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MYC is a transcription factor, which not only directly

modulates multiple aspects of transcription and co-

transcriptional processing (e.g. RNA-Polymerase II initia-

tion, elongation, and mRNA capping), but also indirectly

influences several steps of RNA metabolism, including

both constitutive and alternative splicing, mRNA stability,

and translation efficiency. As MYC is an oncoprotein

whose expression is deregulated in multiple human

cancers, identifying its critical downstream activities in

tumors is of key importance for designing effective

therapeutic strategies. With this knowledge and recent

technological advances, we now have multiple angles to

reach the goal of targetingMYC in tumors, ranging from the

direct reduction of MYC levels, to the dampening of

selected house-keeping functions in MYC-overexpressing

cells, to more targeted approaches based on

MYC-induced secondary effects.
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Introduction

MYC is an attractive target in cancer therapy

The abnormal activation of the c-Myc (Myc) oncogene, either
due to transcriptional overexpression (gene amplification,
translocation, alterations in upstream signaling pathways)
and/orproteinstabilization, isoneof themost common features
of cancer cells. Indeed,highMYCprotein levels arenotonlyable
to drive tumor initiation and progression, but are also essential
for tumor maintenance: sustained MYC overexpression is
required by cancer cells, and growth arrest, apoptosis and
differentiation occur upon reduction inMYC levels. This has not
only been described for MYC-driven mouse tumor models, but
also in tumors driven by other oncogenes (reviewed in [1]),
making c-MYCa highly attractive target for anti-cancer therapy.
Unfortunately, MYC itself is not an easily “druggable” protein,
due to lack of enzymatic activity or any deep pocket, which
couldbe traditionally targetedby smallmolecule inhibitors. For
this reason, one of the priorities in the field is the inhibition of
MYC co-factors and/or downstream effectors that might play
critical roles in tumor development or maintenance.

MYC functions as a transcription factor

MYC is a transcription factor of the basic helix loop helix
leucine zipper (bHLH-LZ) family. Together with its partner
protein, MAX [2, 3], MYC can bind to target DNA sequences,
the E-boxes (including the canonical CACGTG and other non-
canonical sites), when they are embedded in a euchromatic
context [4].

Once bound to chromatin, MYC is able to transcriptionally
regulate protein coding and non-coding RNAs [5] that are
produced by RNA Pol I, RNA Pol II, and RNA Pol III [6].
Notwithstanding the vast amount of gene expression analysis
performed in the last decades with the aim of finding a core of
MYC regulated genes, identifying the relationship between
MYC binding to chromatin and the consequent transcriptional
output is still an open debate.With the advent of genome-wide
profiles, and the realization that MYC not only binds every
active promoter, but also active enhancers, this long-standing
issue has become even more complex.
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In the last few years, two opposite
views have emerged. One suggests
that MYC amplifies the transcriptional
output of all active promoters [7, 8];
the other that MYC regulates, either
positively or negatively, discrete sets
of genes mainly involved in prolifera-
tion, cell growth, metabolic reprog-
ramming, and RNA biogenesis [9]. We
will not go into the details of this
debate here, because it has been
extensively covered elsewhere very
recently [5]. Instead, we will focus our
attention on the plethora of equally
important post-transcriptional mech-
anisms that are regulated, both di-
rectly and indirectly, by MYC (Fig. 1).
Because these contribute to shaping
the transcriptomic and the proteomic
landscape of MYC overexpressing
cells, we will then propose how this
knowledge can be used to target
MYC’s oncogenic function.

MYC regulates post-
transcriptional
mechanisms

MYC promotes mRNA
capping

RNA Pol II transcripts are subject to a specific post-
transcriptional modification that consists of the addition of
a 7-methylguanosine to the first transcribed nucleotide (50

cap). This cap structure not only guarantees RNA stability, but
also proper pre-mRNA downstream processing. For example,
CBC (cap binding complex) and eIF4E (eukaryotic initiation
factor 4E) are recruited to the mRNA by interaction with the
cap structure, and subsequently mediate processing and
translation initiation, respectively [10, 11].

