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Simple Summary: Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and its deletion
leads to reduced mitochondrial function. However, the exact regulatory mechanism remains unclear.
In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear
microinjection. The skeletal muscle of Mstn-KO mice significantly increased, and the basal metabolic
rate, muscle ATP synthesis, mitochondrial respiratory chain complex activity, tricarboxylic acid cycle
(TCA), and thermogenesis decreased. In the muscle tissue of Mstn-KO mice, the expression of SIRT1
and pAMPK decreased, and the acetylation modification of PGC-1α increased. Furthermore, the
treatment of isolated muscle cells from Mstn-KO and wild-type mice with AMPK activator (AICAR)
and AMPK inhibitor (Compound C) found that Compound C down-regulated the expression of
pAMPK and SIRT1 and the activity of citrate synthase (CS), isocitrate dehydrogenase (ICDHm) and α-
ketoglutarate acid dehydrogenase (α-KGDH) similar to that of Mstn-KO. However, AICAR partially
reversed the inhibitory effect of Mstn-KO on the expression of pAMPK and SIRT1 and activity of three
enzymes. Thus, Mstn-KO affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α
signaling pathway.

Abstract: Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates
multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial
functions. However, the underlying regulatory mechanisms remain unclear. In this study, we
used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection.
Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated
the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic
rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain
complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions
of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated
protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ
coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells
from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside
(AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT)
group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1,
citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-
KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn
knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway.
The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.
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1. Introduction

Myostatin (Mstn) is a negative regulator of skeletal muscle mass [1]. Mstn knockout
mice increased muscle fiber number (hyperplasia) and fiber size (hypertrophy) during
development, resulting in a significant increase in muscle mass [1,2]. Consistently, naturally
occurring mutations in Mstn gene generate similar muscle hypertrophy phenotypes in many
different mammalian species, including cattle, sheep, dogs, and humans [3]. This gene
has also been experimentally edited in different mammals including pigs [4,5], dogs [6],
rabbits [7], goats [8,9], sheep [10], and cattle [11].

In addition, the lack of Mstn leads to the decline of ATP synthesis capacity [12,13].
Mitochondria are the main energy-converting organelles in eukaryotic cells, producing
adenosine triphosphate (ATP) through the tricarboxylic acid cycle (TCA cycle) and oxidative
phosphorylation (OXPHOS), which is the basic energy molecule of the cell [14]. The
OXPHOS system is embedded in the inner mitochondrial membrane and consists of five
complexes, namely complex I (CI), complex II (CII), complex III (CIII), complex IV (CIV),
and complex V (CV). These enzymes catalyze the oxidation of biological substrates and
the synthesis of ATP [15]. It is possible to directly or indirectly represent the respiratory
function of mitochondria through the respiratory chain complex enzyme activity [16]. It
has also been reported that the mitochondrial membrane potential (∆Ψm) represents the
energy stored in the mitochondrial electric field for the conversion of ADP to ATP [17].
There are reports that mice with deletion of the Mstn gene exhibit a marked decrease
in mitochondria content and disturbance in respiratory function [18,19]. However, the
signaling mechanisms by which Mstn regulates mitochondria activity are still unknown.

AMPK (AMP-activated protein kinase), a serine/threonine protein kinase, plays
a critical role in intracellular energy homeostasis and is essential for regulating mito-
chondrial function [20]. SIRT1 (silent information regulator 1) belongs to the sirtuins
family of NAD+-dependent deacetylases and plays a role in regulating mitochondrial
function [21]. PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1
alpha) is a transcriptional coactivator that regulates mitochondrial biogenesis and oxidative
metabolism [22]. Interestingly, cross-talk among these energy-sensing factors regulates
mitochondrial function. AMPK stimulates PGC1α activity by enhancing SIRT1-mediated
PGC1α deacetylation [23]. AMPK regulates SIRT1 activity through NAD+content [23].
SIRT1 can directly interact and deacetylate PGC-1α [24]. PGC-1α function is associated
with the regulation of large gene clusters that control oxidative phosphorylation and
mitochondrial activity [25]. Canagliflozin (Cana) promoted mitochondrial biogenesis, mi-
tochondrial oxidative phosphorylation, and thermogenesis via an AMPK–SIRT1–PGC1α
pathway [26]. However, whether Mstn knockout regulates mitochondrial metabolism
through the AMPK/SIRT1/PGC1alpha pathway was unknown.

