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Abstract: In this work, doxorubicin (Dox)-encapsulated poly(vinyl caprolactam) (PVCL)-based three-
dimensional nanogel networks were developed and were crosslinked with disulfide linkages. The
nanogels degrade rapidly to low molecular weight chains in the presence of the typical intracellular
concentration of glutathione. Doxorubicin (Dox) was successfully encapsulated into these nanogels.
The nanogels have a high drug loading of 49% and can be tailored to 182 nm to deliver themselves to
the targeted cells and release Dox under dual stimuli conditions, such as redox and temperature. By
evaluating cell viability in the HepG2 cell line, we observed that Dox-loaded nanogels effectively
killed the cancer cell. Fluorescence microscopy results show that the nanogels could easily be
internalized with HepG2 cells. The results confirm that the nanogels destabilized in intracellular
cytosol via degradation of disulfide bonds in nanogels networks and release of the Dox nearby the
nucleus. These carriers could be promising for cancer drug delivery.

Keywords: poly(vinyl caprolactam); nanogels; dual responsive; drug release; intracellular triggered;
cancer cells

1. Introduction

Cancer is one of the leading causes of death in humans. It is defined mainly by un-
controlled cell proliferation and the capacity of cells to spread [1]. Despite tremendous
progress in the fight against cancer, it continues to be a difficult medical problem, especially
in the lungs, breast, liver, prostate, pancreas, and brain [2]. To date, systemic chemotherapy
has been widely used to treat cancer patients on a long-term basis [3]. On the other hand,
systemic toxicity is a significant drawback that limits the usability and effectiveness of
chemotherapeutics. Recent research efforts in drug delivery systems have focused on
targeted delivery and controlled release of the drug or other agents in the tumor [4]. By
designing an effective drug delivery system (DDS) with controlled drug release at a specific
site, the drug concentration will be maintained in the optimal therapeutic range with a
single dose. The study of cancer-targeted drug delivery utilizing polymeric nanoparticles
has developed significantly in recent years [5–7]. There is increasing confidence that nan-
otechnology used for drug delivery may substantially improve cancer treatment. However,
most studies utilizing nontherapeutic formulations such as micelles and liposomes fail
to show therapeutic benefits in cancer treatment due to their toxic side effects [8]. Due
to their easy tailoring features and ability to successfully encapsulate anticancer drugs of
different types through simple methods and respond to external stimuli based on their
functional polymeric networks, nanogels are being investigated as drug delivery agents

Pharmaceutics 2022, 14, 852. https://doi.org/10.3390/pharmaceutics14040852 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14040852
https://doi.org/10.3390/pharmaceutics14040852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-5350-9981
https://orcid.org/0000-0002-2121-779X
https://doi.org/10.3390/pharmaceutics14040852
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14040852?type=check_update&version=1


Pharmaceutics 2022, 14, 852 2 of 12

targeting cancer [9–11]. Nanogels can be selectively internalized by cancer cells and avoid
accumulating in non-target tissues, leading to lower therapeutic doses and fewer harmful
side effects [9–12]. Nanogels as a drug delivery platform can improve cancer chemotherapy
effectiveness and help cancer patients.

The design of intracellular degradable nanocarriers offers an efficient order to avoid
the premature release of drug molecules at the extracellular level than in the intracel-
lular environment. The fabrication of nanocarriers makes such intracellular triggered
smart design possible via ultrasound, temperature, magnetic field, light, enzyme, pH,
and redox potential [13]. Among these, the employment of degradable nanocarriers to
initiate on-demand drug release is important to address the challenge mentioned above.
The intracellular stimuli conditions of cancer cells are entirely different from normal cells
and the extracellular environment. Recently, redox-responsive self-assembled and metal-
organic framework nanocarriers have been developed for targeted drug delivery in cancer
cells [14–17]. Other studies have reported that the addition of disulfide linkers on shell
crosslinking and interlayer crosslinking enhances the drug release in cancer cells [18,19].
These nanocarriers degrade into the original carbon–carbon bond-based polymer chain
when disulfide cleavage occurs on reduction. As a result, the extent of degradation is lim-
ited to long polymer chains. Integrating disulfide bonds into polymeric nanoarchitecture is
a challenge that enables extended degrees of degradation and programmable drug release.
To do so, further possibilities of stimuli-sensitive nanogels via one-step synthesis must be
explored. A disulfide functionalized cross-linker produces stable structures for efficient
drug delivery to cancerous cells rather than extracellular conditions.

