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Abstract

Exposure to stress is a risk factor for perturbed mental health, including impoverished

regulation of emotional and physiological responses that accompany anxiety and mood

disorders, substance abuse and behavioral disorders. Such disruptions to well‐being could
be triggered by discrete environmental events or pervasive early life stress (ELS) re-

sulting for example from adverse caregiving. Recent data mostly collected from rodents

exposed to anthropogenic stressors suggest that one way via which the detrimental

effects of such stress extend beyond the exposed population to future offspring is via

stress‐induced alterations of RNA found in the paternal germline. In contrast, less at-

tention has been paid to how naturally occurring stress in males might influence offspring

biology and behavior. In this study, we used a translational nonhuman primate model of

ELS caused by naturally occurring adverse caregiving of infant macaques to (1) profile

total RNA in the adolescent male germline, and (2) identify how those RNA profiles are

affected by exposure to ELS. Our findings that the top 100 transcripts identified cor-

respond to transcripts related to germline biology and reproduction demonstrate the

validity and feasibility of profiling RNA in the germline of rhesus macaques. While our

small sample sizes precluded definitive assessment of stress‐induced alterations of RNA

in the male germline of rhesus macaques that experienced ELS, our study sets the

foundation for future investigations of how early adversity might alter the male germline,

across species and in experimental protocols that involve anthropogenic vs natural

stressors.
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1 | INTRODUCTION

Stress profoundly impacts mental health in the generation directly

exposed. Among the many potential exposures to stress, early life

stress (ELS) is the most insidious in setting up exposed children for

increased risk of poor mental and physical health (Felitti et al., 1998).

ELS, including childhood maltreatment (MALT), is a major risk factor

for the emergence of psychopathology such as poor emotional and

stress regulation seen in anxiety and mood disorders, substance

abuse and behavioral disorders (Cicchetti & Toth, 2005; Douglas
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et al., 2010; Sinha, 2008). If such influences of ELS on the exposed

individuals were not grave enough, accumulating literature provides

evidence that detrimental effects of ELS often extend beyond the

generation directly exposed (Cao‐Lei et al., 2014; Costa et al., 2018),

and offspring of parents that have experienced stress are at a higher

risk for mental health disorders (Brand et al., 2006; Halligan et al.,

2007; Klarić et al., 2008; Stein et al., 2009; Toth, 2015; Yehuda et al.,

2005). For example, children born to mothers who were abused

present with higher depressive‐ and anxiety‐related metrics even if

they were conceived after the time of the maternal abuse (Jovanovic

et al., 2011). Research in the context of the Holocaust has provided

evidence for non‐trauma‐exposed offspring of parents with PTSD

being more likely to display PTSD‐like symptoms, compared to off-

spring of parents without PTSD (Rosenheck, 1986; Yehuda & Bierer,

2008; Yehuda et al., 2001, 2007). While such intergenerational in-

fluences of stress are now being increasingly appreciated, the me-

chanisms underlying such increased risk for psychopathology in

offspring as a consequence of parental exposure to stress are not

well understood. Filling this gap in knowledge is a first step toward

not only identifying individuals who might be at risk to bear the

burden of intergenerational legacies of stress, but also eventually

developing interventions to break the perpetuation of the stress

effects across generations.

Abusive parental care, stress experienced while in utero, and

parental stress experienced before conceiving that impacts the

germline are three possible mechanisms that could underlie inter-

generational legacies of stress. A wealth of literature has illuminated

how abusive parental care and the maternal–fetal placental interface

during pregnancy program offspring neurobiology and consequently

derail the offspring's mental health (Bos, 2017; O'Donnell et al.,

2014; Bronson & Bale, 2016; Christian, 2012; Kaffman & Meaney,

2007). In contrast, much less is known about how alterations that

might occur in the germline before conceiving offspring may perpe-

tuate intergenerational legacies of stress after fertilization. Studies in

rhesus macaques have shown that infants of nursery‐reared fathers,

not mothers, showed greater emotional reactivity and higher plasma

cortisol levels, despite being raised in the absence of parent‐offspring
social contact (Kinnally & Capitanio, 2015). Further, descendants of

nursery‐reared macaque fathers have shown behavioral and immune

differences across 2–3 generations raised in a semi‐naturalistic en-

vironment (Kinnally et al., 2018), suggesting biological influences of

paternal experiences that do not have a social component. By fo-

cusing on paternal stress and using approaches like in vitro fertili-

zation using sperm from stressed males, work in rodents has been

able to study intergenerational legacies of stress independently of

any influence from socially transferred information of stress ex-

posure (Aoued et al., 2019; Babb et al., 2014; Dias & Ressler, 2014;

