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Variations in alpha rhythm have a significant role in perception and attention. Recently, alpha decrease has been associated with
externally directed attention, especially in the visual domain, whereas alpha increase has been related to internal processing such
as mental arithmetic. However, the role of alpha oscillations and how the different components of a task (processing of external
stimuli, internal manipulation/representation, and task demand) interact to affect alpha power are still unclear. Here, we in-
vestigate how alpha power is differently modulated by attentional tasks depending both on task difficulty (less/more demanding
task) and direction of attention (internal/external). To this aim, we designed two experiments that differently manipulated these
aspects. Experiment 1, outside Virtual Reality (VR), involved two tasks both requiring internal and external attentional
components (intake of visual items for their internal manipulation) but with different internal task demands (arithmetic vs.
reading). Experiment 2 took advantage of the VR (mimicking an aircraft cabin interior) to manipulate attention direction: it
included a condition of VR immersion only, characterized by visual external attention, and a condition of a purely mental
arithmetic task during VR immersion, requiring neglect of sensory stimuli. Results show that: (1) In line with previous studies,
visual external attention caused a significant alpha decrease, especially in parieto-occipital regions; (2) Alpha decrease was
significantly larger during the more demanding arithmetic task, when the task was driven by external visual stimuli; (3) Alpha
dramatically increased during the purely mental task in VR immersion, whereby the external stimuli had no relation with the task.
Our results suggest that alpha power is crucial to isolate a subject from the environment, and move attention from external to
internal cues. Moreover, they emphasize that the emerging use of VR associated with EEG may have important implications to
study brain rhythms and support the design of artificial systems.

1. Introduction

The preeminent oscillatory phenomenon in brain neuro-
dynamics is represented by the alpha rhythm (approximately
8-12 Hz), which is the dominant frequency in the human
scalp EEG [1]. It is well known that EEG activity in the alpha
band exhibits a significant change in a variety of conditions;
depending on the kind of stimulus or task demand, a brain
region responds either with a decrease in alpha power
(Event-Related Desynchronization, ERD) or an alpha power
increase (Event-Related Synchronization, ERS) [2, 3]. More
particularly, a large body of the literature suggests that

regions activated during a task exhibit ERD, whereas ERS
occurs in regions irrelevant for the task, or regions which
process distractors or potentially interfering cues [4-7].

Furthermore, recent studies propose an interpretation of
human alpha rhythm in terms of a distinction between
internally and externally directed attention.

For what concerns external attention, it is well known
that alpha power decreases over occipital sites during visual
stimulation [8] and over sensorimotor areas during senso-
rimotor tasks or movements [3]. Various studies relate the
level of visual attention to the strength of oscillatory « ac-
tivity, observing that greater external attention causes a
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decrease in alpha power, or a shift in the alpha rhythm
toward the attended locations [9-11]. Alpha desynchroni-
zation has been associated to tasks requiring processing of
relevant information in a variety of cognitive domains, but
especially associated with visual perception [12-14]. It was
thus hypothesized that the suppression of alpha activity is
related to the strength of attention to external objects or
stimuli required by the task [15].

Different results, however, have been recently observed
in the auditory domain, where an increase of alpha has been
linked to increased effort and/or processing [16-19]. Hence,
the role of a task on the alpha-band power, even during
processing of external inputs is still strongly debated, with
possible significant differences in auditory and visual do-
mains and in different tasks.

Conversely, a-band oscillations have been observed to
increase during internal tasks, such as visual imagery or
arithmetic operations [20-23]. An old influential hypothesis
by Ray and Cole [24] assumes that alpha power increases
during rejection tasks (internally directed attention), to reflect
inhibition or rejection of incoming sensory information.
Since an inward shift of attention is accompanied by an
increase in alpha power, some authors suggested that ERS
may be working to inhibit sensory processing and suppress
distractors or potentially interfering cues [4-7, 25, 26] or
more generally to implement a general inhibitory mechanism
in the brain [26, 27].

Consequent to the previous observations is the idea that
a-power modulation is strictly related with working
memory (WM). During WM tests, selective attention may
be operating to enhance the efficient use of limited memory
resources, by enabling the encoding of relevant in-
formation and avoiding that memory capacity is degraded
by interfering cues [28]. Indeed, several studies have shown
a significant a-synchronization associated with memory
load in experiments in which participants were presented
items to be remembered for a short period [25, 29, 30]. An
influential hypothesis is that alpha oscillations work as a
filter mechanism able to inhibit an increasing number of
distractors via a progressive a-power increase [31]. How-
ever, divergent results have been reported on this point.
While Sauseng et al. [32] found that alpha activity increases
with the number of distractors, other failed to report these
changes [33, 34].

From the previous literature, we can conclude that while
the relationship between alpha activity and attention
mechanisms is well documented today, both when attention
is directed toward external stimuli (ERD) and remembered
items (ERS), the exact role played by alpha oscillations and
its modulation by the task is still unclear. In particular, the
alpha-inhibition hypothesis and the role of alpha activity
during internal memory tasks continue to be questioned (for
a recent review, see [35]). At least three important elements
are involved in these procedures: maintenance of internal
memory, processing of external stimuli, and task load re-
quirements. As pointed out by van Moorselaar et al. [36], it is
still unclear whether these aspects cooperate or are in
conflict, and how they interact at the frontal and occipital
level to ensure the better behavioural performance. Does
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alpha activity reflect an internal cognitive process, under the
influence of top-down mechanisms which work to focus
attention on the essential items, i.e., a shift between “bottom-
up” and “top-down” requirements, as suggested by von Stein
etal. [37, 38]? Or does it simply reflect the disengagement of
attention from external stimuli? Does alpha desynchroni-
zation signal a major role of external sensory representation,
whereas alpha synchronization emphasizes a major role of
internal mental processing?

In order to examine these aspects, we need experiments
which manipulate both external stimulation, cognitive
processing requirements (i.e., task difficulty), and direction
of attention (external vs. internal). In particular, we wish to
investigate in which terms alpha power can be reduced by
tasks which require an attentional focus to external items,
how this desynchronization is affected by the task demand,
and how it is affected by strong external stimulation in
absence of specific tasks and finally by a mental process
which requires isolation from the environment.

To reach our objective, the study comprises two sub-
sequent but strictly related experiments: (i) changes in
alpha-band power (i.e., ERD or ERS) were measured in
laboratory, using a 13-electrode system, during two tasks
which differently recruited visual and cognitive mecha-
nisms (the first is a reading numbers task, the second a
visual + arithmetic operation task). The results are used to
assess ERD during attentive tasks that require external
attention, and its modulation by the level of attention/
involvement required. (ii) Changes in alpha-band power
were quantified when participants interact with a business
aircraft cabin in a Virtual Reality (VR) setting, to mimic
conditions experienced by a passenger during an airplane
travel. In this case, the EEG was obtained while the par-
ticipant was immersed in a VR environment, conceived to
simulate the main visual and acoustic characteristics of a
cabin interior, ad hoc designed during the project. We
assume that this condition strongly solicits the external
visual/acoustic attention, even in the absence of a specific
task. Finally, in the same condition (VR immersion), we
asked the participants to perform a mental arithmetic task
(internal attention) and to investigate the conflict between
the external virtual immersion and the internal focus and
its effect on alpha rhythm power.

In all cases, alpha rhythm was investigated both at the
parieto-occipital and frontal regions, to point out differences.