In this study, we built Mstn-KO mice by CRISPR/Cas9 to explore the mechanism
that how Mstn regulated mitochondrial activity. We found that basal metabolic rate,
mitochondrial electron transport chain complexes, mitochondrial membrane potential,
and TCA cycle were inhibited in Mstn-KO mice. Meanwhile, the expression of SIRT1 and
pAMPK was down-regulated and increased PGC-1α acetylation in the Mstn-KO mice.
These results indicated that Mstn knockout suppressed mitochondrial function probably by
inhibiting the AMPK/SIRT1/PGC1alpha pathway.

2. Results
2.1. Generation of Mstn-KO Mice by CRISPR/Cas9 System

To generate Mstn-KO mice by CRISPR/Cas9 techniques, we designed four guide
RNAs to target exon 2 and exon 3 of the mouse MSTN gene, respectively (Figure 1a).
Three transgenic founders were generated by pronuclear injection. To produce obvious
phenotype Mstn-KO mice (F2), we mated only exon 3 deletion mutant F1 mice. A total of
10 mice (59%) among 17 F2 mice were identified as Mstn mutants, showing nine different
genotypes with deletions ranging from 5 to 8 nt (Figure 1b). Phenotypic analysis showed
that the Mstn-KO exhibited muscle hypertrophy in the skeletal muscle of Mstn-KO mice
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(Figure 1c). We isolated single muscle fibers from mice gastrocnemius and found that
the Mstn-KO mice were significantly thicker than the WT mice (Figure 1d). Furthermore,
MSTN protein expression was significantly decreased in the Mstn-KO mice compared with
the WT mice (Figure 1e).
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Figure 1. Production of myostatin knockout (Mstn-KO) mice mediated by CRISPR/Cas9 techniques.
(a) gRNA sequence of the MSTN gene for CRISPR/Cas9. (b) Mutant Mstn genotypes of derived
progenies, red indicates a missing base. (c) Representative images of muscles of Mstn-KO and
WT mice. (d) Images of teased single muscle fibers for muscle fibers in Mstn-KO and WT mice.
(e) Expression of MSTN protein in Mstn-KO and WT mice (n = 3).

2.2. Growth Performance and Phenotypic Traits

We compared and analyzed growth performances and phenotypic characteristics
between Mstn-KO and WT mice (from 3 to 10 weeks). The average body weights of
Mstn-KO and WT mice increased continuously from 3 to 10 weeks (Figure 2a,b). After
6 weeks, the average body weight of Mstn-KO male mice was significantly higher than
WT mice (Figure 2a). However, the average body weight of Mstn-KO female mice was
continuously higher than WT mice from 7 weeks (Figure 2b). Moreover, compared with
the WT mice, the weights of the liver, spleen, lungs, thyroid, pancreas, brain, testis, and
ovary were decreased by 0.55%, 33.51%, 10.01%, 0.26%, 14.51%, 24.23%, 30.79%, and 14.51%,
respectively, in Mstn-KO. The heart and kidney weight of Mstn-KO mice was higher at
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22.13% and 2.59% (Table 1). We investigated the expression of Mstn in the skeletal muscle
and internal organs of WT and Mstn-KO mice using real-time quantitative PCR. Mstn
mRNA expression in the heart, liver, lungs, kidneys, pancreas, brain, and muscle was
significantly lower in Mstn-KO mice than in WT mice, while no signal was detected in the
spleen (Figure 2c).
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Figure 2. Comparison of growth performance between Mstn-KO and WT mice. (a) Comparison of
body weights between Mstn-KO and WT male mice from 3 to 10 weeks. Body weight was slightly
higher in Mstn-KO male mice than WT controls after 6 weeks (n = 3). (b) Comparison of body weights
between Mstn-KO and WT female mice from 3 to 10 weeks. Body weight was slightly higher in
Mstn-KO female mice than WT controls after 7 weeks (n = 3). (c) Mstn mRNA expression in organs of
Mstn-KO and WT mice (n = 3). All data are presented as mean ± SD. * p < 0.05, ** p < 0.01; t-tests
were used to calculate the p-values.