Gapp et al., 2014, 2020; Rodgers et al., 2013, 2015). RNA contained

in sperm have emerged as an important mechanism that passes along

the baton of paternal experiences to offspring. Via intra‐zygotic in-

jections of RNA contained in sperm of male rodents exposed to

different experiences, RNA in paternal sperm have been shown to

mediate the impact of paternal dietary manipulations, stress and

salient chemical exposure on metabolism, physiology, and behavior

of offspring (Aoued et al., 2019; Chen et al., 2016; Gapp et al., 2014,

2020; Rodgers et al., 2015; Sharma et al., 2016). While these findings

suggest that paternal germ cells respond and are vulnerable to en-

vironmental exposures and may set up the next generation to bear

the legacy of paternal stress, most of these studies have been

rodent‐centric and carried out in overly controlled settings in which

stress has been experimentally imposed. While extremely important,

these approaches leave a contextual vacuum in our understanding of

the etiology of intergenerational influences of stress that occur de

novo and without design in our daily lives.

To begin to fill this void in our understanding of how the

germline may be affected in males directly exposed to ELS, we

turned to a highly translational nonhuman primate (NHP) model that

leverages naturally occurring early adverse caregiving (infant mal-

treatment) in rhesus macaques living in large social groups in semi‐
naturalistic settings (Drury et al., 2017; Howell et al., 2013, 2017;

McCormack et al., 2006, 2009; Morin et al., 2019; Morin et al., 2020).

We examined total RNA signatures in sperm of adolescent macaques

and compared the total RNA profiles of males that experienced

competent maternal care versus ELS (maltreatment) during infancy.

2 | METHODS

2.1 | Subjects and housing

Seven adolescent male rhesus macaques (Macaca mulatta) ages

5.5–6 years old were included in this study. These animals were part

of a larger longitudinal study of developmental outcomes of ELS in

42 animals and were well‐characterized throughout infancy and the

juvenile pre‐pubertal period (Drury et al., 2017; Howell et al., 2013,

2017; Morin et al., 2020). They were born and lived with their mothers

and families in complex social groups at the Yerkes National Primate

Research Center (YNPRC) Field Station breeding colony. Groups

consisted of 75–150 adult females, their sub‐adult and juvenile off-

spring, and 2–3 adult males. These groups were housed in outdoor

compounds, with access to climate‐controlled indoor areas. Standard

high fiber, low fat monkey chow (Purina Mills Int., Lab Diets) and

seasonal fruits and vegetables were provided twice daily, in addition

to enrichment items. Water was available ad libitum.

Three of the subjects experienced ELS in the form of spontaneous

maternal maltreatment (MALT), and the other four received competent

maternal care (Control). In this model, infant maltreatment is defined by

co‐morbid experience of maternal physical abuse and rejection of the

infant during the first three months of life, never exhibited by Control,

competent mothers, which causes pain, emotional distress, and eleva-

tions in stress hormones (Drury et al., 2017; Howell et al., 2013, 2017;

Maestripieri & Carroll, 1998; Maestripieri et al., 2000; McCormack et al.,

2006, 2009, 2015). Each infant was randomly assigned at birth to be

cross‐fostered to a Control or MALT foster mother in an effort to dis-

entangle and control for effects of prenatal and heritable factors that

may confound the effects of ELS in the larger developmental study,
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where groups were also counterbalanced by social dominance status and

infants were assigned from different matrilines and paternities to provide

genetic and social diversity (Drury et al., 2017; Howell et al., 2017; Morin

et al., 2020). All seven animals included in this study were cross‐fostered
to a foster mother of the same biological group (Control or MALT);

therefore, the prenatal and postnatal environments were congruent.

Behavioral measures of maternal care were collected during the first 3

postnatal months to characterize competent care received by Control

infants, and to quantify rates of maternal physical abuse and rejection

rates received by MALT infants (see detailed description of the infant

rhesus maltreatment model and behavioral methods in Drury et al.,

2017; Howell et al., 2017). Interestingly, similar rates of abuse and re-

jection are exhibited by maltreating foster mothers towards foster in-

fants than towards previous biological infants. Control mothers did not

exhibit physical abuse or rejection towards cross‐fostered infants from

biological Control or MALT mothers in the larger developmental study.