MYC directly promotes cap addition at its target genes by
recruiting TFIIH, which then phosphorylates the RNA Pol II
carboxy-terminal domain (CTD), a step that is required for the
recruitment of the capping machinery [12]. It can also act
indirectly on the same process, as demonstrated by the ability
of the MYC transactivation domain alone (without DNA
binding capacity) to increase capping of CDK transcripts [13].
Moreover, MYC transcriptionally up-regulates S-Adenyl-L-
homocysteine hydrolase (SAHH), which is required to
metabolize SAH, an inhibitory byproduct of the capping
reaction, thus antagonizing a potential negative feedback
loop [14].

Aside from cap-dependent translation, selected mRNAs
can also be translated in a cap-independent manner from
internal ribosome entry sites (IRES). The overexpression of the
translation initiation factors, 4EBP1 and eIF4G, has been
observed in various cancer types, and under hypoxic
conditions, they promote the IRES-mediated translation of
mRNAs that confer survival advantages [15]. Interestingly,

mTOR inhibitors that block the phosphorylation of 4EBP1
have been shown to be synthetic lethal in MYC-driven cancers
(discussed later) [16].

MYC regulates the abundance of splicing factors

MYC has been shown to directly modulate the transcription of
various splicing factors, such as hnRNPA1 [17], hnRNPA2, and
PTB (polypyrimidine tract binding protein) [18]. These
proteins regulate, among several other events, the alternative
splicing of pyruvate kinase (PKM), specifically, generating
more of the embryonic/tumor isoform, PKM2, which promotes
aerobic glycolysis, and less of the adult isoform, PKM1, which
favors oxidative phosphorylation [18, 19] Additionally, these
splicing factors have been implicated in the generation of
constitutively active androgen receptor splice variants, which
may contribute to the development of castration-resistant
prostate cancer [20].

Similarly, MYC regulates hnRNPH, which is necessary for
the correct splicing of oncogenic a-raf pre-mRNA [21]. In
normal cells, low MYC and hnRNPH expression allows the
production of a short isoform of A-raf, which encodes a
truncated A-Raf protein that suppress Ras activation and
transformation. Conversely, in cancer cells, full-length A-Raf
can be produced, due to the high levels of MYC and hnRNPH,
and in this form, it can effectively inhibit the activity of the
MST2 pro-apoptotic kinase.

Figure 1. MYC: regulator of post-transcriptional mechanisms. MYC directly promotes cap
addition at its target genes by recruiting TFIIH and by indirectly upregulating S-Adenyl-L-
homocysteine hydrolase (SAHH). MYC upregulates several components of the alternative and
constitutive splicing machinery. MYC directly upregulates the expression of SAGA components,
which are then recruited to several MYC target genes involved in splicing (e.g. Hnrnpc and
Prpf4). U2AF1, SF3B1, BUD31 (core components of the U2 snRNP), and PRMT5, an arginine
methyltransferase that is essential for snRNPs maturation, are MYC-synthetic lethal genes.
MYC indirectly regulates RNA degradation by modulating the expression of AU-binding proteins
(AUBPs) and components of the exosome machinery. On the other hand, MYC inhibits the
Nonsense Mediated Decay (NMD) pathway. MYC upregulates the transcription of ribosomal
RNAs by RNA polymerase I and III, enhances pre-rRNA processing and rRNA post
transcriptional processing (e.g. snRNAs upregulation). MYC also regulates the expression and
the maturation of several miRNAs, broadly affecting translation efficiency of multiple targets.
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The promoter region of arginine/serine-rich splicing factor
Srsf1 has been shown to contain two non-canonical E-boxes,
through which MYC can directly activate its transcription [22].
Srsf1 and MYC have also been shown to cooperate in the
transformation of mammary epithelial cells, possibly by
synergistically activating eIF4E phosphorylation [23]. Srsf1 is
not only involved in splicing, but also in several other aspect
of RNA metabolism, such as nuclear export, nonsense-
mediated RNA decay (NMD), and translation (reviewed
in [24]).