Finally, we wish to stress that a novel aspect of this work
is the analysis of alpha rhythm in VR environment. The
study was designed within the framework of the Horizon
2020 project CASTLE (CAbin Systems design Toward
passenger welLbEing), aimed at optimizing the design of
innovative interiors of aircraft cabins for Business Jet In-
dustry, also exploiting VR for the collection of users’
feedback. Indeed, the present availability of sophisticate VR
instruments now allows changes in brain rhythms to be
studied when the subject is immersed in a complex realistic
scenario and mimicked in a controlled repeatable condition.
This idea opens new perspectives not only in the design of
artificial systems, but also in the study of the human in-
teraction with the external world.
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2. Materials and Methods

Two experiments were carried out in the present study. They
served to differently manipulate the task load (more/less
demanding task) and direction of attention (internally/
externally directed attention). The first experiment (Ex-
periment 1) was performed in a controlled laboratory en-
vironment outside the VR setting; a classical monitor screen
was used for stimuli presentation to participants and a wired
EEG device was used for signal collection. Experiment 1
included two tasks that both required external and internal
attentional components (intake of visual items for their
internal manipulation) but with different task loads, one task
being more demanding than the other. In the second ex-
periment (Experiment 2), we took advantage of the VR
technology to strongly manipulate the direction of attention.
This experiment was conducted in a VR laboratory where
participants were exposed to and interacted with a VR
environment (aircraft business cabin interior), and a wireless
EEG device was used for data collection. Experiment 2
involved a condition consisting in purely VR immersion
whereby the rich sensory stimulation elicited external at-
tention and a condition consisting in performing a mental
task during the VR immersion; at variance with purely VR
immersion, the latter condition required internal attention
and neglect of external environment to perform the mental
operations.

2.1. Participants. Thirty healthy volunteers (10 females),
aged 20-42years (mean + std =25.4 + 4.8 years), took part
in Experiment 1. Forty-one healthy volunteers (9 females),
aged 19-29 years (mean +std =22.1 + 2.6 years), took part
in Experiment 2. Participants in the two experiments were
different; this avoided that the participants were subjected
to a long recording involving several sessions and condi-
tions (of both experiments), that may have induced
tiredness and boredom. Each participant had normal or
corrected to normal vision and reported no medical or
psychiatric illness. The study was approved by the local
ethical committee (file number: 187339, year: 2018), and all
participants gave written informed consent before the
beginning of the experiment. All data were analyzed and
reported anonymously.

2.2. Experiment 1: Cognitive Tasks Driven by External Stimuli
and with Different Demand

2.2.1. Experimental Protocol. The participants comfortably
seated facing a computer monitor at about 50 cm far, in a
dedicated laboratory. They underwent two experimental
sessions, each lasting 15 minutes, separated by a break of
about 10 minutes (Figure 1(a)). Each experimental session
consisted of three phases: a 5 min initial relaxation phase
(named rl1), a 5 min central task phase (named T), and a
5 min final relaxation phase (named r2). The two relaxation
phases, preceding (rl) and following (r2) each task,
were identical in both sessions: a gray screen with the word
“relax” was continuously displayed (Figure 1(b)), and

participants were instructed to relax during such phases
maintaining the eyes open. The experimental sessions dif-
fered only in the type of the task executed during the central
phase, namely, an arithmetic task and a reading numbers task
(Figure 1). The order of the tasks was counterbalanced across
participants. Both the implemented tasks involved explo-
ration and intake of visual items (symbols and numbers) and
their internal manipulation; thus, they involved both visual-
spatial processes (external attentional component) and
cognitive processes (internal attentional component), but
the arithmetic task required higher level of sensory attention
and cognitive effort.

(1) The Arithmetic Task. During this task, the participants
had to solve the arithmetic operations displayed on the
screen, consisting in the addition/subtraction of four one-
digit numbers, and had to compare the result with a given
displayed target. They provided their response by selecting
one of the three displayed button-items (black boxes with
symbols < = >, see Figure 1(b)) using the mouse. Each
operation was displayed on the computer monitor contin-
uously until the participant responded; immediately after,
the screen was updated displaying a new operation together
with the target and the three response items (Figure 1(b)).
Participants were instructed to answer not only as accurately
as possible but also as quickly as possible, motivated by a
timer that signaled the time left at each screen update
(Figure 1(b)). For each arithmetic operation, the four one-
digit numbers and the three operators (+ or —) were gen-
erated randomly; the comparison target was generated as a
random integer close to the correct result of the arithmetic
operation in order to avoid trivial solutions (the absolute
difference between the comparison target and the correct
result was <3).

(2) The Reading Numbers Task. During this task, the screen
displayed the arithmetic operation, the comparison target,
and the timer in order to provide similar visual items as in the
arithmetic task, but the participants were clearly instructed to
just mentally read the numbers presented on the screen,
without performing any operation (response buttons were not
displayed). The screen was updated every 5seconds
(Figure 1(b)). At each screen update, the numbers and op-
erators in the arithmetic operation and the comparison target
were generated randomly as in the arithmetic task.

Tasks similar to the ones implemented here were pre-
viously adopted in other studies to investigate attentional-
related EEG rhythms modifications [39-41].

Before the onset of each experimental session, the
participants received the instructions about the task of that
session. During each session, participants were asked to
reduce body and head movements at minimum (except
finger movement for mouse use in the arithmetic task) and
not to speak.

It is worth noticing that, in each session, the relaxation
phase r1 was considered as the reference state within that
session, and the alpha power modifications induced by the
task in the following phases T and r2 were evaluated with
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FIGURE 1: (a) Timeline of Experiment 1. The experiment included two sessions, i.e., an arithmetic session and a reading numbers session,
separated by a 10 min break, performed by all participants. Each session lasted fifteen minutes and included an initial (r1) 5-minute
relaxation phase, a final (r2) 5-minute relaxation phase, and a central 5-minute task phase (T) consisting in an arithmetic task (arithmetic
session) or a reading numbers task (reading numbers session). The order of the tasks was counterbalanced across the participants. (b) Design
of each session. In both sessions, the relaxation phases (r1 and r2) consisted in the presentation of a gray screen with the world “relax.” In the
arithmetic session, during the task phase, the participant had to provide the response to the arithmetic operation (by selecting one of the

black button-items with the mouse); after the response selection,

a new screen with a new operation appeared. In the reading numbers

session, during the task phase, the participant had just to mentally read the numbers appearing on the screen (e.g., 300, 0, 3, 8, .. .), and the

screen updated every 5 seconds.

respect to this reference state (see also Section 2.2.3). This was
done to focus only on the changes induced by the specific task,
ruling out other possible confounding effects (e.g., participant’s
fatigue due to execution of the previous session).

2.2.2. EEG Recording and Preprocessing. During each ex-
perimental session, thirteen EEG signals were recorded via a
wired, laboratory-grade device (Brainbox® EEG-1166 am-
plifier, Braintronics, The Netherlands and Neurowave Ac-
quisition Software, Khymeia, Italy), using wet Ag/AgCl scalp
electrodes (embedded in an elastic cap). Electrodes were
located at positions F3, F4, T7, C3, Cz, C4, T8, PO7, PO3,

PO8, PO4, O1, and O2; the reference electrode was placed on
the right earlobe, and the ground electrode was located on
the forehead. The number and positions of the electrodes
were chosen as a trade-off between the following re-
quirements. (i) Use of a restricted number of electrodes in an
effort to outline a system characterized by ease of use, re-
duced setup time, and low cost, prospectively aimed at real-
world practical applications. (ii) Allow coverage of both the
frontocentral and parieto-occipital regions, the latter known
to be more involved in visual-spatial (and computational)
processing than the first [21, 39, 42, 43]. This may be useful
to detect potential differences among scalp regions.
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During each experimental session, the EEG signals were
digitized at a sample frequency of 128 Hz and 16 bit reso-
lution, and with the inclusion of a hardware notch filter
eliminating line noise at 50 Hz. Then, for each participant,
the two 15-minute EEG recordings, each relative to one of
the two different sessions, were converted in a Matlab-
compatible format for further offline processing (Matlab
R2016a, The MathWorks Inc., Natick MA). First, each 15-
minute recording was high-pass filtered at 0.75Hz to
eliminate the DC offset and slow drifts. Subsequently, we
applied the Independent Component Analysis (ICA), an
effective method largely employed for removal of artefacts
from EEG [44-46]. For this purpose, each recording was
entered into the “infomax” ICA algorithm (implemented by
the EEGLAB toolbox) [47, 48]; artefactual Independent
Components were visually identified and removed. An av-
erage of 3.87 +0.8 Independent Components were rejected
across all participants and sessions. In particular, three
rejected components were common across all recordings
and separated three independent artefact activities inevitably
present, i.e., eye blink, lateral eye movements, and heartbeat;
one or two additional artefact components were occasionally
present extracting EMG-related activity or single-channel
noise.