Table 1. Organ weight of Mstn-KO and WT mice.

Heart Liver Spleen Lung Kidney Thyroid Pancreas Brain Testis Ovary

KO (g) 0.20 ± 0.03 1.71 ± 0.45 0.07 ± 0.01 0.20 ± 0.01 0.48 ± 0.00 0.21 ± 0.01 0.26 ± 0.04 0.39 ± 0.01 0.17 ± 0.01 0.02 ± 0.00
WT (g) 0.14 ± 0.00 1.47 ± 0.22 0.09 ± 0.01 0.19 ± 0.01 0.40 ± 0.00 0.18 ± 0.01 0.26 ± 0.01 0.44 ± 0.01 0.21 ± 0.01 0.02 ± 0.00
% 22.13 −0.55 −33.51 −10.01 2.59 −0.26 −14.51 −24.23 −30.79 −14.51

All values are presented as mean ± SD (n = 6). KO, Mstn-KO mice; WT, WT mice.

2.3. Effect of Mstn Knockout on Basal Metabolic Rate and Body Temperature

Next, we evaluated the basal metabolic rate (BMR) in Mstn-KO and WT mice. The
levels of VO2, VCO2, and respiratory quotient (CO2 release/O2 consumption, RQ) of the
resting state were examined in the groups. Compared to the WT mice, Mstn-KO mice
consumed less O2 (2.40± 0.47 ml/min for Mstn-KO and 2.57± 0.25 ml/min for WT) and re-
leased less CO2 (1.65± 0.34 ml/min for Mstn-KO and 1.95± 0.26 ml/min for WT) (Table 2).



Int. J. Mol. Sci. 2022, 23, 13703 5 of 14

RQ was reduced in Mstn-KO mice. Mstn-KO mice have a lower BMR (basal metabolic rate)
compared with the WT mice (Figure 3a). In a resting state, the two major components of
energy expenditure are the basal metabolic rate and maintaining body temperature. The
body temperature of mice was monitored in real time over seven consecutive days. We
found that body temperature was slightly lower in either male or female Mstn-KO mice
compared to WT mice, and females had slightly higher body temperatures than males
within the same group. (Figure 3b). However, the body temperature of these groups was
maintained in the normal range. These results suggest that Mstn knockout reduced energy
expenditure in a resting state.

Table 2. The basic energy metabolism of Mstn-KO and WT mice.

O2 CO2 RQ Weight/g BMR

KO 2.40 ± 0.47 1.65 ± 0.34 0.69 ± 0.02 27.23 ± 0.58 1.36
WT 2.57 ± 0.25 1.95 ± 0.26 0.76 ± 0.14 22.15 ± 0.84 1.69

All values are presented as mean ± SD (n = 3). KO, Mstn-KO mice; WT, WT mice.
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Figure 3. Mstn knockout decreases basal metabolic rate and body temperature. (a) Comparison of
basal metabolic rate between Mstn-KO and WT mice (n = 3). (b) Body temperature in WT compared
with Mstn-KO male and female mice (n = 1). All data are presented as mean ± SD. * p < 0.05; t-tests
were used to calculate the p-values.