During somatic reprogramming, MYC directly upregulates
the expression of Spt-Ada-Gcn5-acetyltransferase (SAGA)
components, which are then recruited on several MYC target
genes, activating their transcription [25]. Many of these genes
encode proteins that are involved in RNA splicing, and are
essential both during the early stages of reprogramming, as
well as for the maintenance of the established pluripotent
stem cell state. Consequently, MYC and SAGA indirectly
modulate alternative splicing, primarily promoting exon
inclusion, during cell reprogramming. Interestingly, many
of the alternatively spliced transcripts are involved in cell
migration, transcriptional regulation, or RNA processing [25].
This supports the possibility that in other contexts, such as
during the initiation of cancer metastasis, the regulation of
various splicing factors by MYC may contribute to EMT/MET.
This notion is supported by the well-established link between
splicing [26], as well as MYC and EMT [27, 28].

We recently found that MYC directly binds to the
promoters and upregulates the expression of the core snRNP
assembly genes [29]. In particular, we showed that depletion
of PRMT5 results in apoptosis and cell cycle arrest, and that it
was accompanied by the aberrant splicing of pre mRNAs with
weak 50 splice sites. The phenotypic and molecular changes
following PRMT5 depletion were significantly more pro-
nounced in B cells from Em-myc mice than those from wild-
type mice, suggesting that MYC overexpressing cells have an
increased dependence on a functional core splicing machin-
ery. We hypothesize that given that MYC-overexpressing cells
are actively transcribing mRNAs, this places an increased
demand on the splicing machinery to maintain the splicing
fidelity necessary to generate properly spliced transcripts,
which can subsequently be translated into functional
proteins. Along similar lines, in MYC-hyperactive cells, the

inhibition of another core spliceosome protein, BUD31,
resulted in global intron retention and aberrant pre mRNA
processing [30]. Indeed, as we will discuss later, MYC
overexpressing cells are more sensitive to splicing inhibi-
tion [30, 31].

Table 1 summarizes MYC-regulated and MYC-synthetic
lethal splicing factors involved in alternative and constitutive
splicing.

MYC indirectly regulates several pathways of
RNA degradation

(1) The AU-binding proteins (AUBPs) regulate RNA stability
by binding to AU-rich elements (AREs), which are found in
up to 16% of human protein-coding transcripts [32].
Among the AUBPs, MYC represses Tristetraprolin (TTP/
Tis11/Zfp36) and its family members, Tis11b (Brf1/ Zfp36l1)
or Tis11d (Brf2/Zfp36l2), which are involved in RNA
degradation. In contrast, MYC positively regulates HuR,
Auf1, Auf2, and Nucleolin (Ncl), which stabilize ARE-
containing transcripts. In this way, MYC may promote a
general increase in the stability of short-lived RNAs [33].
The targets of TTP-induced degradation are mainly
transcripts encoding genes involved in cancer and
inflammation. Since many other RBPs are also subject
to TTP-induced degradation [34], the effects of MYC on the
RNA processing machinery are thus amplified. Interest-
ingly, the down-regulation of TTP by MYC has been shown
to be a critical step in MYC-induced lymphomagenesis.
Since the forced overexpression of TTP in Em-myc
lymphomas delays tumor onset, TTP has been ascribed
as a tumor suppressor [33]. Similarly, an increase in
Nucleolin levels can ensure the stabilization of the
antiapoptotic, pro-oncogenic BCL-XL factor [35], which
is essential for MYC-driven cancer progression [36].