2.2.3. Alpha Power Computation. For each participant and
each session, the preprocessed EEG signals were subdivided
into three parts of 5 minutes each, corresponding to the three
phases of the session (rl, T, and r2). The Power Spectrum
Density (PSD) of each channel over each phase was obtained
by applying Welch’s periodogram method, by using a
Hamming window of 5 seconds at 50% overlap, zeropadded
to 10's to obtain 0.1 Hz frequency resolution. Then, for each
channel, the power in the alpha band 8-12 Hz was computed
for each phase rl, T, and r2. Moreover, a normalization
procedure was adopted. Specifically, in each session, the alpha
power value of a single channel in the r1 phase was used as
reference value for that channel, and the alpha power in each
phase of the same session was divided by this reference value,
to obtain the normalized alpha powers for that channel.

In addition to the analysis at single-channel level, we
performed an analysis at scalp-region level, by aggregating
the channels into two regions of interest: a region (fronto-
central-temporal, FCT region) including the anterocentral
channels (F3, F4, T7, C3, Cz, C4, and T8) and a region
(Parieto-occipital, PO region) including the posterior
channels (PO7, PO3, PO8, PO4, O1, and O2). To this aim,
for each participant and each session, the mean PSD over the
FCT and PO regions were computed by averaging the PSD
across the corresponding channels, separately for each phase
rl, T, and r2. Then, similarly to the single-channel analysis,
the power in the alpha band 8-12 Hz was computed over
each region and for each phase r1, T, and r2. Finally, the
normalized alpha powers at the scalp-region level were
computed: the alpha power in the r1 phase over a region was
used as the reference value for that region, and the alpha
power value in each phase over the same region was divided
by this reference value. Of course, the normalized alpha

powers assumed value 1 in the rl phase, both at single-
channel level and at scalp-region level.

2.3. Experiment 2: VR Immersion and Mental Task in
VR Immersion

2.3.1. Virtual Reality Instrumentation and the Aircraft Vir-
tual Cabin Interiors. The concept and the CAD (Computer
Aided) model of the cabin interiors of a business jet were
provided by ACUMEN (https://acumen-da.com/). The
model design is based on a modular layout of the cabin that
is divided into five zones, and for each zone, different
functional requirements have been defined by Dassault
Aviation. There is a flexible area for informal and formal
activities. Moreover, there is a rear cabin area designed with
enough privacy and discretion as main targets. The central
lavatory is between the two flexible zones and is expected to
be easy to access to and safe to use. Finally, the galley and the
crew rest areas are provided, all referenced in the fuselage
model. The surface CAD model was processed in IC.IDO
(Industrial Grade Immersive VR Solutions) Software to
create the digital mock up of the entire cabin with the proper
color, material and finishing properties for each visible
surface. ICIDO® is a 3D immersive VR software, provided
by ESI® Group, supporting industrial decision making
processes and digital mock-up verifications (Figure 2(a)).
Then, two different CMF (color, material, and finishing)
configurations of this cabin model were prepared for test
(Figures 2(b)-2(c)), namely, configurations B1 and B2.

The cabin model files, properly converted and refined,
were deployed on the CAVE (Cave Automatic Virtual En-
vironment) at the Virtual Reality Laboratory of the University
of Bologna. The CAVE is a multiple screens stereoscopic
visualization system that immerses the user in a virtual en-
vironment [49]. The CAVE is developed on top of Com-
mercial of The Shelf (COTS) components and is based on
three 2.5 x 1.9 m rear-projected screens and a floor. The active
stereoscopy was enabled through shutter glasses. To allow the
cabin environment to be navigated from a first-person per-
spective by a user moving on the CAVE floor, face and body
tracking was implemented by capturing and filtering data
provided by a Microsoft Kinect sensor placed in front of the
user at the bottom of the CAVE central screen. Tracking of the
face was used to update the VR camera’s point of view with
the actual user’s point of view [50]. Body tracking allows the
longitudinal navigation of the cabin, implemented through
the amplification of the user’s step distance in the main axis
direction. In addition, an avatar representing the user was
introduced in the cabin virtual environment, and the avatar’s
joints and face position and orientation were linked to the
user’s ones captured by Kinect, so that the avatar replicated
user’s movements and gestures (Figure 2(d)). Finally, to
simulate interaction with objects of the virtual environment, a
sound was produced by the system whenever the avatar hurt
or touched them, to fake collision.

2.3.2. Experimental Protocol. The participants underwent
two experimental sessions within the VR laboratory, one for
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41 participants

24 part.
out of 41

First session

(configuration B1 or B2)
Break

r1 | nvR | intvR | r2vR

Second session
(configuration B2 or B1)

maVR Time

i1 | rvR | intvR | rave

5min | 5min | 5min | 5min 10 min

rl: initial relaxation no VR (reference phase)

r1VR: static immersion in VR

intVR: immersion in VR and interactive exploration
r2VR: static immersion in VR

maVR: immersion in VR and mental arithmetic task

(e)

5min ! 5min | 5min | 5min 5 min

FIGURE 2: (a) CAD model processed in IC.IDO (Industrial Grade Immersive VR Solutions) Software creating the digital mock-up of the
entire cabin with the proper color, material, and finishing properties of each surface. (b, ¢) The two different configurations of the cabin
interior, namely, configuration B1 (b) and B2 (c), characterized by different color, material, and finishing properties, when projected on the
CAVE screens. (d) Example of the avatar within the cabin virtual environment. (e) Timeline of Experiment 2. The experiment included two
sessions corresponding to the cabin configurations B1 and B2. The order of the presentation of the two configurations was counterbalanced
across participants. All participants executed the phases rl (relaxation without VR), rIVR (first static immersion in the VR), intVR
(interactive exploration of VR), and r2VR (second static immersion in the VR) in both sessions. Only a subset of participants (24 out of 41)
executed an additional phase in the second session (phase maVR), consisting in performing a mental arithmetic task (mental serial

subtractions) while immersed in the VR.

each virtual cabin configuration, Bl and B2, separated by a
break of about 10 minutes (Figure 2(e)). The order of the
presentation of the two configurations was counterbalanced
across participants. It is worth noticing that the replication
of the session using two virtual configurations of the same
environment served to test the robustness of the adopted
EEG measure (alpha power) and of its extraction procedure.
Indeed, as the two configurations differed in subtle details
(color and finishing), we expected similar sensory stimu-
lation to be elicited by immersion in them and therefore
similar effects on alpha power to be observed across the
sessions (see also Sections 2.3.4 and 3.2.1).

Throughout each session, lights were kept off to improve
clearness and contrast of the images projected on the CAVE
screens and favor participants’ immersion within the VR
environment; moreover, a background airplane sound was

played continuously. All participants were required to not
speak throughout the sessions.