Temperature-responsive nanocarriers can change their phase transition behavior,
swollen at lower critical solution temperature changes (LCST) due to the hydrogen between
water and the amide functional group of polymers, and shrinking at higher critical solution
temperatures (LCST) due to hydrophobic interactions [20]. The feature of LCST behavior
can tune the drug release to avoid the side effects of therapeutic agents. PVCL (poly(vinyl
caprolactam)) is a thermoresponsive polymer with an LCST (32–34 ◦C) similar to PNIPAM
(poly(N-isopropyl acrylamide) [20]. PVCL research is still in its infancy, especially in
comparison to PNIPAM. PVCL is also biocompatible, which makes it more desirable to
the field of biomedicine [21]. PVCL, on the other hand, has yet to receive FDA approval,
despite the increasing number of reports highlighting its potential in drug delivery, tissue
engineering, and regenerative medicine. In biomedical fields, including drug delivery,
many micro/nano gel studies have been successfully employed [17–20]. Although various
functional groups in stimuli-responsive PVCL nanogels have been reported, new synthetic
methods to modify them with multiple functional groups for cancer-targeted drug delivery
may also be needed. Hydrophilic polymers play an important role in improving the LCST
of thermoresponsive polymers. Hydroxyethyl acrylate (HEA) is a hydrophilic monomer
have been used to prepare hydrogels for tissue engineering and drug delivery applications,
because it can improve the hydrophilicity and elasticity of hydrogel [22].

By considering the above-mentioned facts, we developed new redox degradable three-
dimensional nanogels of P(VCL-HEA) that have disulfide in the networks for loading
Dox as an anticancer drug. To the best our knowledge, there are no reports on the cytosol
degradable nanogels based on P(NVCL-co-HEA) nanogels having disulfide linkages in the
network for Dox drug delivery. The incorporation of HEA into nanogel structure becomes
more hydrophilic, and the consequent overall hydrogen bonding ability of polymer chains
leads to a higher phase-transition temperature. The nanogels that were produced with Dox
were stable at extracellular conditions can preferentially release an anticancer drug with
degradation of network disulfide linkages in response to the intracellular acid conditions.
In addition, cytotoxicity studies also evaluated drug-loaded nanogels on HepG2 cancer
cells.
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2. Materials and Methods
2.1. Materials

N-vinyl caprolactam (VCL), hydroxyethyl acrylate (HEA), N,N′-Bis(acryloyl)cystamine
(Cys-BIS), 2,2′-Azobis(2-methylpropionitrile) (AIBN), sodium dodecyl sulfate (SDS), and
1,4-dithiothreitol (DTT) were purchased from Sigma-Aldrich Co. Ltd, Seoul, Korea. VCL
was dissolved in hexane, purified using a short alumina column, and then recrystallized
before the polymerization process. Recrystallization of AIBN using methanol was also used
to purify it.

2.2. Preparation of Cys-BIS-P(VCL-HEA) Nanogels

The batch emulsion polymerization method was employed in a round bottom flask
with a reflux condenser and a nitrogen gas inlet to prepare Cys-P(VCL-HEA) NGs. Briefly,
in 100 mL of double-distilled water (DDW), SDS (40 mg), and AIBN (50 mg predessolved in
methanol solution) were dissolved, and then VCL (1.8 g), HEA (0.4 g), and Cys-BIS (4 wt%)
were added to the SDS solution. The mixture was bubbled with nitrogen gas for 45 min,
then heated to 70 ◦C and vigorously stirred for 6 h at 800 rpm. The mixture was taken
out at the end of the reaction, cooled to room temperature, and dialyzed against water
(MWCO = 3.5 kDa) for two weeks to eliminate unreacted monomers. Finally, the obtained
Cys-BIS-P(VCL-HEA) nanogels dispersion was lyophilized for two days and stored for
further analysis.