(2) Nonsense mediated RNA decay (NMD) is a safeguard
mechanism that mediates the degradation of transcripts
with premature termination codons (PTCs), which are
often produced by incorrectly spliced RNA. This prevents
their translation into truncated proteins. Of note, many
genes encoding regulatory and basal splicing factors

Table 1. MYC-regulated and MYC-synthetic lethal splicing factors are involved in constitutive and alternative splicing

MYC-regulated/ MYC-synthetic lethal
splicing factors

Type of splicing event upon perturbation of the splicing
factor and examples of downstream mRNAS affected References

HnRNPA1, HnRNPA2, and PTB Alternative exon usage, e.g. PKM1/2, Androgen receptor [17–20]
HnRNPH Intron inclusion, e.g. A-raf [21]

Srsf1 Alternative exon usage, e.g. Mnk2, Tead1, Ron, Bin1, Mknk2,
Bim

[22–24]

SAGA components, e.g. Gcn5, Cdc101,
Taf12, and Atxn7l3

Exon inclusion, e.g. Slain2, Plod2, Fat1, Pcm1 [25]

Core splicing proteins, e.g. Prmt5, Snrnp

B, Snrnp D1, and Snrnp D3

Intron retention and exon skipping of pre-mRNAs with weak 50

splice sites, e.g. Atr, Ep400, Dvl1, Mdm4, etc.

[29]

Bud31 Intron retention of numerous pre-mRNAs involved in gene expression,
splicing, unfolded protein response, and DNA

replication and repair, e.g. Dnajb5, Sl1, Mcm7, Skp2, etc.

[30]
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themselves can undergo alternative splicing events that
introducePTCs,whichsubsequently signal forNMD[37,38].
NMD also post-transcriptionally regulates several normal
transcripts, in particular, genes encoding proteins involved
in the unfolded protein response (UPR) and stress-related
genes [39, 40]. In contrast, endoplasmic reticulum (ER)-
stress, along with other cellular stresses (such as reactive
oxygen species, hypoxia, nutrient deprivation, etc.),
inhibits the NMD response [41] in a complex regulatory
circuit.MYCoverexpressionhas been shown to inhibit NMD
in B lymphocytes via the activation of the UPR, and in
particular, the induction of PERK-mediated phosphoryla-
tion of eIF2A [42]. MYC is also required for the inhibition of
NMD by 5-azacytidine, in an eIF2A-independent man-
ner [43]. One possibility would be that this occurs via
miRNAs, since they are widely regulated by MYC [44] and
have been shown to act on NMD [45].

(3) A different RNA quality surveillance pathway is repre-
sented by the exosome, a complex containing nuclease
activity that is involved in the degradation of aberrant
RNA, the maturation of ribosomal RNA and sn/snoRNAs
and the turnover of the products of RNA maturation [46].
This complex is also recruited by AUBPs to degrade ARE
containing RNAs [47]. The expression of several subunits
of this complex is positively regulated in a MYC-dependent
manner in fibroblasts [48] and B cells [9]. Whether the
catalytic activity of the complex is also increased byMYC is
still an open question.

Thus, on one hand, MYC augments the RNA processing
capacity of the cells (by increasing the level of capping and
splicing factors), while on the other hand, it selectively
modulates the stability of certain oncogenic mRNAs (by
upregulating/downregulating AUBPs and inhibiting the NMD
pathway), while ensuring overall fidelity via the upregulation
of exosome components. These concerted MYC-driven actions
lead to the (often) observed increase in total mRNA levels and
consequently, proteins and cell size [49].

MYC promotes translation/ribosome biogenesis

MYC regulates ribosomal biogenesis and mRNA translation in
a highly orchestrated manner. First, it stimulates the
transcription of ribosomal RNAs by RNA polymerase
I [50–52] by binding to E-boxes in the promoters of the rDNA
clusters and recruiting TRRAP, further remodeling the
chromatin structure to a more permissive state. Additionally,
MYC positively regulates the expression and/or recruitment of
RNA polymerase I co-factors. These include UBF [53], which
enhances promoter escape, and SL1 [51], which is part of the
basal RNA polymerase I transcriptional complex.

MYC also stimulates the RNA polymerase III-driven
transcription of tRNA and 5S rRNA [6, 54]. This occurs via
increased recruitment of TFIIIB, RNA polymerase III, the
acetyltransferases, GCN5 and TRRAP, and the selective
acetylation of histone H3 at the corresponding promoters [55].