Each session was structured into 5-minute phases. The
two sessions shared the same structure with the exception
that 24 out of the 41 participants performed an additional
phase (maVR) in the second session (with either the B1 or B2
virtual configuration, see Figure 2(e)). This additional phase
served to test the effects of an internal task (mental arith-
metic) requiring isolation from the realistic external context.
The remaining phases were common across the two sessions
for all participants (Figure 2(e)). The first 5-minute phase,
named rl, consisted in an initial VR-off relaxation phase
without VR stimulation (and only the background sound
on); during this phase, the participants were seated centrally
in front of the black screens at a distance of about 2 meters
and were instructed to relax with eyes open, while the VR
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environment was kept off. Immediately at the end of this
phase, the VR environment was turned on and was kept on
until the end of the session. The second 5-minute phase,
named r1VR, consisted in a first still (static) VR immersion:
during this phase, the participants remained seated while
being immersed in a static VR scenario, showing the cabin
lounge and conference room (flexible area), and were
solicited by the rich sensory stimuli and free to visually
explore the virtual scenario (via eye and head movements).
The third 5-minute phase, named intVR, consisted in an
interactive VR exploration: during this phase, the participant
stood up, walked, moved, and interacted through the virtual
cabin interior, trying to explore all the zones. The fourth 5-
minute phase, named r2VR, consisted in a second still (static)
VR immersion, following the interaction phase: during this
phase, the same conditions as in the rl1VR phase were
replicated, with the participants seating again immersed in
the same static scenario shown previously. The additional
phase maVR performed by the subset of participants con-
sisted in a mental arithmetic task executed during the VR
immersion: during this phase, the participant remained
seated immersed in the same scenario as in r1VR and r2VR
and performed mental serial subtractions in steps of sev-
enteen starting from 1000.

In this study, we did not employ a realistic seat
(i.e., similar to the ones present in a real cabin) during the
phases in which participants remained seated; of course, this
improvement could be implemented in future studies to
further enhance the VR experience.

The relaxation phase r1 in each experimental session was
considered as the reference condition within that session,
and the modifications induced by the VR immersion as well
as by the mental arithmetic task (phases r1VR, r2VR, and
maVR) were evaluated with respect to this reference state
(see also Section 2.3.4), to exclude possible bias due to
execution of the previous session. It is worth noticing that,
for each session, the interactive exploration phase, intVR,
was excluded from the analysis (see also Section 2.3.3).
Indeed, this phase mainly included motor aspects which fall
outside the focus of the present study (moreover, this
analysis would be particularly complex as removing
locomotion-induced mechanical artifacts from EEG signals
in a reliable way is still a critical problem). Rather, the in-
teraction phase might be useful to assess whether alpha
power was modified before and after an active exploration of
the VR environment, possibly reflecting a modification of
external attention level.

2.3.3. EEG Recording and Preprocessing. In this experiment,
a wireless consumer-grade EEG device was used to acquire
the EEG signals. Specifically, we employed the OpenBCI
Cyton board complemented with the OpenBCI Daisy
Module (OpenBClI, https://openbci.com/) that allows up to
16 differential EEG channels to be acquired wirelessly via the
OpenBCI USB transmitter/receiver using RFduino radio
module. The use of a wireless device was fundamental for
EEG recording in the VR laboratory, eliminating restrictions
on positioning the participants inside the laboratory and

allowing free movements and mobility of the participant
when immersed in the VR scenario.

Twelve wet Ag/AgCl electrodes (F3, F4, T7, C3, C4, T8,
PO7, PO3, PO8, PO4, O1, and O2) of an electrode cap were
plugged into the differential channels of the OpenBCI
Cyton + Daisy Board, and the board was secured over the cap
in the central position, so as to realize a wireless and
wearable system. The same electrodes as in Experiment 1
were used, except electrode Cz skipped for board fixing. The
reference electrode was placed on the right earlobe and the
ground (bias) electrode was placed on the left earlobe.

For each participant and during each experimental ses-
sion, the twelve EEG signals were online digitized at a sample
frequency of 125Hz and 24bit resolution and stored in a
Matlab-compatible format. Then, each recording was offline
preprocessed. First, each recording was high-pass filtered at
0.75Hz to eliminate the DC offset and slow frequency drifts
and filtered by a 50 Hz notch filter to eliminate line-power
interferences. Then, the portion of the signals corresponding
to the interaction phase (intVR, from minute 10 to minute 15)
was excluded from any further analysis, and the signals in the
remaining phases (rl, r1VR, r2VR, and the additional phase
maVR for the subset of participants) were examined for
artefacts reduction. At variance with Experiment 1, ICA
applied to signals acquired in Experiment 2 was in general
unable to separate artefactual activities. The reason was due to
the different recording modality and device (wireless vs. wired
and consumer-grade vs. laboratory grade) and different ex-
perimental conditions (participants free to move head, neck,
and possibly even trunk to explore the wide facing screens vs.
participants facing 15 inches monitor and instructed to re-
duce their movements to a minimum). As a consequence,
several nonstereotypic types of noise, such as complex
movement artifacts, electrode pops, transient reduction, and
loss of signal transmission, affected signals in Experiment 2,
besides more stereotypical artefacts (such as blinking or
heartbeat related artefacts). Since only twelve ICs were
returned as output, the manifold single-artefactual activities
were spread over several (or even all) components, mixing
with the useful signal components. Therefore, to reduce ar-
tefact effects (especially those induced by less stationary ac-
tivities), we opted for a direct visual inspection of each EEG
recording, removing those fragments containing muscle ac-
tivities, movement artefacts, electrode artefacts, and transient
lost/decreased transmission (removal was obtained by just
concatenating the preserved portions). The average number of
removed fragments was 2.12+ 3.1 with a mean duration of
32s, across participants and sessions. While the in-
effectiveness of ICA may be considered a limit, this also hints
practical implications. Indeed, this suggests that other pro-
cedures for artefact removal are more apt to be used in a low-
density, wireless, and wearable system (and in real-world
applications) and more susceptible to an online imple-
mentation, rather than ICA that requires training using
sufficiently long and stationary signals.

2.3.4. Alpha Power Computation. We implemented alpha
power computation for the entire set of participants (41)
over the two sessions and an additional computation over
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the second session for the subset of participants (24) who
performed the additional maVR phase.

(1) Alpha Power Computation over the Entire Set of Par-
ticipants (41) and the Two Sessions (Phases rl, r1VR, and
r2VR). This analysis served to assess the effect of purely VR
immersion on alpha power. For each participant and each
session, the preprocessed EEG signals were subdivided into
three parts, corresponding to the three phases r1, r1VR, and
r2VR (each part lasted approximately 5 minutes depending
on the removed fragments), which were the phases per-
formed by all participants in both sessions. Hence, the PSD
of each channel over each phase was obtained by applying
Welch’s periodogram method, adopting the same parame-
ters as in Experiment 1. The power in the alpha band 8-12 Hz
was computed both at single-channel level and scalp-region
level, according to the same procedure as in Experiment 1.
Here, the fronto-central-temporal region was obtained by
aggregating six (F3, F4, T7, C3, C4, and T8) rather than
seven electrodes, as the Cz electrode was not used (see
Section 2.3.3). As in Experiment 1, for each participant and
for each experimental session, the alpha power values of each
single channel/region in the three phases (r1, r1VR, and
r2VR) were divided by the corresponding reference value
(i.e., the alpha power in the rl phase), to obtain the nor-
malized alpha powers and to assess the alpha power mod-
ifications with respect to the reference state (rl).

