
The protein kinase promiscuities in the cancer-preventive
mechanisms of NSAIDs
Povilas Norvaisas, Diana Chan, Kenji Yokoi, Bhuvanesh Dave
and Arturas Ziemys

NSAIDs have been observed to have cancer-preventive
properties, but the actual mechanism is elusive. We hypothesize
that NSAIDs might have an effect through common pathways
and targets of anticancer drugs by exploiting promiscuities of
anticancer drug targets. Here, we have explored NSAIDs by their
structural and pharmacophoric similarities with small anticancer
molecules. In-silico analyses have shown a strong similarity
between NSAIDs and protein kinase (PK) inhibitors. The
calculated affinities of NSAIDs were found to be lower than the
affinities of anticancer drugs, but higher than the affinities of
compounds that are not specific to PKs. The competitive
inhibition model suggests that PK might be inhibited by around
10%, which was confirmed by biochemical screening of some
NSAIDs against PKs. NSAIDs did not affect all PKs universally,
but had specificities for certain sets of PKs, which differed
according to the NSAID. The study revealed potentially new

features and mechanisms of NSAIDs that are useful in
explaining their role in cancer prevention, which might lead to
clinically significant breakthroughs in the future. European
Journal of Cancer Prevention 25:77–84 Copyright © 2015
Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
NSAIDs are among the most widely used drugs that are

accessible without a prescription. The primary role of

NSAIDs is to inhibit cyclooxygenase (COX) activity leading

to the synthesis of prostaglandins that cause inflammation-

associated symptoms, like pain or fever (Vane, 1971). There

are two main COX isoforms distinguished: COX-1 and

COX-2. COX-1 is constitutively produced in most tissues,

whereas COX-2 is induced by various stimuli, including

cytokines and hormones (Davies et al., 2002). There are

more than few dozen NSAIDs, which include well-known

compounds such as aspirin, ibuprofen, sulindac, celecoxib,

and others that bind most COX isoforms, or are more spe-

cific to COX-2. The toxicity of NSAIDs is most frequently

associated with cardiotoxicity (Patrono and Rocca, 2009) or

gastrointestinal bleedings (Bjorkman, 1998).

In addition to their anti-inflammatory activity, there is evi-

dence that NSAIDs reduce the risks of some types of cancer.

Among the earliest studies published was a report from the

1970s that showed the inhibitory effect of aspirin and indo-

methacin on the osteolytic activity of Walker sarcoma in rats

(Powles et al., 1973). In addition, in a year-long study,

sulindac was shown to inhibit and eliminate colon polyp

growth, confirming the results on indomethacin and pirox-

icam in animals (Waddell and Loughry 1989). A decrease in

death from colon cancer was found among men and women

who used aspirin 16 times or more per month (Thun et al.,

1991). Another early study showed that high levels of pir-

oxicam in the diet of rats resulted in fewer colon tumors

compared with control animals (Reddy et al., 1987).

Clinical correlations have been made between NSAIDs and

cancer in the human population. In 2009, an international

group of researchers published a consensus statement sup-

porting the benefits of aspirin and other NSAIDs as cancer

therapeutics (Cuzick et al., 2009). In 2011, Rothwell and col-

leagues presented an in-depth study that described statistical

(25 570 patients) correlations between long-term aspirin use

and cancer, finding a lower risk of death among patients

consuming aspirin, because of a decrease in gastrointestinal

and solid tumors (Rothwell et al., 2010). It was shown that the

beneficial effects of aspirin in esophageal, pancreatic, brain,

lung, stomach, and prostate cancers manifested after 5 or more

years of regular use (Rothwell et al., 2011).