2.4. Mstn Knockout Reduced Mitochondria Activity

It is well-established that mitochondria are the center of cellular energy metabolism.
The mitochondrial TCA cycle and the electron transport chain are the two main components
that determine mitochondrial energy metabolism. Firstly, we measured the total ATP
content of muscle tissues. The results were that ATP synthesis was significantly decreased
in the Mstn-KO mice (Figure 4a). To further explore the effects of Mstn on the main processes
of energy metabolism, we examined the individual activities of mitochondrial electron
transport chain complexes I-V. The data showed that the activities of complexes I to V were
reduced 0.6-fold, 0.74-fold, 0.77-fold, 0.53-fold, and 0.7-fold in Mstn-KO mice, respectively
(Figure 4b–f). Furthermore, Mstn knockout decreased mitochondrial membrane potential
compared with the WT mice (Figure 4g). We further investigated the mRNA levels of the
mitochondrial activity gene by qPCR. Lower transcript levels of Tfam, Nrf, and CIpp genes
were found in Mstn-KO mice (Figure 4h).
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Figure 4. Mstn knockout reduced ATP content and mitochondria activity. (a) ATP content in Mstn-KO
and WT mice muscle (n = 3). (b–f) Mitochondrial complexes I–V activity was analyzed by biochemical
detection (n = 3). (g) Measurement of the mitochondrial membrane potential of Mstn-KO and WT
mice (n = 3). (h) mRNA levels of mitochondrial activity gene by qPCR (n = 3). All data are presented
as mean ± SD. * p < 0.05, ** p < 0.01; t-tests were used to calculate the p-values.

2.5. Mstn Knockout Inhibited the TCA Cycle

We further examined key enzymes and metabolites in the TCA cycle. Citrate synthase
and citrate acids are enzymes and a product of the initial step in the TCA cycle. As
shown in Figure 5a,b, citrate content and citrate synthase activity were reduced in the
Mstn-KO mice compared to the WT mice. In addition, isocitrate dehydrogenase activity
and α-ketoglutarate content were decreased in the Mstn-KO mice (Figure 5c,d). Isocitrate
dehydrogenase converts isocitrate to α-ketoglutarate in the TCA cycle. These results
indicated that Mstn knockout decreased mitochondrial function whether electron transport
chain or TCA cycle.
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2.6. Mstn Knockout Inhibited AMPK/SIRT1/PGC1alpha Pathway

Previous studies have demonstrated that AMPK regulates mitochondrial function [27].
Thus, we next determined whether the phosphorylation level AMPK changes in Mstn-
KO mice skeletal muscle. As expected, compared to the WT mice, the expression of
pAMPK was significantly downregulated (Figure 6a,b). We further examined the expression
of SIRT1 of the downstream molecule of AMPK by Western blot. Mstn-KO mice had
significantly decreased levels of SIRT1 (Figure 6a,c). Moreover, to investigate the acetylation
level of PGC1α protein in Mstn-KO and WT mice, we detected the acetylated PGC1α
protein in Mstn-KO and WT mice. Since no commercial acetylation antibody of PGC1α
protein was available, the pan acetyllysine antibody was used to assess the acetylation
level of PGC1α by IP analysis. Briefly, PGC1α was pulled down with the anti-PGC1α
antibody, and an IP/Western blot assay was carried out to analyze the acetylation of
PGC1α using the previously reported method [28,29]. Mstn knockout resulted in PGC1α
acetylation increase, suggesting that PGC-1α activity was decreased (Figure 6d,e). This
finding supports previous findings that PGC-1α expression is subject to auto-regulation in
collaboration with SIRT1, which activates PGC-1α through deacetylation. Taken together,
these findings show that Mstn knockout inhibited the AMPK/SIRT1/PGC1alpha pathway.
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Figure 6. Mstn knockout inhibited the AMPK/SIRT1/PGC1alpha pathway. (a) The expression of
SIRT1 and pAMPK at the protein level in Mstn-KO and WT mice. (b) Gray intensity analysis of
pAMPK/α-Tubulin (n = 3). (c) Gray intensity analysis of SIRT1/α-Tubulin (n = 3). (d) Acetylation
level of PGC1α protein by co-immunoprecipitation in Mstn-KO and WT mice. (e) Gray intensity
analysis of acetylation level of PGC1α (n = 3). All data are presented as mean ± SD. ** p < 0.01; t-tests
were used to calculate the p-values.