Moreover, across all 41 participants, we included a
turther analysis to evaluate alpha power modifications at a
finer time resolution. To this aim, for each participant and
session, the first 10 minutes of the session (comprising the
consecutive phases rl and r1VR) were subdivided into 1-
minute segments, and the alpha power over the FCT and PO
scalp regions was computed with 1-minute time resolution.
In this analysis, we still adopted a normalization by division
using the alpha power value obtained in the first minute of
the session (i.e., the first minute of the rl phase) as the
reference value.

It is important to note that the computations above were
performed separately over each session obtaining separated
values of normalized alpha powers for the Bl configuration
and B2 configuration. In a preliminary analysis, we did not
found significant differences in the Bl vs. B2 normalized
alpha powers at any phase and region, in line with our
expectations based on the limited dissimilarities between the
two configurations. Therefore, the normalized alpha powers
for the B1 and B2 configurations were collapsed together; to
this aim, we computed the average alpha power across the
two configurations for each participant. The collapsed values
are shown in Results and used for subsequent statistical
analyses (see Section 2.4).

(2) Alpha Power Computation over the Subset of Participants
(24) in the Second Session (Phases rl, r1VR, r2VR, and
maVR). For these participants, we added a further analysis
limited to the second session that included the phase maVR.
This analysis served to assess how alpha power was mod-
ulated when a mental process required inward shift of at-
tention and isolation from the environment. For each
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participant, the power in the alpha band 8-12Hz was
computed at scalp-region level in the four phases r1, rI1VR,
r2VR, and maVR of the second session. Then, for each
participant and region, the alpha powers in these phases
were divided by the corresponding reference value (i.e., the
alpha power in phase rl), to obtain the normalized alpha
powers.

2.4. Statistical Analyses. In both Experiments, the variable
under statistical tests was the normalized alpha power ob-
tained at the scalp-region level. For each experiment, the
differences between the reference value (1) and the other
phases (or times, in case of the analysis at 1 min time
resolution) were tested via multiple one-sample t-tests,
separately within each region, using Bonferroni correction
(significance threshold = 0.05/n, where n was the number of
comparisons). Moreover, the normalized alpha power was
analyzed via repeated measures two-way Analysis of Vari-
ance (ANOVA). In Experiment 1, we analyzed the variable at
the phase T and the within subject factors were: Task Type
(arithmetic/reading numbers) and Region (FCT/PO). In
Experiment 2, the within subject factors were: Phase (r1VR/
r2VR for the variable computed on the entire set of par-
ticipants; r1VR/r2VR/maVR for the variable computed on
the subset of participants) and Region (FCT/PO). Post hoc
comparisons were performed via pairwise t-tests with
Bonferroni correction (significance threshold =0.05/n,
where n was the number of comparisons). For clarity, in one-
sample and paired f-tests uncorrected p values were re-
ported, together with the adjusted significance threshold.

3. Results

3.1. Experiment 1: Effect of Cognitive Tasks Driven by External
Stimuli and Different Task Demands. Figure 3 shows the
topographical scalp maps of the alpha power (not nor-
malized) averaged across participants as a function of the
experimental session (arithmetic and reading numbers
session) and of the phase (r1, T, r2) within the session. In
both sessions, the pretask relaxation phase (rl) was char-
acterized by a large predominance of alpha power over the
posterior area and a gradual decline towards the frontal-
central regions (Figures 3(a) and 3(d)). During the task
phase (T), the alpha power exhibited a widespread re-
duction, larger over the posterior area than over the fron-
tocentral area; moreover, the arithmetic task (Figure 3(b))
induced a stronger alpha power decrease than the reading
numbers task (Figure 3(e)). Finally, during the posttask
relaxation phase (r2), the alpha power distribution resumed
a similar pattern as in the r1 phase, with the alpha power
increasing up to values slightly above the pretask phase (see
Figures 3(c) and 3(f)).

A straightforward quantification of the task-induced
alpha power changes across the electrodes was obtained
via the normalized alpha power at the single-channel level.
Figure 4 displays the normalized alpha power at each
electrode, averaged across participants (mean + sem), plot-
ted during the task (T), and after the task (r2) in the
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FIGURE 3: Scalp maps of alpha power (1V?) averaged across all participants in Experiment 1, as a function of the experimental session
(arithmetic session: first row; reading numbers session: second row) and of the phase within the session (relaxation pretask r1: first column;
task T: second column; relaxation posttask r2: third column). Each scalp map was obtained via the EEGLAB Matlab Toolbox, by color coding
the average alpha power value at each electrode position in a 2D circular view (top view of the head, nose at the top) and using interpolation
on a fine 67 x 67 grid. (a) Arithmetic session (rl phase). (b) Arithmetic session (T phase). (c) Arithmetic session (12 phase). (d) Reading
numbers session (r1 phase). (e) Reading numbers session (T phase). (f) Reading numbers session (r2 phase).

arithmetic and reading numbers sessions. Thus, in this plot
value 1 represents the pretask reference value for each
electrode. The alpha power exhibited a larger decrease (by
about 0.15 points) during the arithmetic task than that
during the reading numbers task across all electrodes (solid
red and blue lines). Furthermore, in the task phase (both for
arithmetic and reading numbers), an abrupt reduction in the
normalized alpha power was evident at the transition from
the fronto-central-temporal electrodes to the parieto-
occipital electrodes. During the posttask relaxation phase
(r2 and dotted red and blue lines), the normalized alpha
power assumed similar values across the electrodes and
sessions, slightly overcoming the pretask value.

The analysis at scalp-region level is presented in Figure 5
that depicts the normalized alpha power computed over the
two scalp regions (FCT: Figure 5(a); PO: Figure 5(b)), in the
three phases of the two experimental sessions (arithmetic/
reading numbers). The values at phase T emphasize the
stronger effect of the arithmetic task compared to the
reading numbers task in reducing the alpha power within
each region and the larger alpha power decrease in the PO
region (Figure 5(b)) than that in the FCT region (Figure
5(a)) during each task. Multiple one-sample t-tests (Fig-
ure 5) confirmed that the normalized alpha power signifi-
cantly deviated from the rl reference value (1) during the
task phase (both the arithmetic and reading numbers task),
but not during the r2 phase, within each region. The 2 x2
repeated measures ANOVA conducted on the normalized
alpha power in T (factors: Task Type =arithmetic/reading

and Region = FCT/PO) revealed that there was a main effect
of Region (F(1,29) =23.9, p < 0.0001), showing that the alpha
power decreased more posteriorly than anteriorly during the
tasks. Moreover, there was a main effect of Task Type
(F(1,29) =24.1, p<0.0001) showing that the arithmetic task
induced a larger alpha desynchronization than the reading
numbers task.

3.2. Experiment 2: VR Immersion and Mental Task in VR
Immersion

3.2.1. Effect of the VR Immersion. This section presents the
results obtained across the entire set of 41 participants, on
phases rl, r1VR, and r2VR, showing the effects of the VR
immersion in absence of any specific task. It is worth noticing
that the displayed results concern the alpha power values over
the two VR cabin sessions aggregated together (see Section
2.3.4 in Materials and Methods): indeed, the two virtual ex-
periences turned out to be characterized by highly similar
patterns of alpha powers (not shown results). This was an
important preliminary outcome as it proved robustness of the
adopted EEG measure and of its extraction procedure, attesting
that similar VR configurations (hence similar visuospatial
stimulations) induced similar alpha power changes.