Cancer is a complex and heterogeneous phenomenon,

appearing locally at initial stages of development, with no

trivial relationships with other biologically complex pro-

cesses such as inflammation. The link between inflamma-

tion and cancer was established many years ago by Rudolf

Virchow (Balkwill and Mantovani, 2001). In the 1990s,

DuBois and colleagues reported upregulated COX-2 levels

in individuals with colorectal cancer (Eberhart et al., 1994),
making a closer connection between NSAID pathways,

inflammation, and cancer. Later, COX-2 upregulation was

reported in other cancer types, and COX-2-selective drugs

were shown to have potential therapeutic value (Cha and

DuBois, 2007). Furthermore, the cancer and inflammation

domains overlap in biological pathways (Dubois et al., 1998).
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Among the mechanisms not involving COX-2 (Hinz and

Brune, 2002) is the proapoptotic effect of NSAIDs

against cancer cells (Zerbini et al., 2006). The Wnt path-

way has been shown to be critical in cancer development

(Nusse et al., 1984), and NSAIDs have been shown to

interfere with targets in this pathway (Dihlmann and von

Knebel Doeberitz, 2005). In addition, the involvement of

p53 and MAPK signaling pathways has also been reported

(Ho et al., 2003). However, despite extensive studies by

different research groups and decades of research and

thorough clinical correlations, the mechanism of NSAID

action is far from being clear. Moreover, the discovery of

clear cancer-preventive mechanisms of NSAIDs requires

more research (Hudis et al., 2012).

The fact that NSAIDs may interfere with other pathways,

can inhibit the development of tumors, and affect tumors of

different phenotypes, as described above, lets us hypothe-

size that NSAIDs could interfere with fundamental path-

ways controlling cell growth and differentiation in a similar

manner to anticancer drugs. Molecular promiscuities are

common even for anticancer drugs that have more than a

few targets, such as imatinib – the widely used protein

kinase (PK) inhibitor (Broekman et al., 2011). Hence, here

we investigate the similarities of NSAIDs to small-molecule

anticancer drugs, seeking to understand more about

NSAIDs. Using in-silico tools and in-vitro screening, we

outline ligand-based and structure–physicochemical-based

similarities between NSAIDs and anticancer drugs, leading

to potential targets and pathways other than the COX

pathway that NSAIDs could modulate.

Materials and methods
Databases

There were 35 NSAIDs and 81 chemotherapeutic sub-

stances analyzed in our study. Most of the structures of these

drugs, together with accompanying data, were obtained from

the DrugBank database. If experimental logP values were

not available, they were supplemented with the XlogP tool

in Knime software (Berthold et al., 2008). Before further

analysis, all of the structures were cleaned of salts and

optimized using the OpenBabel MMFF94 method.

Ligand-based comparison

NSAIDs were compared with chemotherapeutic drugs

and metabolites. Ligands were compared using a com-

posite measure based on the following steric and physi-

cochemical similarities: pharmacophoric alignment and

logP. Structural and pharmacophore comparisons were

accomplished using Align-it software (Silico IT,

Wijnegem, Belgium; http://silicos-it.com/software/software.
html). In both of these tools, similarities between struc-

tures were measured in terms of the Tanimoto coefficient

(Tc), which provides the similarity score in the unitary

scale. To tackle physicochemical similarities, we used

antilogarithmic logP values, which were also compared

using Tc. The final score for each ligand–ligand pair was

obtained by multiplying individual matrix scores.

Docking

Docking of the drugs into targets was performed using

LeadIT software from BioSolveIT (LeadIT; http://www.
biosolveit.de/LeadIT). The best docking poses were eval-

uated using the Hyde method to determine the contribu-

tion of hydration. Targets of the chemotherapeutics were

identified according to the data in DrugBank and their

corresponding structures were retrieved from the RSCB

PDB database (Kouranov et al., 2006), giving preference to

the structures with highest resolution. A docking study was

performed in three steps. First, we docked the reference

chemotherapeutic compounds and then evaluated the root

mean square deviation by comparing with the crystal-

lographic data to test the performance of the method. We

then docked a negative control set of common metabolites

to identify the activity of nontherapeutic compounds. We

used randomly selected metabolites from the Human

Metabolome Database (Wishart et al., 2007) as negative

controls. This allowed us to set a scale on the results by

comparing functionally divergent classes of compounds –

drugs and metabolites. Common metabolites should not

have any therapeutic role, but are present and can theo-

retically compete for binding to targets. Finally, we docked

the selected NSAIDs into corresponding target structures.