2.3. Characterization

The crystalline nature of Dox and Dox-loaded Cys-BIS-P(VCL-HEA) nanogels was
evaluated using an X-ray diffraction technique (2θ= 10–50; XRD, Bruker AXS D8 advance,
CuKa radiation source (λ = 1.54)) at a scan speed of 5/min and working at 40 kV and 30 mA.
A UV-visible spectrophotometer was used to record the ultraviolet-visible (UV-Visible)
absorption spectra of the Dox loading samples (UV-Vis; Shimadzu-2600). Dynamic light
scattering (DLS) on a Malvern Zetasizer Nano-ZS was used to determine the particle size
and distribution of Cys-BIS-P(VCL-HEA) nanogels (DLS; Malvern Instrument). Transmis-
sion electron microscopy (TEM, JEOL JEM-2010) was used to examine the size and shape
of Cys-BIS-P(VCL-HEA) nanogels at a 200 kV accelerating voltage. A drop of nanogels
(dispersed in DDW) was dropped on the surface of a copper grid and dried under a lamp.

2.4. Dox Loading

Briefly, 5 mg/2.5 mL of Dox (2 mg/mL) was added to a 5 mL DDW containing 100 mg
ultrasonically well-dispersed Cys-BIS-P(VCL-HEA) nanogels, and the mixture was stirred
for 24 h at room temperature in the dark. Dox-loaded Cys-BIS-P(VCL-HEA) nanogels
were centrifuged (10,000 rpm, 10 min) and washed with DDW to remove physically bound
Dox on the surface of Cys-BIS-P(VCL-HEA) nanogels. The supernatant was collected and
stored in the dark to measure unloaded Dox using UV-Visible spectrophotometry at a fixed
wavelength (480 nm).

2.5. In Vitro Dox Release from Cys-BIS-P(VCL-HEA)

Five milligrams of Dox-loaded Cys-BIS-P(VCL-HEA) was incubated with 10 mL of PBS
(pH 7.4 conditions) in a shaker with 100 rpm at 37 ◦C. The samples were centrifuged, the
supernatant was collected, and the nanogels were resuspended at different time intervals
(1, 2, 4, 8, 12, and 24 h). The effect of temperature (25 ◦C and 37 ◦C) on Dox release from
nanogels was also studied using the same protocol. To check redox-triggered Dox release
from nanogels, the Dox-loaded Cys-BIS-P(VCL-HEA) nanogels were treated with different
concentrations of DTT with PBS (5 mM and 10 mM). The released amount of Dox was
determined using UV-Visible spectra at a fixed wavelength (480 nm).
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2.6. Cell Culture

HepG2 (hepatocellular carcinoma) and CCDK-normal skin fibroblasts (American Type
Culture Collection) cells were grown in Dulbecco’s Modified Eagle Medium (DMEM),
which included 10% fetal bovine serum (FBS) and 100 IU/mL penicillin at a concentration
of 100 mg/mL. The cells were maintained at 37 ◦C in a humidified incubator with a 5%
CO2 environment.

2.7. Cytotoxicity Study

Cells were trypsinized manually by counting directly using a hemocytometer. The
cells were seeded into 96 well tissue culture plates at a density 5000 to 15,000 cells/cm2 and
allowed to attach cells using the appropriate cell culture medium (100 µL) for 24 h. Cell
culture media was removed, followed by the addition of samples. For CCDK cells, pristine
Cys-BIS-P(VCL-HEA) nanogels suspension at different concentrations were added. For
HepG2 cells, Dox and Dox-loaded Cys-BIS-P(VCL-HEA) nanogels with different concen-
trations of Dox were added. After 72 h of incubation, the toxicities were determined with
Prastoblue® (Invitrogen by thermos fisher scientific, Eugene, OR, USA) Cell Viability Assay.
Finally, the absorbance of each well was measured with wavelengths of 570 and 600 nm.
All assays were conducted in triplicate. The mean values and their standard error of the
means were calculated.