Additionally, in order to obtain mature rRNAs, the rRNA
mustbeprocessedandpost-transcriptionallymodified.Thepre-
rRNA is processed into the 18S, 5.8S, and 28S rRNA by several
MYC-regulated proteins, such as Nucleolin, nucleophosmin,

fibrillarin, Nop56, and Bop1. snoRNPs play an essential role in
the rRNAmodificationprocess, byproviding target specificity to
methylation and pseudouridylation reactions [56]. Both the
RNA(snoRNAs) andproteincomponents of these complexesare
also regulated by MYC [9, 57].

Finally, MYC directly activates the expression of ribosomal
components such as RPL and RPS family members [58], as
well as eIF family members that are involved in translational
initiation [59, 60].

Thus, MYC plays an essential role in ensuring not only
transcription, but also the proper maturation of the transla-
tion machinery.

MYC transcriptionally modulates microRNAs and
long non-coding RNAs

Many microRNAs [61], which are small (�22 nucleotide) non-
coding RNAs, and long non-coding RNAs [62], which are
defined as being longer than 200 nucleotides, have been
identified as direct MYC targets. MYC-regulated miRNAs may
be present in the intronic sequences of protein-coding genes
or within non-protein-coding loci, and are subject to both
positive and negative regulation by MYC.

MYC has been reported to directly induce various
oncogenic miRNAs (e.g. the mir-17-92 cluster), as well as
repress tumor-suppressive miRNAs (e.g. miR-26a and miR-
34a), thereby favoring cancer cell proliferation (reviewed
in [63]). MYC also indirectly modulates miRNA expression, for
example, via the induction of the long-noncoding RNA,
HOTAIR, which in turn, represses the tumor-suppressive miR-
130a [64].

Furthermore, MYC controls the expression of proteins
involved in miRNA biogenesis: among them, lin28B is an
RNA-binding protein that binds to the stem-loops of
precursor miRNAs, like let7 and miR-150, and inhibits their
Dicer- and Drosha-mediated processing, accelerating their
decay [65]. On the other hand, MYC has also been reported to
promote pri-miRNA processing by transcriptionally regulat-
ing Drosha [66].

By regulating miRNA biogenesis and processing, that in
turn regulate the expression of several mRNAs, MYC is thus
able to greatly expand the number of its indirect targets.

What are the implications for targeting
MYC in cancer therapy? How to directly
target MYC (oncogene addition)

Multiple mechanisms account for the overexpression of MYC
that is observed in numerous cancers. These include:
translocation or amplification of theMYC locus, or its increased
transcription; alterations in MYC protein stability caused by
mutations inkey residues (suchasT58andS62)orby thealtered
expression of proteins involved in its post-translational
modifications (phosphorylation, ubiquitination, etc.). Addi-
tionally, MYC function is highly context specific, and depends
on its binding partners, as well as chromatin context.
Accordingly, any of these angles can be exploited to ultimately
reduce MYC-dependent oncogenic signaling (Fig. 2).
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Can we directly target MYC transcription?

Transcription of the MYC gene is controlled in a complex
manner, by the action of numerous transcriptional regu-
lators [67], as well as enhancers [68]. BET bromodomain
proteins, which bind acetylated lysine residues, in conjunc-
tion with the mediator co-activator complex, can also regulate
MYC transcription. Blocking their function with small
molecule inhibitors, such as JQ1, i-BET, and MMS417, have
been shown to downregulate MYC transcription and conse-
quently, the expression of MYC target genes [69–71]. However,
a caveat regarding the efficacy of decreasing the transcription
of MYC via Brd4 inhibition is that this strategy is limited to
cases in which Brd4 is the predominant regulator of MYC
transcription [72]. The strategy may not be as effective, for
example, if gene amplification or protein stabilization is the
major underlying cause of its overexpression. An additional
consideration is that BET proteins modulate the expression of
numerous genes in addition to MYC [73] and accordingly,
bromodomain inhibition is by no means MYC-specific.

Altering the topology of the DNA upstream of the MYC
gene, such as by the stabilization of the MYC G-quadruplex
with small molecules [74, 75], has also been shown to be
effective in reducing MYC transcription.

Can we target MYC translation and protein
turnover/stability?