The following PDB structures were used: 2GQG, 3CS9,

3HMI, 3V99, 4E26, 3C4C, 2I1M, 1M17, 2ITY, 1XKK,

1MQB, 3RCD, 3HNG, 1RJB, 2DQ7, 3VO3, 3G0E, 1NSG,

4AOJ, 3MJG, 3IQU, 2× 2L, 2H8H, 3KMR, 2P1T, 4DM6,

1H9U, 1EXA, 2GL8, 3NT1, 1EQG, 1VTH, 2DES, 1D67.

All docking poses were postprocessed with Hyde to eval-

uate the free energy of binding (Schneider et al., 2012).

Compounds

The following NSAIDs were studied: diclofenac, etodolac,

indomethacin, ketorolac, nepafenac, sulindac, tolmetin, car-

profen, celecoxib, etoricoxib, lumiracoxib, parecoxib, lornox-

icam, meloxicam, piroxicam, tenoxicam, meclofenamic acid,

mefenamic acid, niflumic acid, nabumetone, vilazodone,

misoprostol, fenoprofen, flurbiprofen, ibuprofen, ketoprofen,

naproxen, oxaprozin, suprofen, tiaprofenic acid, phenylbuta-

zone, acetylsalicylic acid, diflunisal, salicyclic acid, and salsa-

late. Only small molecular weight chemotherapeutic

compounds were selected in this study (∼80). Forty-four
metabolites were used as negative controls, having structures

of amino acids, lipid acids, monosaccharides, and compounds:

acetyl-CoA, fumaric acid, malonyl-CoA, oxalosuccinic acid,

pyruvic acid, urea and water.

Biochemical screening

The biochemical screening services of selected NSAIDs

against PKs were purchased from Millipore Co. (Billerica,

Massachusetts, USA) at 10 mmol/l ATP and 100 μmol/l

NSAID concentrations using two replicas per compound.
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Competitive inhibition

The competitive inhibition model was applied to study

the effect on NSAIDs:

V ¼ Vmax S½ �
KM 1þ I½ �

Ki

� �
þ S½ �

; ð1Þ

where [S] is the concentration of ATP, [I] is the con-

centration of the inhibitor (NSAID or chemotherapeutic

drug), KM is the Michaelis–Menten constant, Ki is the dis-

sociation constant of the inhibitor, and V is the reaction

velocity. Physiological average values were used for [S] and
KM, 5mmol/l (Beis and Newsholme, 1975) and

1×10−5mol/l (Prowse and Lew, 2001; Knight and Shokat,

2005), respectively. Ki was calculated from docking energies.

Ki ¼ 1

exp �DG=RTð Þ ; ð2Þ

where ΔG is the inhibitor affinity or docking energy after

analysis rescoring docking poses with Hyde software, R is

the gas constant, and T is the absolute temperature.

Results
Ligand comparison

The anticancer and NSAID compounds were compared

by consolidating them into related chemical families to

explore the potential target promiscuities. The ligand-

based comparison presented in Fig. 1 in the form of a

heatmap helps understand whether NSAIDs can poten-

tially be ligands for other targets rather that COX alone.

Many NSAID families showed similarities to PK inhibi-

tors, especially fenamate-based NSAIDs. Enolic acid

derivatives and salicylates also showed similarities to

anthracyclines and other inhibitors. No or very little

similarity to chemotherapeutic compound families of

antimetabolites or compounds involved in chemical

modification, such as alkylating agents, was found (Fig. 1).