2.8. Cell Uptake and Intracellular Distribution of Dox

Cells (HepG2) at a density 5000 cells/cm2 were seeded onto cover glass slips and incu-
bated for 24 h. Then, 2.5 µg/mL of free Dox and Dox-loaded Cys-BIS-P(VCL-HEA) nanogels
were added to each well and incubated for 3 h. Afterward, 500 µL of 4% formaldehyde
solutions were added in to each well incubated for 10 min. The cells were counterstained
with DAPI for 20 min. The wells were washed with PBS (pH = 7.4), and the glass coverslips
were carefully removed from each well and mounted onto glass slides using Fluoromount
as vectorshield (Sigma Aldrich, Seoul, Korea). The uptake was confirmed with fluorescence
microscopy.

3. Results and Discussion
3.1. Preparation and Characterization of Dox-Loaded Cys-BIS-P(VCL-HEA) Nanogels

In this study, we designed 3D-network nanogels with disulfide linkages. The Cys-BIS
integrated P(VCL-HEA) nanogels were made using a solution polymerization process. To
create 3D-network nanogels in SDS solution, two important monomers, VCL and HEA,
as well as Cys-BIS as a crosslinker, were employed. The overall formation of Cys-BIS
integrated P(VCL-HEA) nanogels is depicted in Scheme 1. The amphiphilic SDS molecules
might delay nucleation and hinder nanogel particle size growth. The monomers and
crosslinker acrylic functional group are initiated by AIBN, producing stable 3D networks.
Furthermore, the nanogels are strengthened by the H-bonding interaction between the VCL
and HEA functional groups. This method allows the formation of a uniform size and shape
of nanogels.

Dox is widely employed in the treatment of different types of tumors, as this molecule
can bind DNA and block the synthesis of biomacromolecules [23]. To better understand
the potential applications of the obtained nanogels for drug delivery, Dox was selected as a
model drug and used in the study of loading and release properties of the nanogels. The
fabricated nanogels were then loaded with Dox using equilibrium swelling in Dox solutions.
As shown in Figure 1a, the UV-Vis spectrometry of Dox solutions before and after loading
to the nanogels represents the decrease in absorbance of Dox. The Dox content (wt%) was
calculated as 49%. Due to hydrophilic functionality and 3D-network structure, the Dox
could easily be defused into nanogels networks and then stabilized through the formation
of hydrogen-bonding interactions between Dox and nanogels functional groups (Scheme 1).
Furthermore, XRD patterns were studied to know the physical state of Dox in the Cys-BIS-
P(VCL-HEA) nanogels networks (Figure 1b,c). Pure Dox shows many characteristic XRD
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peaks, while nanogels are amorphous (Figure 1b) [24]. The Dox crystalline peaks were not
observed in drug-loaded Cys-BIS-P(VCL-HEA) nanogels, suggesting that Dox crystalline
character turns into an amorphous state and that Dox is distributed evenly in the nanogels
matrix.
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The shape, size, and morphology of nanogels can affect drug loading and cellular
internalization to treat cancer cells [25]. Understanding the behavior of drug delivery
systems requires accurate shape, size, and morphology of nanogels. This will assist in
determining their utility as drug delivery vehicles. DLS studies reveal that the highly
controllable colloidal stable nanogels was observed (Figure 2a). The average diameter of
the Cys-BIS-P(VCL-HEA) nanogels is found to be narrow (polydispersity is 0.196), and the
average diameter of the nanogels is 182 nm. It is sufficient to internalize nanogels in the
cancer cells, which can promote the in vivo fate of a colloidal drug delivery system.
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The morphology of the Cys-BIS- P(VCL-HEA) was investigated by TEM (Figure 2b–d).
It was found that the Cys-BIS-P(VCL-HEA) had spherical morphology with a high uniform
size. In this study, the particle size of the nanogels produced approximately 123 nm. The
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reduction in particle size over the DLS study is due to the dehydration of the nanogels that
occurred during the TEM sample preparation process.