2.7. Expression of pAMPK and SIRT1 following Treatment with AICAR and Compound C

To further explore the relationship between MSTN and the AMPK/SIRT1/PGC1α
pathway in skeletal muscle mitochondrial function, cells of Mstn-KO and WT mice were
treated with AMPK activator AICAR and the AMPK inhibitor Compound C. AICAR is
an AMP analog. Similar to AMP, AICAR binds to the γ subunit of AMPK, allosterically
activates the enzyme, stimulates phosphorylation at Thr172 by liver kinase B1 (LKB1), and
protects against pThr172 dephosphorylation [30]. Compound C is an ATP-competitive
inhibitor and binds to the highly conserved active site of AMPK [31]. SIRT1 and pAMPK
protein expression and activity of citrate synthase (CS), isocitrate dehydrogenase (ICDHm),
and α-ketoglutarate acid dehydrogenase (α-KGDH) were determined by Western blotting
analysis and biochemical detection methods, respectively. AICAR-treated cells exhibited
increased pAMPK and SIRT1 expression compared to AICAR-untreated cells (Figure 7a–c).
The expressions of pAMPK and SIRT1 proteins were decreased in MT cells compared with
WT cells (Figure 7a–c). Meanwhile, the activity of CS, ICDHm, and α-KGDH in the treated
and untreated cells obtained similar results (Figure 7d–f). The AICAR effects were inhibited
by the Mstn knockout (Figure 7a–f). Furthermore, Mstn-KO cells showed dramatically
decreased pAMPK and SIRT1 protein levels and activity of the three enzymes compared to
WT cells, and the same results were also obtained in the treated group compared with the
untreated group (Figure 7g–l). The SIRT1 and pAMPK expression and activity of the three
enzymes of Mstn-KO cells were reduced further in response to compound c stimulation
(Figure 7g–l). These results suggest that Mstn knockout reduces mitochondrial function by
inhibiting AMPK–SIRT1 signaling.
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Figure 7. Expression of pAMPK and SIRT1 following treatment with AICAR and Compound
C. (a) The expression of SIRT1 and pAMPK with AICAR treatment Mstn-KO and WT cells.
(b,c) Quantitative analysis showing the expression of pAMPK and SIRT1 following treatment with
AICAR (n = 3). (d) Citrate synthase (CS) activity with AICAR treatment Mstn-KO and WT cells (n =
3). (e) α-ketoglutarate acid dehydrogenase (α-KGDH) activity with AICAR treatment Mstn-KO and
WT cells (n = 3). (f) Isocitrate dehydrogenase (ICDHm) activity with AICAR treatment Mstn-KO and
WT cells (n = 3). (g) The expression of SIRT1 and pAMPK with Compound C treatment Mstn-KO
and WT cells. (h,i) Quantitative analysis showing the expression of pAMPK and SIRT1 following
treatment with Compound C (n = 3). (j) Citrate synthase (CS) activity with Compound C treatment
Mstn-KO and WT cells (n = 3). (k) α-ketoglutarate acid dehydrogenase (α-KGDH) activity with
Compound C treatment Mstn-KO and WT cells (n = 3). (l) Isocitrate dehydrogenase (ICDHm) activity
with Compound C treatment Mstn-KO and WT cells (n = 3). (m) Pattern of MSTN knockdown
affecting mitochondrial function through the AMPK/SIRT1/PGC1α pathway. All data are presented
as mean ± SD. ns, non-significant p > 0.05; * p < 0.05; ** p < 0.01; t-tests were used to calculate the
p-values.
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3. Discussion

Mstn is a potent inhibitor of skeletal muscle mass [32]. Mstn knockout animals all
showed a skeletal muscle hypertrophy phenotype [7,33–38]. The Mstn-knockout mice we
obtained also showed a hypertrophic phenotype. In addition to the characteristic effects
on the skeletal muscle, Mstn knockout can affect other organs. Currently, the weight of
organs has previously been reported on cattle, mice, and piglets of Mstn deficiency. At 15
or 20 months of age, the weights of the heart, liver, spleen, and lungs of Charolais double
muscle cattle decreased by 20%, 20%, 30%, and 10%, respectively [39]. Moreover, at 4,
8, and 12 weeks of age, the kidneys and liver of Mstn-deficient mice were lighter than
those of WT mice, while the weight of the heart and lungs were similar [40]. In MSTN-
KO piglets, the weights of the heart, liver, lungs, kidneys, and stomach were decreased
by 21.4%, 21.3%, 29.8%, 16.7%, and 20.0% relative to body weight, respectively [41]. In
the current study, the weights of the liver, spleen, lungs, thyroid, pancreas, brain, testis,
and ovary were decreased by 0.55%, 33.51%, 10.01%, 0.26%, 14.51%, 24.23%, 30.79%, and
14.51%, respectively, whereas the heart and kidney weight of Mstn-KO mice was higher in
22.13% and 2.59%. We reasoned that Mstn might exert a different effect on organ weight in
different species.