Using a family-based comparison, we have narrowed down

on a drug–drug comparison focusing on PK inhibitors and

anthracyclines, because they have shown several similarities

to anticancer drugs across many NSAID families. The ana-

lysis found aspirin to have high scores against a large number

of chemotherapeutics (Fig. 2). This might be a result of the

small molecular weight of aspirin, and an aspirin-like frag-

ment could have been identified in corresponding antic-

ancer molecules. Although salicylic acid is related to aspirin,

it did not show a corresponding high similarity. NSAIDs

have shown an average similarity to masoprocol, the antic-

ancer agent whose main target is apolipoxygenase A (LOX)

and is structurally and genetically related to COX-2. On the

basis of the calculated highest score or the calculated highest

average score against all anticancer drugs, nabumetone,

aspirin, meclofenamic acid, mefenamic acid, etodolac,

diflunisal, and niflumic acid are the NSAIDs that are most

similar to PK inhibitors. Oxicam family compounds show

the lowest similarity, together with nepafenac. On the basis

of computed pharmacophoric and physicochemical simila-

rities, no single NSAID shows similarity to all investigated

PK inhibitors and anthracyclines. Most of the NSAIDs have

narrowly defined similarities (Fig. 2); for example, diclofenac

shows similarities to bexarotene, tretoin, everolimus, etho-

dolac, masoprocol, imatinib, vindesin, and a few other

compounds.

Structural comparison

Ligand–ligand comparisons suggested highest simila-

rities, leading to specific targets associated with che-

motherapeutics drugs. All targets were identified using

DrugBank and available structures were used to identify

docking studies. Each specific target was docked with

ATP, the corresponding chemotherapeutic drug, the

corresponding NSAID from the ligand–ligand compar-

ison, and a set of common metabolites. The set of com-

mon metabolites were docked to each target also to

establish nonspecific affinities toward targets, which

helps judge the specificity of other docked compounds.

The docking results show examples of how ligand–ligand

similarity is correlated with structural data. Figure 3a shows the

crystal structure of nilotinib and the docked nilotinib in ABL1.

The docked nilotinib almost perfectly overlies the crystal

structure, leading to a root mean square deviation of 0.37Å.

Meclofenamic acid docking into ABL1 reveals identical

overlap with fragments of the crystal structure of nilotinib. It

was interesting to explore docking of NSAIDs to DNA. Some

Fig. 1
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experimental data suggest that aspirin could intercalate DNA

(Neault et al., 1996). The comparison of individual ligands

revealed similarities between aspirin and other anthracyclines

that intercalate DNA as well. The docking of doxorubicin to

DNA showed a perfect match to the crystal structure, and the

docking of aspirin led to the conformation in which the aro-

matic ring of aspirin intercalates DNA (Supplementary

material). The examples of nilotinib/meclofenamic acid and

doxorubicin/aspirin pairs illustrate the possible relations

between physicochemical, pharmacophoric, and structural

properties.

Figure 3b illustrates the average affinity for each class of

compounds. On the basis of the average docking ener-

gies, anticancer drugs have the highest affinity, whereas

metabolites have the lowest affinity. This result serves as

a validity test to show that NSAIDs might have a sig-

nificant affinity for PKs. NSAIDs show intermediate

affinity together with ATP. The data spread is large, but

results average all different targets and well illustrate a

general trend.

Kinetics

We have applied the competitive inhibition model to

evaluate to what level NSAIDs could inhibit PK targets

assuming the physiological ATP concentration and how

the inhibitory strength of NSAIDs could compare to that

of anticancer drugs. On the basis of the average calcu-

lated affinity from the docking results, we calculated

Ki= 1.5× 10− 9 and 1.5× 10− 6 for anticancer drugs and

NSAIDs, respectively. Figure 4a shows the substantially

reduced reaction rate of anticancer drugs at their con-

centration of 10− 5 mol/l (Peng et al., 2004; Van Erp et al.,
2009). The effect of NSAIDs was evaluated assuming

NSAID concentrations at Cmax values that fluctuate

around 10− 4 mol/l (Ross-Lee et al., 1983; Türck et al.,
1996; Davies et al., 2000). The inhibition model shows

that NSAID concentrations below 10− 5 mol/l should

have a very small effect on the reaction rate of PKs. On

increasing the NSAID concentration, the reaction rate

starts to decrease, leading to a 10–20% reduction in the

PK reaction rate at 0–5 mmol/l [S]. The calculated frac-

tion of PKs occupied by NSAIDs and anticancer drugs is

Fig. 2
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shown in Fig. 4b. Considering the physiological con-

centrations, 10% of PKs should be bound with NSAIDs,

whereas up to 90–95% of PKs could be bound with the

corresponding anticancer drugs. However, mutated PKs

found in cancers usually have increased activity, with a

10-fold or even a 100-fold increase in KM (Brasher and

Van Etten, 2000; Carey et al., 2006; Yun et al., 2008), and
thus greater sensitivity to inhibition.