This suggests that maltreatment is a maternal trait, and not triggered by

the infant.

At approximately 4 years of age, the seven adolescents were

transferred to the YNPRC Main Station. Upon arrival, animals were

pair‐housed in home cages and fed Purina monkey chow (Ralston

Purina), supplemented with fruit and vegetables daily, and water was

available ad libitum. Environmental enrichment was provided on a

regular basis. The colony is maintained at an ambient temperature of

22 ± 2°C at 25%–50% humidity, and the lights set to a 12‐h light/

dark cycle (lights on at 7 h; lights off at 19 h). Following several

months of acclimation to the move and new housing environment,

the animals underwent behavioral tasks, neuroendocrine assess-

ments and MRI scans, before semen collection.

All procedures and animal care were in accordance with the

Animal Welfare Act and the U.S. Department of Health and Human

Services “Guide for the Care and Use of Laboratory Animals” and

approved by the Emory Institutional Animal Care and Use Commit-

tee (IACUC).

2.2 | Semen collection

Sperm was collected during mid‐adolescence (5.79 ± 0.09 years old).

Subjects were previously trained, using positive reinforcement, to enter

a vertical primate chair from their home cage. Semen samples were

collected between 7:30–8:30 am under light sedation with ketamine

(0.42–2.5mg/kg BW IM) following previously published methods (Chan

& Yang, 2009), and were kept at 37°C for ~20min before sperm pur-

ification. Animals were then returned to their home cage and monitored

until recovery from the effects of ketamine.

2.3 | Sperm purification

Semen was purified within 60 min of collection using the Pure-

Sperm® 40/80 density gradient technique (Nidacon International

AB, Sweden). Establishing this gradient maintains the sperm at a

pH of 7.4–7.8 and facilitates the separation of motile sperm from

seminal plasma, bacteria, cell debris, and epithelial cells. Ad-

ditionally, removal of immature sperm and lymphocytes decrease

damage to DNA/RNA caused by reactive oxygen species. Purified

sperm was stored at −80°C until sperm was collected from all

males and RNA could be extracted across all samples

simultaneously.

2.4 | RNA extraction and sequencing

RNA was extracted using a standard guanidinium thiocyanate‐
phenol‐chloroform, or TRIzol® (Thermo Fischer Scientific) ex-

traction protocol, which has been shown to be a robust method

for total RNA extraction, especially isolation of microRNAs (Mraz

et al., 2009). Extracted RNA was stored at −80°C before se-

quencing. Total RNA sequencing, including stranded library prep

and treatment with Ribogone™ (Takara Bio USA Inc.) and align-

ment of RNA reads to the MacaM genome (Zimin et al., 2014)

using STAR software (Dobin et al., 2013) was performed by the

YNPRC Genomics Core.

2.5 | Bioinformatics analysis

Following alignment, the open source SAMtools utility package

was used to efficiently retrieve and count all reads aligning to

loci in the MacaM gene annotation file using featureCounts (Li

et al., 2009). To determine read coverage, reads were first se-

parated based on alignment to the forward or reverse strand,

using SAMtools. The coverage of each exon in the MacaM an-

notation by these reads was then calculated, using the bedtools

coverage function on each stranded. bam file. Sense read cov-

erage was calculated from forward strand reads that aligned to

genes read on the + strand, or reverse strand reads that aligned

to genes read on the – strand. Antisense read coverage was

calculated from the inverse, forward strand reads that aligned to

genes read on the − strand, or reverse strand reads that aligned

to genes read on the + strand.

Gene Ontology (GO) Enrichment Analyses were performed

with biological processes gene sets within the Macaca mulatta

reference list to identify broad cellular and molecular pathways

where RNA in sperm may play a role. The top 100 genes by ex-

pression among Control animals were included in the analysis,

with sense and antisense reads analyzed separately, to examine

normative biology of sperm.

A differential expression analysis was performed using

Limma‐Voom (Law et al., 2014) to examine group differences. A

powerful approach was taken, only analyzing genes with > = 80%

coverage across groups (determined separately for sense and

antisense reads), to reduce multiple comparison burden. Based
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on this threshold, 463 and 64 genes were analyzed in the sense

and antisense datasets respectively.