The analysis at single-channel level is shown in Figure 6;
it plots the normalized alpha power at each electrode
(mean + sem across participants), during the phases of pure
VR immersion (r1VR and r2VR). The following main
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FiGUre 4: Normalized alpha power, averaged across participants (mean + sem), at each single electrode in Experiment 1, distinguishing
between session (arithmetic session: red lines; reading numbers session: blue lines) and phase (phase T: continuous lines; phase r2: dotted
lines). Value 1 represents the pretask reference value (at phase r1) for each electrode; thus, values below 1 indicate alpha power decrease
(desynchronization) while values above 1 indicate alpha power increase (synchronization) compared to the pretask phase, at single-channel

level.
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F1GURe 5: Normalized alpha power, averaged across participants (mean + sem), over the two scalp regions (front-central-temporal FCT (a);
parietal-occipital PO (b)) at each of the three phases (r1, T, and r2) of the arithmetic session and of the reading numbers session. Asterisks
denote the results of multiple one-sample ¢-tests comparing the normalized alpha power in the phases T and r2 of each session with the
reference value (1), separately within each region (significance cut-off=0.05/4=0.0125). In both regions, significant deviation from the
reference value was found during the task phases T (p < 0.0001 for both arithmetic and reading numbers) but not during the r2 phases (FCT:
p = 0.082 arithmetic; p = 0.195 reading numbers; PO: p = 0.07 arithmetic; p = 0.25 reading numbers) (a) Normalized alpha power-FCT.

(b) Normalized alpha power-PO.

observations can be drawn. First, the alpha power during the
first visual exploration (rl1VR, preinteraction) exhibited
larger decrease than during the second visual exploration
(r2VR, postinteraction) across all electrodes. Moreover, an
abrupt decrease in the normalized alpha power occurred at
the transition from the fronto-central-temporal to the
parieto-occipital channels, both in r1VR and r2VR, while the
electrodes within each set exhibited close values, similarly to
what observed in Experiment 1 (Figure 4).

Motivated by the previous differences, an analysis at
scalp-region level was performed in this case too.

Figure 7 shows the PSD over each scalp region (FCT
region: Figure 7(a); PO region: Figure 7(b)) averaged across

participants, and computed separately for each phase. The
PO region (Figure 7(b)) was characterized by a huge peak in
alpha band in the reference state rl that dramatically de-
creased during rIVR and r2VR, while the FCT region
(Figure 7(a)) presented a lower alpha peak and smaller
modulation of its amplitude.

The obtained values of the normalized alpha power
(mean + sem across participants) in the three phases (rl,
r1VR, and r2VR) are depicted in Figure 8, for each region
separately (FCT: Figure 8(a); PO: Figure 8(b)). The VR
immersion was characterized by a larger alpha power
modulation over the PO region (Figure 8(b)) than the FCT
region (Figure 8(a)). It is interesting to note that by
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FiGure 6: Normalized alpha power, averaged across participants
(mean + sem) and aggregated across the two sessions, at each single
electrode in Experiment 2, during the two examined phases of
purely VR immersion (r1VR and r2VR).

comparing Figures 8 and 5, the alpha power desynchroni-
zation in VR immersion appeared to assume values similar
to those observed in the reading numbers task rather than
the arithmetic task, over both scalp regions. Multiple one-
sample t-tests (Figure 8) confirmed a significant deviation of
the normalized alpha power from the reference value (1) in
both phases r1VR and r2VR, within each region. The 2 x 2
repeated measures ANOVA (factors: Phase=r1VR/r2VR
and Region = FCT/PO) revealed that there was a main ef-
fect of Region (F(1,40)=29.32, p<0.0001) showing that
alpha power decreased more posteriorly than anteriorly
during the VR immersion. Moreover, there was a main effect
of Phase (F(1,40) =15.01, p = 0.0004), indicating that alpha
exhibited a larger desynchronization in the preinteraction
static immersion (r1VR) than that in the postinteraction
static immersion (r2VR).

Furthermore, we tested whether the alpha power index
was able not only to capture differences among distinct 5-
minute phases, but also to monitor trends and variations
with a higher temporal resolution (1 minute), to promptly
detect a change in the state of the participant at the transition
from one phase to another. Figure 9 plots the temporal
pattern, at 1 min resolution, of the normalized alpha power
(mean + sem across participants) throughout the first ten
minutes of the sessions (comprising phases r1 and r1VR),
over each region (FCT: Figure 9(a); PO: Figure 9(b)). An
interesting pattern emerged especially in the PO region
(Figure 9(b)). In this region, alpha power exhibited an ev-
ident secondary increase after the first minute of the rl
phase. This pattern may reflect a progressive relaxation in the
very first period of phase rl, when the participants were
seated down and got used to the experimental setup. A large
and abrupt alpha power decrease (evident also in the FCT
region) occurred at minute 6, as soon as the participant got
immersed in the VR environment, as an evident marker of
visual stimulation and capture of external attention by the
immersive sensory inputs. In the following minutes (min-
utes 7-10), the alpha power tended to moderately increase
suggesting a gradual lessening of attention as the immersion
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in the static VR environment went on. Figure 9 also displays
the results of the multiple one-sample ¢-tests contrasting the
normalized alpha power at each minute with the reference
value (1), within each region. Almost all time points satisfied
the uncorrected significance threshold (0.05, *), except
minutes 4, 5, and 9 in the FCT region. Interestingly, minutes
from 6 to 8 (and even minute 9 in the PO region) survived
the Bonferroni corrected threshold (0.05/9, §).

3.2.2. Effect of an Internal Cognitive Task in VR Immersion.
This section presents the results obtained across the subset of
24 participants, in the phases r1, r1VR, r2VR, and maVR of
the second session, showing how the alpha power was
modified when shifting from a condition of external at-
tention to a condition requiring internal attention against
the external appealing environment.

Figure 10 displays the normalized alpha power
(mean + sem across the 24 participants) in the four phases,
separately for the two regions (FCT: Figure 10(a); PO:
Figure 10(b)). As well expected, the alpha power exhibited a
decrease in both phases r1VR and r2VR, more evident in the
PO region, similarly to the effects previously observed across
all participants and sessions (Figure 8). Here, it is remarkable
the dramatic increase in the alpha power induced by the
execution of the mental arithmetic during the VR immersion.
In particular, in this condition, the alpha power assumed
values very close to the reference value, ie., to the initial
relaxation condition (rl). Indeed, the one-sample t-tests
confirmed that the normalized alpha power during maVR did
not deviate from the reference value (1), at variance with the
phases r1VR and r2VR (Figure 10). The 3x2 repeated
measure ANOVA (factors: Phase=r1VR/r2VR/maVR and
Region = FCT/PO) disclosed that there was a significant
Phase x Region interaction (F(2,46) = 10.77, p = 0.0001) and
a main effect of Phase (F(2,46) =9.299, p = 0.0004). Indeed,
post hoc t-tests revealed that the alpha power was lower in the
PO region than FCT region in both phases r1VR and r2VR
(p<0.0001 in both phases, corrected significance thresh-
old =0.05/3 =0.0167), whereas no difference across the two
regions emerged in the maVR phase (p > 0.999). Moreover,
the alpha power in each phase, r1VR and r2VR, was lower
than in maVR (p =0.0002 and p =0.0017, respectively;
corrected significance threshold = 0.05/3 =0.0167).

4. Discussion

The present results provide several interesting indications,
which not only may contribute to our understanding of the
role of alpha oscillations and of the mechanisms driving
alpha increase/decrease, but can also have practical per-
spectives in future studies oriented to the noninvasive
assessment of human/environment interaction via scalp
EEG.