To evaluate whether NSAIDs could modulate PK activity,

biochemical NSAID screening was performed for seven

chosen NSAIDs (aspirin, celecoxib, diflunisal, ibuprofen,

ketorolac, nabumetone, piroxicam) against ABL1, B-RAF,

C-RAF, EGFR, FLT1, FLT3, FMS, FYN, KDR, KIT,

RET, and SRC. Because anticancer drugs themselves

show target promiscuities against PKs, the activities of PKs

are presented as the average activity of PKs for each

NSAID, as presented in Fig. 5. Inactivation by ∼ 10% can

be observed for the screened NSAIDs, which was pre-

dicted by the competitive inhibition model (Fig. 4). The

exception is aspirin, which did not lead to a significant

change in the average activity of PKs.

Discussion
There are many different studies suggesting different

mechanisms of action of NSAIDs in cancer prevention. The

fact that different NSAIDs can reduce the incidence of

cancer across different phenotypes suggests that the

mechanism possibly involves exploitation of universal bio-

chemical pathways. PKs are universal and the key targets

involved in the regulation of mostly all cellular processes.

Small-molecule cancer therapeutics have been developed to

bind PKs and suppress or arrest cell growth and proliferation.

Our main aim was to explore whether it is possible that

NSAIDs might exert similar, but much milder, effects to

anticancer drugs, avoiding the well-known toxicities of

Fig. 3
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anticancer drugs, but still suppressing tumor growth – that is,

suppressing cellular proliferation and growth. For NSAIDs

to cause suppression, they should show similarities to

anticancer molecules and an affinity toward the targets of

anticancer drugs. Promiscuities can certainly be a result of

the physicochemical and structural properties of ligands. It

has been shown that the highest promiscuity is observed for

lower molecular weight compounds (∼300Da), which have

hydrophobic logP values of 2–6 (Hopkins et al., 2006), which
are highly similar to NSAIDs: molecular

weight=289.5±64.2Da and logP=3.3±0.9.

The ligand-family-based comparison of NSAIDs with

anticancer drugs using logP and pharmacophoric alignment

differentiated functionally different families of compounds;

for example, no NSAID family has shown similarities to

alkylating agents, platinum-based compounds, or anti-

biotics (Fig. 1). In addition, no similarity was found

between NSAID families and families of pyrimidine and

purine antagonists (antimetabolites). However, the ligand-

based comparison identified similarities between NSAIDs

and anticancer compounds that function as ligands, such as

PK inhibitors or anthracyclines.

The ligand–ligand comparison between families of PK inhi-

bitors and anthracyclines, andNSAIDs revealed that similarity

to NSAIDs is dependent on a specific ligand–ligand couple,

even within the same family of compounds. The absence of

universal similarity between NSAIDs and anticancer com-

pounds suggests that different NSAIDs could interact differ-

ently with the targets of anticancer drugs in biochemical

pathways. The biochemical screening results also show a large

spread of effects of NSAIDs against the investigated PKs,

confirming that NSAIDs could possess different specificities

for different PKs. Mild activation of PKs was observed from

the biochemical screening results, contrary to inhibition, which

could be explained by other potential NSAID interactions

with targets, such as possible allosteric modulation.

Structural analysis by in-silico screening has shown that

NSAIDs can dock inside active centers of PKs. NSAIDs

are slightly smaller compounds than chemotherapeutic

molecules; therefore, they can be compared as fragments.