3 | RESULTS

3.1 | Mapping

Alignment to the MacaM genome was successful, and the majority of

reads were mapped to either one or multiple loci (Figure 1a). Across

the seven animals, there were 53,340,938.71 ± 6,230,299.43 total

reads, 45,765,685.29 ± 5,520,314.97 uniquely mapped reads, and

6,764,395.57 ± 857,255.73 reads mapped to multiple loci (reported

as mean ± standard error of the mean). Sperm‐specific transcripts

(PRM1, PRM2, TNP2) were 100% covered by sequencing in both

control and maltreated animals (Figure 1b). Coverage of coding

genes by sequencing (including both sense and antisense) were 81.00

± 1.63% for control and 85.24 ± 7.78% for maltreated animals (mean

± SEM) (Figure 1c). Coverage and expression levels were found to be

positively correlated (sense: control [r = .39, p < .0001], maltreated

[r = .38, p < .0001]; antisense: control [r = .44, p < .0001], maltreated

[r = .44, p < .0001]), suggesting that high expressing genes were more

likely to have high coverage (Figure 1d).

3.2 | GO analysis

The top 100 expressed genes of sense and antisense reads in control

animals include sperm‐specific transcripts PRM1 and PRM2, which

are more highly expressed compared to other genes among sense

reads (Tables S1 and S2). Pathways that are enriched by the top 100

expressing genes of sense reads include many expected

(a) (b)

(c)

(d)

F IGURE 1 Quality control analysis of sequencing illustrates successful mapping and greater gene coverage by reads among highly
expressed genes. (a) Mapping of reads to MacaM genome by STAR alignment with >97% mapped reads, of which >80% are uniquely mapped,
across all animals. (b) Sperm‐specific transcripts in the MacaM genome have complete coverage by aligned reads across all animals. Genome
locations visualized (chromosome: start, stop sites) are as follows: PRM1—chr16:11290482‐11290981; PRM2—chr16:11284765‐11285608;
TNP2—chr16:11276903‐11278394. (c) The distributions of coverage (proportion of base pairs) across genes, stratified by sense and antisense
reads and group, and summed across individuals, reveals a large population of genes with high to full coverage. (d) Coverage and expression
levels were found to be moderately positively correlated, suggesting that high expressing genes were more likely to have high coverage
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germline‐relevant mechanisms, such as sexual reproduction, single

fertilization, male gamete generation, spermatid differentiation, fer-

tilization, and reproduction (Figure 2a). Of the top 100 highest ex-

pressing genes, there is significant overlap between groups (87/100

for sense reads, and 80/100 for antisense reads) (Figure 2b).

3.3 | Differential expression analysis

There were no genes found to be differentially expressed over and

above what would be expected by random chance among either

sense or antisense reads (Tables S3 and S4).

(a) (b)

F IGURE 2 Biological analysis of reads examining enriched gene sets among high expressing genes. (a) The top 100 expressing genes in the
control group, which include sperm‐specific transcripts PRM1 and PRM2, are plotted by rank, with sense and antisense reads visualized
separately. Directly below each gene, the enriched gene sets identified by GO analysis for which this gene is included, are highlighted. Many
significantly enriched gene sets among sense reads are relevant for fertilization, reproduction, sperm generation. (b) Venn diagrams show
common and unique genes between the top 100 expressed genes in each group, stratified by sense/antisense reads
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4 | DISCUSSION

Here we used a translational NHP model of ELS caused by naturally‐
occurring infant maltreatment in macaques to (1) profile total RNA in

the adolescent male germline for the first time and (2) to identify

how those RNA profiles are affected by exposure to ELS. We found

that the top 100 genes for which RNA sequences aligned to the

sense strand were relevant to sperm‐related biology and reproduc-

tion. While these data might seem unsurprising, they demonstrate

the validity and feasibility of profiling RNA in macaque sperm and

provide us with confidence that the nature and analyses of our RNA

sequencing is not spurious. We posit that such quality control of our

data is a needed component for future analyses that may seek to

profile RNA in NHP sperm. Most studies of RNA in male sperm in

rodents and humans have focused on small noncoding RNA that we

did not profile. To do so, we would have to specifically enrich for

short RNA and then generate libraries for sequencing. Therefore, it is

challenging to compare and contrast our total RNA sequencing data

from the macaque with small noncoding RNA profiles found in ro-

dents and humans. Future analyses across species would provide

information about RNA signatures and biological processes that

could influence normative development in an evolutionarily con-

served manner.