3.2. Temperature and Redox-Responsive Nature of Cys-BIS-P(VCL-HEA) Nanogels

DLS was used to test the temperature responsiveness of Cys-BIS-P(VCL-HEA)
(Figure 3a,b). When the temperature was elevated from 15 ◦C to 45 ◦C, a decrease in
the hydrodynamic diameter of nanogels was noticed, resulting in a decrease in the diameter
(i.e., 59% shrinkage). Between 32 ◦C and 34 ◦C, the fastest size transition occurred. The
hydration–dehydration mechanism may readily understand such temperature responsive-
ness of PVCL chains [24]. The nanogel is in its hydrophilic condition at low temperatures,
well-hydrated with trapped water via hydrogen bonding, but, at high temperatures, the
nanogel collapses into its hydrophobic state, causing hydrogen bonds with water molecules
to be disrupted, resulting in dehydration of the nanogel [24].
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Many cancer cells overexpress the glutathione in cytosol environment. The concen-
tration of glutathione levels in cancer cells is between 5–10 mM [25]. In general, disulfide
bonds are cleavable under redox conditions. To prove the redox-responsiveness of devel-
oped nanogels, the nanogels were treated with DTT. The redox-responsive degradation of
nanogels was observed in TEM and DLS studies. The nanogels were exposed to 5 mM and
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10 mM of DTT reagent for 6 h at 37 ◦C. The treated samples were observed in the DLS study
(Figure 3e). The results show that irregular size distribution was obtained after exposing
nanogels to 5 mM DTT for 6 h because of the degradation behavior of nanogels under a
redox environment. At lower 5 mM DTT and 37 ◦C, the nanogels are degraded into the low
molecular weight of P(VCL-HEA) copolymer, which produces micellar aggregates due to
the LCST behavior of PVCL chains. However, the structure of micellar structures is irregu-
lar. Furthermore, the nanogels were treated with 10 mM of DTT, which resulted in a narrow
size distribution of nanogels micellar aggregates with <5 nm in size being observed, which
indicates the complete degradation of nanogels. TEM images also proved the irregular
shape of nanogels after being treated with 5 mM and 10 mM of DTT (Figure 3c,d). Hence,
the disassembly behavior is mainly caused by the cleavage of crosslinked disulfide bonds
under DTT conditions.

3.3. In Vitro Drug Release of Dox-Loaded Cys-BIS-P(VCL-HEA) Nanogels

Dox release from Dox-loaded Cys-BIS-P(VCL-HEA) nanogels was studied at two
different temperatures (25 ◦C and 37 ◦C) in pH 7.4. As from Figure 4, the percent cumulative
release of Dox from Cys-BIS-P(VCL-HEA) nanogels increased at a lower temperature (below
LCST) of 25 ◦C, but decreased at a higher temperature (above LCST) of 37 ◦C (Scheme 1).
This is due to the rapid hydration of nanogel networks that are completely swollen at low
temperatures. The polymer network structure collapses at high temperatures, resulting in
a decreased ability to take water or buffer solution, reducing the drug diffusion rate from
the nanogel networks. This result demonstrates that the nanogels respond to temperature.
The results confirmed the developed nanogels are stable under extracellular conditions
(pH 7.4 at 37 ◦C). The Dox delivery in intracellular conditions is a big problem. For this, the
developed nanogels were integrated with disulfide linkages to trigger fast drug release in
the intracellular cytosol environment, as many cancer cells overexpress glutathione levels,
which can easily break the disulfide bonds (Scheme 1). The Dox release was monitored at
pH 7.4 with 5 mM and 10 mM DTT conditions. The prepared nanogels are highly stable
to pH 7.4 at 37 ◦C, as discussed in their stability behavior from DLS studies. Hence, the
release of Dox from nanogels under pH 7.4 is very low. At 5 mM DTT, more than 80%
Dox was released within 24 h; notably, the DTT concentration change from 5 to 10 mM
corresponds to the intracellular tumor tissue. Furthermore, the DTT concentration switch
to 10 mM improved the release performance of the Dox from nanogels, with 95% Dox
release within 24 h. It was concluded that the crosslinked disulfide bonds play the main
role in the degradation of nanogels under intracellular redox stimuli trigger conditions.

3.4. In Vitro Cytotoxicity

The nanogels were incubated with CCDK-skin fibroblasts, and the biocompatibility of
the prepared Cys-BIS-P(VCL-HEA) nanogels was evaluated using the Prestoblue viability
assay. As shown in Figure 5a, the pure Cys-BIS-P(VCL-HEA) nanogels displayed good
cytocompatibility even at high concentrations, with cell viability above 95% after 72 h of
incubation.