4.1. Electrodes Position. First, all electrodes in the scalp
exhibited a significant ERD in the alpha band, both during
the laboratory tasks (Experiment 1) and during the pure VR
immersion. However, the level of ERD was significantly
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FIGURE 7: Power Spectrum Density (PSD) over each scalp region (front-central-temporal FCT (a); parietal-occipital PO (b)) computed
separately for each phase rl, r1Vr, and r2VR, averaged across participants and across the two sessions (a) PSD-FCT. (b) PSD-PO.
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F1Gure 8: Normalized alpha power, averaged across participants (mean + sem), over the two scalp regions (front-central-temporal FCT (a);
parietal-occipital PO (b)) at each of the three phases (r1, r1VR, and r2VR) of the VR sessions. Asterisks denote the results of multiple one-
sample t-tests comparing the normalized o powers in the phases r1 VR and r2VR with the reference value (1), separately within each regions
(significance cut-oft=0.05/2=0.025). In both regions, significant deviation from the reference value was found both in r1VR and r2VR
(***p<0.0001; *p =0.0096). (a) Normalized alpha power-FCT. (b) Normalized alpha power-PO.

stronger in the parietal-occipital electrodes compared to the
frontal-central ones. In particular, in these experiments, a
drastic fall in alpha power was evident passing from the
frontal-central to the parietal-occipital electrodes (Figures 4
and 6). This difference was even more evident using absolute
values of power instead of normalized ones (Figure 3). This
result agrees with results of several neurocognitive works.
Indeed, recent EEG studies suggest that parietal and occipital
regions are involved in visuospatial processing of stimuli
[15, 42], spatial representations of numbers [51], and

arithmetic problems [39, 43], at least when the latter in-
volved external attention and visual processing too (such as
the arithmetic task of the Experiment 1). It is probable,
however, that other kinds of tasks (for instance those re-
quiring motor actions or working memory) rely more on
frontal-central regions [25, 52] and on other rhythms such as
theta, beta, or gamma [53]. An interesting point is that the
same electrodes (PO3 and PO4) were mainly sensitive both
in the laboratory cognitive tasks and in the VR immersion
(Figures 4 and 6). This provides the indication that, at least in
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FIGURE 9: Temporal pattern, at 1-minute resolution, of the normalized alpha power (mean + sem across participants) throughout the first ten
minutes of the VR sessions, plotted separately for each scalp region (front-central-temporal FCT (a); parietal-occipital PO (b)). The
examined ten minutes included the r1 phase from minute 1 to minute 5 and the r1VR phase from minute 6 to minute 10. For each region, the
a power at each minute was normalized with respect to the value obtained at minute 1 (i.e., the first minute of phase r1). Symbols above each
point denote the results of multiple one-sample ¢-tests comparing the normalized a power at each minute (from 2 to 10) with the reference
value (1), separately within each region (significance cut-off=0.05/9 =0.0056). Symbols * denote points that satisfied the uncorrected
significance threshold (0.05), while symbols § denote points that survived the severe Bonferroni correction (0.05/9). Uncorrected p values at
each point (subscript indicate the minute at which the p value refer to) are p, = 0.015, p; = 0.01, p, = 0.159, p; = 0.089, ps = 1.5 1075,
P, =0.004, pg=0.003 py=0.136, p, =0.006 for the FCT region; p, =0.021, p, = 0.032, p, =0.036, p; =0.019, p,=4-107,
p;=5-107°, pg = 0.004; py = 6- 1074, p;, = 0.011 for the PO region. (a) Normalized alpha power-FCT. (b) Normalized alpha power-PO.
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FIGURE 10: Normalized alpha power, averaged across the subset of 24 participants (mean + sem), over the two scalp regions (front-central-
temporal FCT (a); parietal-occipital PO (b)) in the four phases of the second session (r1, r1VR, r2VR, and maVR). Asterisks denote the
results of multiple one-sample t-tests comparing the normalized o power in the phases r1VR, r2VR, and maVR with the reference value (1),
separately within each region (significance threshold = 0.05/3 =0.0167). In both regions, significant deviation from the reference value was
found in r1VR and r2VR (FCT: ** p = 0.0004 in r1VR, **p = 0.001 in r2VR; PO: *** p <0.0001 in r1VR and r2VR), but not in maVR (FCT:
p =0.71; PO: p =0.9). (a) Normalized alpha power-FCT. (b) Normalized alpha power-PO.

this kind of problems, the number of electrodes can be
significantly reduced without a significant loss in method
sensitivity, thus further dropping the complexity of the
experimental setup and improving its portability in real
scenarios.

4.2. ERD and Attention. As we anticipated above, results of
the present study confirm several data in the literature;
however, they also introduce some interesting new elements.
(1) First, we confirmed that attention to visual stimuli (either

in the reading numbers task or in the Virtual Reality im-
mersion) causes a significant ERD compared with a previous
relaxation phase, especially accentuated in the parieto-occipital
regions. Although various authors observed ERD in response
to visual engagements [9-14], this is the first time that visual
intake is not produced by specific stimuli, but via a full im-
mersion in a motivating VR environment. This signifies that
VR environments can represent a new important tool to study
human internal vs. external attention in future work, more
similar to conditions occurring in real life. (2) In Experiment 1,
we differentiated the effect of a simpler visual task (pure
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reading numbers) and a more complex task (read-
ing + arithmetic operation) which still involved external at-
tention but a higher internal processing. In fact, from the
previous analysis of the literature, it is still not clear whether
and in which conditions an increase in the internal task
produces ERS or ERD. Our results indicate that ERD was
more accentuated during the demanding task (arithmetic
operation), i.e., the arithmetic computation (although in-
ternal) further reduced alpha power, provided the task was
driven by external visual inputs (attention to the digits). This
result means that the alpha-band power can be finely mod-
ulated by the level of external attention and that external
attention (not the task load) is the dominant factor in visual
tasks. This result agrees with previous studies [3, 8]. Moreover,
Schupp et al. [23] observed lower alpha for perceptual tasks as
opposed to purely mental tasks. In agreement with our result,
Benedek et al. [54] suggest that task processing under low
internal processing demands (i.e., involving bottom-up pro-
cessing) did not result in alpha synchronization but rather in
strong desynchronization, especially in posterior brain re-
gions, which could reflect stronger demands on the visual
system. Only during more demanding tasks, involving top-
down control and creativity, can ERS be verified. This result
apparently disagrees with a result by Cooper et al. [21], who
observed an increase in alpha power with the task demand not
only during internal, but also during external attention tasks.
We think that these differences may depend on the fact that,
during Cooper et al. experiments, some items, given in se-
quence, should be maintained in memory for a certain period,
whereas in our experiment, all numbers were simultaneously
available and the external input stream dominated the process.
In conclusion, our original result is that an internal arithmetic
task can produce ERD, if dominated by external attention. (3)
At odds with the previous experiment, in the VR experiment
(maVR phase), we used an arithmetic task which was merely
mental, while the strong visual intake (cabin immersion) had
no relation with the task. At the same time, we did not use
specific distractors, but the overall full immersion in the cabin
environment had a distractor function. In this condition, we
demonstrate that alpha power returned to approximately the
same level (or in some participants, even to a higher level) as in
the initial resting condition. This result agrees with previous
studies, showing that alpha activity increases during a purely
mental task not driven by sensory inputs [20, 22, 24]. A
difference from previous studies, however, is that we started
the mental task from a condition in which alpha power was
already significantly reduced by attention to the cabin. We are
not aware of any similar experiment performed before (i.e., a
global environment distractor). It is interesting to observe that
alpha power returned toward baseline (i.e., the resting state),
suggesting that the participant was trying to completely neglect
the VR environment, i.e., to reach a complete isolation state.
This result suggests that the alpha power increase has the most
important function to isolate a subject from the external world.