This kind of behavior is illustrated in the case of meclo-

fenamic acid in ABL1. However, this does not guarantee a

strong affinity of NSAIDs toward a target. All docking

poses were re-evaluated for free energy change, revealing

that NSAIDs have a higher affinity toward chemother-

apeutics compared with PKs, but a lower affinity toward

common metabolites compared with PKs. The use of

metabolites not associated with the activity of PKs helped

show that calculated NSAID affinities are significant and

might help NSAIDs lead in the competition for binding

to PKs. The trend shows that the affinity of NSAIDs is

numerically higher than that of metabolites by 10 kJ/mol.

The evaluated average NSAID affinities from docking

studies and experimental kinetic parameters have sug-

gested that NSAIDs could inactivate PK activity by 10%

on the basis of the competitive inhibition model.

Biochemical screening has confirmed ∼ 10% inactivation

of PKs in the presence of NSAIDs. The limited inhibition

of PKs supports the need for long-term administration of

NSAIDs, typically 3–5 years, to observe statistically sig-

nificant effects (Rothwell et al., 2011). In contrast, we can

anticipate that stronger inhibition of PKs by NSAIDs

would lead to stronger toxicities that are highly associated

Fig. 5
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with anticancer drugs. However, the present toxicities of

some NSAIDs could also be reviewed in the context of

PKs. It is also possible that mutated PKs with higher

activities would be more sensitive to NSAIDs.

The investigated targets against NSAIDs and their

immediate partners have been consolidated into path-

ways, as shown in Fig. 6. The pathways integrate

COX-1/2, its related counterpart 5-LOX, and the recently

identified IKKβ. We have included DNA, as previous

studies have shown that aspirin can reside in the minor

groove of DNA and is capable of intercalation (Bathaie

et al., 2010). On the basis of our analysis, individual

NSAIDs show promiscuity and seem to have moderate

affinities toward several targets. This should not come as

a surprise, as PKs are closely related and retain similar

structural patterns. The intended inhibitors of PKs, such

as omatinib, dasatinib, gefitinib, erlotinib, and nilotinib,

have also been reported to have considerable levels of

promiscuity (Arora and Scholar, 2005; Vajpai et al., 2008;
Zhang et al., 2009; An et al., 2010). Actually, it was rea-

soned that their efficacy is closely related to their ability

to inhibit several related forms of kinases at the same

time, as in the case of imatinib (Baselga, 2006).

Figure 6 shows that PK targets interact with DNA through

biochemical pathways and affect common functions of cells

and their microenvironment. Cellular features such as

migration, inflammation, and angiogenesis are frequently

associated with tumorigenesis, cancer, and metastasis.

Whereas NSAIDs acting through COX targets affect those

cellular features, those acting through PKs contribute a

parallel and synergistic input toward the suppression of

cellular functions aiding or facilitating cancer development.

A variety of PKs have been implicated in the signaling

cascades responsible for cancer development and growth

(Krause and Van Etten, 2005). Therefore, NSAIDs can

suppress cellular proliferation and growth though partially

inhibited PKs, and indirectly – by acting on the micro-

environment through inflammation and other processes by

exploiting COX targets. One can also speculate that any

mild suppression of cancer cell proliferation and growth can

provide the immune system with more time to deal with

cancerous cells.

Conclusion

Our in-silico and in-vitro results show that NSAIDs can act

as mild PK inhibitors with low affinity and high pro-

miscuity. Mild inhibition of PKs can suppress individual

targets, but NSAID promiscuity might strengthen the

effects by acting through several PKs due to low specificity

for a target. Although no single NSAID possesses affinity

toward all PKs in general, it is possible that different

Fig. 6
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NSAIDs might exhibit differences on the basis of cancer

phenotype, expression, or epigenetic profiles. The results

offered a new perspective toward NSAIDs as a class of

compounds, offering additional means of explaining their

cancer-preventive features. Although this study presents a

broad view on NSAIDs, further research focusing deeper

on specific targets, cancer types, and biochemical hetero-

geneity of a patient population is needed to facilitate this

research for translational purposes.
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