Furthermore, the in vitro cytotoxicity of Dox-loaded Cys-BIS-P(VCL-HEA) nanogels
was tested utilizing HepG2 cells (liver cancer cell line) and the Prestoblue assay to test the
antitumor activity of Dox upon release from the nanogels Figure 5b. From the results, it has
been observed that improved cytotoxicity of Dox-loaded Cys-BIS-P(VCL-HEA) nanogels
incubated with 10 mM glutathione treated HepG2 cancer cells as compared to free Dox,
Dox-loaded Cys-BIS-P(VCL-HEA) nanogels, and Cys-BIS-P(VCL-HEA) nanogels. The
results suggest that Cys-BIS-P(VCL-HEA) nanogels effectively inhibited the HepG2 cancer
cells with the half-maximal inhibitory concentration (IC50) is about 0.3529 µg/mL, which
was lower than free Dox (0.7152 µg/mL).
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Figure 4. In vitro Dox release from Cys-BIS-P(VCL-HEA) nanogels in response to external stimuli
(temperature) and internal stimuli (DTT).

3.5. Cellular Internalization of Dox-Loaded Cys-BIS-P(VCL-HEA) Nanogels

The intracellular uptake of the Dox-loaded Cys-BIS-P(VCL-HEA) nanogels was evalu-
ated by fluorescence microscopy. The cellular uptake of Dox from the Dox-loaded Cys-BIS-
P(VCL-HEA) nanogels was analyzed with the fluorescence of Dox (red) (Figure 5c). DAPI
was regarded as a fluorescence marker for the visualization of the HepG2 cell nuclei. The
results of cellular uptake after 3 h of incubation with the free Dox, Dox-loaded Cys-BIS-
P(VCL-HEA) nanogel-treated HepG2 cells, are shown in Figure 5c. Red spots (DOX) were
observed in the HepG2 cells, indicating that free Dox was observed in the nucleus [26]. The
fluorescence intensity of Dox around the nucleus of HepG2 was observed for Dox-loaded
Cys-BIS-P(VCL-HEA) nanogels, indicating the nanogels are easily internalized inside the
HepG2 cancer cells. Furthermore, the intracellular triggered release of Dox was monitored
within the HepG2 cancer cell by treating cells with the Dox-loaded Cys-BIS-P(VCL-HEA)
nanogels. Their fluorescence intensity was observed around the nucleus and inside the
nucleus, showing that the intracellular overexpressed HepG2 cells can easily destroy the
nanogel networks inside the cancer cell, thereby releasing Dox nearby the nucleus [25].
Therefore, the developed Dox-loaded Cys-BIS-P(VCL-HEA) nanogels have promising in-
tracellular redox responsive properties and are suitable for delivering bioactive agents to
cancer cells.
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4. Conclusions

In conclusion, we developed intracellular triggered Cys-BIS-P(VCL-HEA) nanogels for
cancer drug delivery. The Cys-BIS-P(VCL-HEA) are biocompatible with CCDK-normal skin
fibroblasts cells. The Cys-BIS-P(VCL-HEA) nanogels can load a maximum amount of Dox
(49%) and are stable at extracellular conditions (pH 7.4 at 37 ◦C) due to the temperature-
responsive property of nanogels. With GTH as a trigger, the model drug Dox could be
released from the nanogels via degradation of disulfide bonds. In vitro results confirmed
the nanogels could facilitate the internalization inside HepG2 cancer cells and trigger
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Dox release around the nucleus owing to redox-active disulfide bonds that existed in the
nanogel networks, as well as the uniform size and shape of nanogels. Overall, the size- and
shape-controlled disulfide-based nanogels may be a promising anticancer drug-releasing
platform for facilitated on-demand drug release-pinpointing cancer chemotherapy with a
much-improved safety profile, and this study may pave the way for developing other novel
redox-sensitive nanogel formulations with targeting ligand functionalization for targeted
drug delivery to the cancer therapy.
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