4.3. Artefact Removal. EEG signals are commonly affected
by artefacts. Hence, artefact removal is an important aspect
of any EEG processing method. Today, ICA is probably the
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most employed method for removal of artefactual activity
from EEG cerebral signals [44], being highly effective in
separating several stereotyped nonbrain artefacts (eye blinks,
eye movement potentials, EMG, and ECG) from the rest of
EEG signals, given that they represent independent physical
processes. For this reason, we used this classical and con-
solidated technique to effectively remove artefacts from the
EEG recording acquired in the controlled laboratory setting
(Experiment 1) via the wired, laboratory-grade device.
However, accurate EEG artefact removal in environments
outside controlled laboratory settings, in real or realistic
scenarios, and/or in online applications, is still a critical open
issue. In these less-controlled conditions, indeed, several
nonstereotyped and transient artefacts may corrupt the EEG
signals, and ICA may result ineffective in separating them if
not sufficient stationary time points are provided. Indeed, we
encountered this problem in our recordings obtained in the
VR environment with the wireless, consumer-grade EEG
device: a large number of artefactual elements (including
several nonstereotyped activities) were mixed over most or
all ICs, making it impossible to separate the useful signal
from the spurious noise via a simple IC selection. This
problem is further aggravated (as in our recordings) when a
limited number of EEG channels is acquired, as the number
of estimated ICs, in the basic ICA model, is constrained to be
equal to the channel number (thus imposing a superior limit
to the number of independent signals that can compose the
mixed EEG for their efficient separation). On the other hand,
a limited number of electrodes is a desirable feature in real
applications reducing the time of preparation and cost. Due
to the ineffectiveness of ICA, in case of the VR recordings,
we simply eliminated the EEG portions affected by too much
noise from the signal processing procedure: portions with
too much noise were not examined and did not contribute to
the final analysis. Results, however, were still quite robust
and reliable as shown in Figures 6-9. Moreover, the ro-
bustness of our procedure for EEG processing in VR re-
cordings was further supported by our preliminary analysis
performed on the results obtained separately in the B1 and
B2 virtual configurations; this analysis (not shown results)
verified that the two virtual configurations, pretty similar
and thus eliciting similar visuospatial sensory stimulation,
induced overlapped patterns of EEG alpha powers. How-
ever, our study confirms that EEG artefactual removal is still
a crucial problem in real-world or realistic applications. This
problem is currently faced by the scientific community and
new methods, also more online-capable than ICA, for re-
moval of transient, and nonstereotyped artefacts have been
recently suggested [44, 55]. An important development of
the present study will concern testing alternative and more
recent methods other than ICA for artefact correction of the
VR recordings.

4.4. Temporal Aspects. During the VR immersion, the
participant experienced a phase in which he/she was fully
immersed in the cabin environment (r1VR), simply sitting
down as a passenger during a travel, followed by a second
phase in which he/she moved along the environment
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interacting with the objects (intVR). Then, a third phase
followed, in which he/she seated again in a relaxed state fully
immersed in the visual and acoustic cabin details (r2VR).
We did not use the EEG registered during the interaction
with the cabin, since the rapid body and head movements
produced too much artefact noise on the electrode signals.
However, as anticipated above, it is interesting to observe
that, in the third phase of the measurement (r2VR), when
the participant sat again after the active interaction, alpha
ERD was less evident compared with the first phase, and this
difference was statistically significant (see Results in Figure 8
and corresponding ANOVA). This may indicate that the
attention-grabbing effect that the VR scenario caused on the
participant partially declined as the participant became more
used to the environment.

Finally, we tested whether the method can detect mental
state changes in a rapid temporal basis. To this aim, we
computed the alpha power spectral density in one-minute
intervals. Results show that rapid ERD can be detected fairly
well and that the temporal variations detected have a
straightforward interpretation. During the second minute of
the initial relaxation, alpha power exhibited an evident in-
crease, denoting that the participant was becoming more
used to the experimental setup (and so was more relaxed). A
rapid decrease in alpha-power was immediately observable
after 5 minutes (Figure 9), i.e., in the first minute (minute 6)
when the participant experienced his/her first immersion in
the virtual reality. During the subsequent four minutes of
immersion, the alpha power remained low, but showed a
moderate temporal increase, reflecting a modest progressive
reduction in the level of attention, that is a kind of settling. It
is worth noticing that the variations captured by the alpha
power index at 1 min resolution were statistically significant
and especially large and consistent across the participants in
the very first minutes following the VR immersion
(Figure 9).

4.5. Analysis in the VR and Perspective Implications. An
important point of strength of the present study is the
specific investigation in the VR immersion. This analysis
has evidenced that even a resting immersion in a static VR
scenario had profound effect on EEG alpha power, as the
rich sensory stimulation probably exerts a strong
attention-grabbing influence, and this effect was quanti-
tatively comparable to a high-level cognitive processing
such as reading numbers. The assessment of EEG conse-
quences of pure VR immersion is relevant to enhance
interpretation of brain rhythms modifications when a
subject is immersed in a complex realistic scenario. This
may have perspective implications considering the
emerging use of VR associated with EEG-based measures
in several applications. In particular, the use of VR
technology together with objective physiological measures
(other than subjective evaluation) is rapidly increasing as a
valuable tool to inform design decisions in the early phases
of artificial environment projects ([56-59]) and/or to
study human/environment interaction [60, 61]. Moreover
and in a different context, there is a growing number of
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studies investing the use and effectiveness of VR-based
therapy for psychiatric disorders [60, 62]. Of course, in all
these applications, understanding how the simple im-
mersion in a VR scenario (or a task performed in the VR)
can modify the subject’s physiological parameters, and in
particular EEG parameters, is strictly necessary for a
correct interpretation of the behavioural data and of the
psychophysiological effects.

4.6. Limitations and Future Improvements. While the present
study may provide interesting cues on the role of alpha os-
cillations and its relations with internal/external attentional
components and task load, the objective of the present work
was not to investigate the neural bases of alpha rhythm
changes. In order to investigate the underlying neural
mechanisms, more sophisticated methods should be imple-
mented, with the use of high-density EEG recording, source
reconstruction in the cortex, and estimation of connectivity
changes between regions of interest. This may be the subject of
subsequent studies.

Furthermore, in this work, we showed that traditional
methods (like the Welch periodogram, computed on a
shifting temporal window) can acceptably detect temporal
changes of a nonstationary signal. However, time changes
can be even better detected using more sophisticated pro-
cessing methods, such as wavelets (as used, for instance, in
[63] to build sensitive indicators of mental workload). This
may be implemented and tested in future developments.
Indeed, efficient algorithms for wavelet computation do
exist, which are even compatible with real-time application.

5. Conclusions

In conclusion, emphasis in the present work is on the
possibility to detect changes in attention during human/
environment interaction, with the use of a simple unex-
pansive EEG technique, applicable in an artificial setting
and prospectively in real time. The results emphasize that
alpha power decreases during tasks which necessitate at-
tention to the external environment, even in conditions
when the task requires an increasing mental effort. Con-
versely, alpha power increases to levels similar to a re-
laxation state, when a task requires isolation from the
external world. These results elucidate some aspects still
insufficiently clear in the recent literature, suggesting that
one of the main roles for the alpha rhythm is isolation from
the external environment and attentional shift toward
internal aspects.

A peculiarity of our study is the use of a sophisticate
virtual reality environment to mimic the interaction of
individuals with an artificial ad hoc designed scenario. In
perspective, this may be used in the design of artificial
systems, or in neuroengineering applications. Indeed, the
possibility to monitor attentional changes from low-
resolution EEG is of the greatest value to realize easy-to-
use, comfortable, and cheaper systems in practical appli-
cations such as neurofeedback, brain computer interfaces,
neuroergonomics, and neuromarketing [64-66].
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