Mstn knockout is closely related to skeletal muscle metabolism [42,43]. Several studies
have reported that Mstn knockout decreases ATP production during exercise [12,44]. More-
over, Li et al. found that knockout Mstn in loach significantly decreased ATP synthesis
by directly measuring the total ATP content of loach muscle tissue [13]. In this study, we
demonstrated that Mstn knockout muscle decreased ATP synthesis in the resting state of
Mstn-KO mice. Interestingly, we also found that the basal metabolic rate and body tem-
perature were significantly decreased in Mstn-KO mice correlating with the reduced ATP
synthesis capacity. Indeed, mitochondria produce most of the ATP in cells [45]. Our present
study confirmed that mitochondrial electron transport chain complexes, mitochondrial
membrane potential, and TCA cycle were reduced in Mstn-KO mice muscle. These results
further reveal that Mstn knockout impact mitochondrial function, as studied previously in
Mstn KO animals [13,18,19].

AMPK, SIRT1 and PGC1α are all involved in regulating mitochondrial function [20–22].
According to Price and his colleagues [46], resveratrol improves mitochondrial biogenesis
and function by activating SIRT1. SIRT1 activates PGC1α by deacetylation [47]. Mela-
tonin prevents mitochondrial fission through the SIRT1–PGC1α pathway [48]. Meanwhile,
salidroside may treat diabetic nephropathy in mice through SIRT1–PGC1α mediated mi-
tochondrial biogenesis [49]. In addition, AMPK regulates SIRT1 activity by modulating
intracellular NAD+ levels and thereby influencing PGC1α deacetylation [50]. We have
found, for the first time, that Mstn knockout down-regulated the expressions of SIRT1 and
pAMPK, enhancing PGC-1α acetylation. Skeletal muscle cells from Mstn-KO and WT were
treated with AMPK activators AICAR and the AMPK inhibitor Compound C, respectively.
Compared with WT mice, Compound C treatment further down-regulated the expression
of pAMPK and SIRT1 expression and activity of CS, ICDHm, and α-KGDH in Mstn-KO
mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout
inhibited mitochondrial function via the AMPK/SIRT1/PGC1α signaling pathway.

4. Materials and Methods
4.1. Mstn-KO Mouse Production and Validation

The Mstn-KO mice were generated by pronuclear microinjection. The sgRNA oligos
were synthesized and cloned into the pCas-Guide-EF1α-GFP plasmid downstream at the
BamHI and BsmBI restriction sites to generate the pCas-Guide-EF1α-GFP-sgRNA recom-
binant plasmid. The positive clones were confirmed by Sanger sequencing. The purified
transgene was microinjected into the male pronuclei of fertilized eggs from superovulated
female mice and transferred to recipient pseudopregnant females. The mouse genotypes
were determined by PCR-based assays; the primers used for genotyping are listed in
Table 3.
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Table 3. Primers used for real-time PCR and genotyping PCR.

Gene Name Sense (5′ to 3′) Anti-Sense (5′ to 3′)

Tfam TGAAGCTTGTAAATGAGGCTTGGA CGGATCGTTTCACACTTCGAC
Nrf TTTGGCGCAGCACCTTTG GAGGCGGCAGCTCTGAATTAAC
CIpp CACACCAAGCAGAGCCTACA TCCAAGATGCCAAACTCTTG
GAPDH AAATGGTGAAGGTCGGTGTGAAC CAACAATCTCCACTTTGCCACTG
Mstn-2ex CAACAAAGTAGTAAAAGCCCAA ACTTTGTCTGGCTTATGAGCAT
Mstn-3ex AGTCAAGGTGACAGACACACCC GTGCTTGAATTCACAGTTTCGA

4.2. Body Temperature Measurements

The body temperature of the animals was measured daily by a subcutaneously located
temperature chip.