In our analyses, we found sequences that aligned to the anti-

sense strand of genes. While we cannot definitively say what the

functional roles of these antisense transcripts are in sperm, antisense

transcripts play an important role in regulation of gene expression

via various molecular mechanisms (Khorkova et al., 2014; Modarresi

et al., 2012; Nishizawa et al., 2015; Pelechano & Steinmetz, 2013;

Villegas & Zaphiropoulos, 2015) and it is very plausible that these

antisense transcripts serve to orchestrate gene expression in the

zygote soon after fertilization. In the differential expression analysis

based on expressed genes with good gene coverage, we did not

identify any differentially expressed genes between groups, so we

did not pursue any gene‐set or pathway analyses. While our small

sample sizes may have precluded definitive assessment of stress‐
induced alterations of RNA in sperm of macaques that experienced

ELS, our study sets the foundation for future studies that examine

how early adverse experiences might alter the male germline, across

species and in experimental protocols that involve anthropogenic vs

natural stressors.

Of all the molecular entities contained in sperm that include but

are not limited to histone modifications, DNA methylation, and RNA,

we sought to profile RNA because of the accumulating literature

from rodent studies that demonstrate sperm‐located RNA to be

robust intergenerational transducers of acquired parental experi-

ences (Aoued et al., 2019; Chen et al., 2016; Gapp et al., 2014;

Rodgers et al., 2015; Sharma et al., 2016). Most of these studies have

focused on microRNA and tRNA fragments as playing important

roles in passing on intergenerational influences of paternal stress.

However, given that a recent case has been made for RNA in sperm

that are >200 bp being important for behavioral consequences of

paternal stress in offspring (Gapp et al., 2020) and the lack of a

specific reference library for macaque microRNA, we decided to

focus on sequencing total RNA rather than specifically focusing on

short noncoding RNA. We intended for this study to inform us of

how RNA in the male germline in a NHP species responds to ELS.

Our focus on total RNA and the lack of significant group differences

leaves open the possibility that RNA may not the main molecular

entity in sperm that may register exposure to ELS and suggests the

need for future sequencing to query not only short noncoding RNA,

but also DNA methylation and histone modifications in sperm.

Missing from our analyses is a profile of RNA in eggs of female

rhesus macaques that had experienced maltreatment as infants.

With literature demonstrating the transmission of behavioral and

physiological legacies of infant maltreatment along maternal lineages

of rhesus macaques (Drury et al., 2017; Klengel et al., 2019), un-

derstanding how the female germline responds to ELS will un-

doubtedly provide new clues as to how intergenerational legacies of

stress perpetuate across generations.

Alternate explanations for not finding differences between the

groups may be that the time between exposure to ELS in infancy and

the maturation of the adolescent male germline may be long enough

for alterations of RNA in the immature germline to be transient,

short‐lived and labile and therefore no longer present in adolescence.

Also, all animals were raised at the Yerkes National Primate Re-

search Center Field station and subsequently moved to the Main

Center at about 4 years of age, resulting in relocation stress. The fact

that both groups were exposed to this stress may have neutralized

some group differences that would otherwise have been observed in

its absence.

Our study was motivated by the intent to understand how the

male germline responds to ELS in a translational model of infant

maltreatment that occurs spontaneously in rhesus macaques (Drury

et al., 2017; Howell et al., 2013, 2017; McCormack et al., 2006, 2009;

Morin et al., 2019; Morin et al., 2020). Our lack of significant group

differences might question the utility of trying to publish these data.

Two points are worth noting to address this criticism. First, this was a

pilot, exploratory, study with a very small sample size. Second,

publication bias and only publishing positive results are concerns

that undermine confidence in science (Bespalov et al., 2019; Button

et al., 2013; Joober et al., 2012; Turner, 2013), and the need to reject

such publication bias motivate our impetus to publish our work.

Third, no studies to our knowledge have attempted to profile the

germline of rhesus macaques, and the rodent‐centric studies that

have done so used experimentally‐induced stress. Therefore, our

profiling of RNA in sperm of rhesus macaques informs future ana-

lyses that could be conducted with the intent of comparing and

contrasting how the paternal germline responds to stress in NHP,

across species and in experimental protocols that involve anthro-

pogenic vs natural stressors.
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