable
that he or she perceives i.e. predator–prey distance. In other
words, it is the perceived aspect of the individual and its
environment that is controlled (Powers, 1973) in both cases.

Ultimately, a model is needed that accounts for both
the stalking of more predictable prey by the predator, and
the advantage of a human prey’s control strategy. It is
clearly feasible that the predators in the study could have
attempted to predict the prey’s next move by inferring which
way it would go to maximize its distance. Yet, the finding
that human prey kept further away than any of the pre-set
movements, indicates that if the human predators could do
this prediction, they did not do it to their advantage in this
study.

Cybernetic control as described by perceptual control
theory can involve tracking not only the perceived position
of an object, but also its current perceived velocity and
direction (Marken et al. 2001). To the extent that the current
velocity of a prey in a certain direction stays the same
over time, then due to its momentum, it will permit the
predator to be in the correct position to get closer to the
prey in the near future. This does not mean that from an
internal perspective, the animal is predicting the position of
the prey in the near future. It is merely tracking the prey’s
current perceived relative velocity and direction. However,
to the observer, this will look like prediction. Furthermore,
agents can also attempt to control for the current pattern of
movement that they perceive, such as a sine wave or a circle,
which can also appear to be making a prediction because
the current perceived pattern unfolds over time through the
movement of the tracked object (Powers et al., 1960). This
would be more evident for our human participants because
they had (unlike real animals in current pursuit) a ‘helicopter
perspective’ of themselves (the predator) and the prey in
motion.

The above account leads on to the range of factors
that would make the experimental testing more naturalistic.
First, would be to model the perceptual field of the
animals ‘on the ground’ rather than from above. When
doing so, it appears that certain predators may move
to keep highly specific perceptual variables constant; for
example, bats keep their perception of a mantis at a
fixed angle as they shorten their distance from it (Ghose
et al., 2009). The second advance would be to model
the physics of real predators and prey, which in turn
helps to incorporate information about their relative speeds
in different environments, and their abilities to change
direction. Third, future studies may need to account for
multiple strategies for both predator and prey, and how they
are applied to the context, and learned. For example, the
sudden evasive darting of certain prey may be an attempt
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to escape capture by eliminating the ‘looming’ perception
of the predator as it attacks (Kane et al., 2015). The
predator, on the other hand, as discussed above, may also
sometimes control for perceptual variables that unfold over
time, such as the pattern of movement of the prey, resulting
in an apparent prediction of its future location. Thus, any
overarching model of predator–prey pursuit is likely to be
multi-layered, embodied, and have dynamically adjustable,
learnable strategies and parameters.

The next stage in this research plan is to construct
computational models of individual predators and prey by
training them on the human performance, and testing them
against new pursuits. This methodology would allow a
robust test of the model fit between an agent utilizing
a predictive strategy with one using a cybernetic, or
perceptual control, model (Mansell & Huddy, 2018).

Data availability

The datasets generated during experiments and analyzed
for the present study are available from the corresponding
author. The videos generated during the present study are
not publicly available due to privacy and ethical issues.
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representation of target motion drives predictive smooth pursuit
during target blanking. Journal of Vision, 8(15), 6–6.

Edward, B. (1896). Titchener, an outline of psychology. New York:
Macmillan.

Eilam, D. (2005). Die hard: A blend of freezing and fleeing as
a dynamic defense—implications for the control of defensive
behavior. Neuroscience, Biobehavioral Reviews, 29(8), 1181–
1191.

Geisser, S., Greenhouse, S.W., & Geisser, S. (1959). On methods in
the analysis of profile data. Psychometrika, 24, 95–112.

Ghose, K., Triblehorn, J. D., Bohn, K., Yager, D. D., & Moss, C. F.
(2009). Behavioral responses of big brown bats to dives by praying
mantises. Journal of Experimental Biology, 212(5), 693–703.

Godin, J. G. J., & Davis, S. A. (1995). Who dares, benefits: Predator
approach behaviour in the guppy (Poecilia reticulata) deters
predator pursuit. Proceedings of the Royal Society of London,
Series B: Biological Sciences, 259(1355), 193–200.

Hiatt, L. M., & Trafton, J. G. (2010). A cognitive model of theory
of mind. In Proceedings of the 10th international conference on
cognitive modeling, (pp. 91–96).

Hohwy, J. (2013). The predictive mind. Oxford University Press.
Huck, S. W., & McLean, R. A. (1975). Using a repeated measures

anova to analyze the data from a pretest-posttest design: A
potentially confusing task. Psychological Bulletin, 82(4), 511.

Humphries, D., & Driver, P. (1967). Erratic display as a device against
predators. Science, 156(3783), 1767–1768.

Jones, K. A., Jackson, A. L., & Ruxton, G. D. (2011). Prey jitters;
Protean behaviour in grouped prey. Behavioral Ecology, 22(4),
831–836.

Kane, S. A., Fulton, A. H., & Rosenthal, L. J. (2015). When hawks
attack: Animal-borne video studies of goshawk pursuit and prey-
evasion strategies. Journal of Experimental Biology, 218(2), 212–
222.

Mansell, W., & Huddy, V. (2018). The assessment and modeling
of perceptual control: A transformation in research methodology
to address the replication crisis. Review of General Psychology,
22(3), 305–320.

Marken, R. S. et al. (2001). Controlled variables: Psychology as the
center fielder views it. American Journal of Psychology, 114(2),
259–282.

Moeslund, T. B., & Granum, E. (2001). A survey of computer
vision-based human motion capture. Computer Vision and Image
Understanding, 81(3), 231–268.

Moore, T. Y., & Biewener, A. A. (2015). Outrun or outmaneuver:
Predator–prey interactions as a model system for integrating
biomechanical studies in a broader ecological and evolutionary
context. Integrative and Comparative Biology, 55(6), 1188–
1197.

Pei, S. C., & Horng, J. H. (1995). Circular arc detection based on
Hough transform. Pattern Recognition Letters, 16(6), 615–625.

3122 Atten Percept Psychophys  (2020) 82:3112–3123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Phillips, J. D. (2001). Human impacts on the environment: Unpre-
dictability and the primacy of place. Physical Geography, 22(4),
321–332.

Powers, W. T. (1973). Behavior: The control of perception. Aldine
Chicago.

Powers, W. T., Clark, R., & McFarland, R. (1960). A general feedback
theory of human behavior: Part II. Perceptual and Motor Skills,
11(3), 309–323.

Ransom, M., Fazelpour, S., & Mole, C. (2017). Attention in the
predictive mind. Consciousness and Cognition, 47, 99–112.

Richardson, G., Dickinson, P., Burman, O. H., & Pike, T. W. (2018).
Unpredictable movement as an anti-predator strategy. Proceedings
of the Royal Society B: Biological Sciences, 285(1885), 20181112.

Ruxton, G. D. (2006). The unequal variance t-test is an underused
alternative to Student’s t-test and the Mann–Whitney U test.
Behavioral Ecology, 17(4), 688–690.

Sedgwick, P. (2012). Multiple significance tests: the Bonferroni
correction. BMJ, 344, e509.

Shaffer, D. M., Marken, R. S., Dolgov, I., & Maynor, A. B. (2013).
Chasin’ choppers: Using unpredictable trajectories to test theories
of object interception. Attention, Perception and Psychophysics,
75(7), 1496–1506.

Smeulders, A. W., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan,
A., & Shah, M. (2013). Visual tracking: An experimental survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(7), 1442–1468.
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