4.3. Metabolic Measurements

Mice were individually housed in the metabolic cages (Oxylet) and acclimatized for
24 h before recording. Their 24 h oxygen consumption (VO2), carbon dioxide production
(VCO2), and respiratory quotient (RQ) were measured every hour for 3 min in each cage.
Mice were maintained on their normal diet or water throughout the detection process.

4.4. Characterization and Analysis of Organs

Healthy mice from each group (Mstn-KO and WT) were euthanized and tissues were
collected for experimental purposes. The organs analyzed were the spleen, brain, lungs,
pancreas, heart, liver, kidney, thyroid, testicle, and ovary. Body weight and organ weight
were calculated.

4.5. Western Blot

The total protein was extracted from the muscle and cells of Mstn-KO and WT mice
according to our previously reported method [51]. Proteins were detected using primary
antibodies, including anti-MSTN (Abcam, Cambridge, MA, USA, ab201954), anti-pAMPK
(Abcam, Cambridge, MA, USA, ab133448), anti-PGC-1α (Santa Cruz Biotechnology, Santa
Cruz, CA, USA, sc-518025), and anti-acetyllysine (PTM BIO, Hang Zhou, China, PTM-101).

4.6. Real-Time PCR

Real-time PCR was performed referring to our previous reported [51]. Primer se-
quences were as tabulated in Table 3.

4.7. Biochemical Detection

Enzyme activities and metabolites were assayed using an ATP content assay kit (ATP-
1-Y), mitochondrial electron transport chain complexes I-V assay kit (FHTA-1-Y, FHTB-1-Y,
FHTC-1-Y, FHTD-1-Y and FHTE-1-Y), citrate synthase activity assay kit (CS-1-Y), citrate
acid content assay kit (CA-1-W), isocitrate dehydrogenase activity assay kit (ICDHM-1-Y),
α-ketoglutarate acid dehydrogenase activity assay kit (KGDH-1-Y), and α-ketoglutarate
content assay kit (KGA-4-Q) according to the manufacturer’s protocols from Comin (Su
Zhou, China). The optical densities were measured using a microplate reader (Thermo,
Waltham, MA, USA).

4.8. Co-Immunoprecipitation

Lysates of mice skeletal muscle tissue generated under the addition of proteinase in-
hibit cocktail Complete Mini (Thermo, Waltham, MA, USA) and phosphatase inhibitor cock-
tail PhosSTOP (Thermo, Waltham, MA, USA). The total protein of the lysates was measured
by the Pierce BCA Protein Assay Kit (Thermo, Waltham, MA, USA). Co-immunoprecipitation
(co-IP) was completed using the Thermo Scientific Pierce co-IP kit (#26149) following the
manufacturer’s protocol. Ten micrograms of the antibody were incubated with the deliv-
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ered resin and covalently coupled. The antibody-coupled resin was incubated with 200 µL
of the whole mice skeletal muscle protein lysates overnight at 4 ◦C, respectively. The resin
was washed, and the protein complexes bound to the antibody were eluted. Subsequent
Western blot analyses were performed as described before.

4.9. Cell Culture and Treatment

Primary mouse skeletal muscle cell was cultured using a described method before [52].
Cells were treated with 1 mM AICAR (Selleck, Shanghai, China, S1802) or 5 µM Compound
C (Selleck, Shang Hai, China, S7306).

4.10. Statistical Analysis

Comparisons between two observations in the same subjects were assessed by Stu-
dent’s paired t-test. Results were expressed as the mean ± standard deviation (SD). The
p-value of less than 0.05 was accepted as statistical significance.

5. Conclusions

This study demonstrated that Mstn knockout decrease basal metabolic rate, body
temperature, and mitochondrial activity in skeletal muscle. The probable mechanism is that
Mstn knockout suppressed mitochondrial function via inhibiting the AMPK/SIRT1/PGC1α
signaling pathway (Figure 7m).
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