Once transcribed, the MYC mRNA can be bound by RNA
binding proteins that regulate its stability [76] or

translation [77, 78], for example, CELF1 and HuR. Following
the depletion of polyamines by inhibition of ornithine
decarboxylase, the increase in CELF1 reduces MYC levels.
Interestingly, ornithine decarboxylase heterozygosity has also
been shown to delay MYC-driven lymphomagenesis [79], and
the inhibition of Srm, which is also involved in polyamine
biosynthesis, is chemopreventative in B-cell lymphomas [80].

Myc mRNA can be translated both by 50 cap- and internal
ribosome entry site (IRES)- dependent mechanisms [81]. In
multiple myeloma cells, increased Myc IRES activity, which is
dependent on hnRPA1 and Rps25, has been observed
following ER stress [78]. In these cells, a compound that
blocked the binding of hnRNPA1 to the Myc IRES was only
toxic in the presence of ER stress. Furthermore, a small
molecule inhibitor of the translation initiation factor eIf4a,
silvestrol, was recently shown to reduce tumor growth in vivo
in a mouse model of colorectal carcinogenesis by suppressing
both cap- and IRES-dependent translation of Myc [82].

The stability and turnover of the MYC protein is regulated
by a series of post-translational modifications that are
controlled by a myriad of proteins [83]. As the expression
of many of these proteins is also often deregulated in cancer,
their inhibition with small molecules could reduce the
stability of MYC, resulting in its degradation, and could,
therefore, have therapeutic potential.

Can we design Antisense/ASO approaches to
reduce Myc mRNA or protein abundance?

Antisense phosphorothioate oligonucleotides targeting Myc
mRNA have demonstrated efficacy in multiple cancer types.
These highly stable oligonucleotides bind to mRNA and
trigger RNAse H activity, resulting in the hydrolysis of the
DNA/RNA duplex [84]. Alternative strategies have used
morpholino oligonucleotides either designed to block Myc
translation [85, 86] or alter its correct splicing, thereby
reducing functional MYC protein levels [87].

Can we target Myc interactions?

As an alternative to the depletion of MYC levels, the
interaction between MYC and its oligodimerization partner,
MAX, can also be targeted in order to inhibit MYC
function [88]. Omomyc is a version of MYC mutated in the
residues of the leucine zipper that are critical for its
dimerization specificity. As a result, whereas MYC does not
homodimerize, Omomyc can form both dimers with MYC, as
well as with MAX. Importantly, it does not bind MAD or other
HLH proteins. The MYC/Omomyc dimers bind DNA with low
affinity, and thus Omomyc acts in a dominant negative
fashion by sequestering MYC away from MAX and DNA. As a
consequence, MYC-mediated transcriptional activation is
affected [88]. However, MIZ-1-mediated MYC binding to
promoters and trans-repression are not affected by Omomyc.
Consequently, Omomyc maintains the repression of genes
that are usually negatively regulated by MYC, while enabling
the dampening of MYC-dependent transcriptional activa-
tion [89]. Not surprisingly, MYC inhibition with Omomyc

Figure 2. Strategies to directly target MYC. Multiple strategies can
be used to directly reduce MYC levels in cells. Reducing MYC
transcription can be achieved using G-quadruplex stabilizers and
BET inhibitors. Furthermore, antisense oligonucleotides can induce
RNAse H-based degradation of MYC mRNA or the aberrant splicing
of the MYC pre-mRNA. Translation of MYC mRNA to protein can be
blocked by antisense oligonucleotides or by inhibiting pathways
involved in its Cap/IRES-dependent translation, such as the MAPK,
mTORC1, and FOXO3a pathways. Regulators of MYC protein
stability and turnover can also be inhibited to promote MYC protein
degradation. Additionally, because MYC function is tightly linked to
its dimerization with its binding partner, MAX, targeting this interac-
tion can alter the transcriptional output downstream of MYC.
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results in reduced proliferation and increased apoptosis.
Interestingly, the apoptotic phenotype was more pronounced
in cells expressing particularly high levels of MYC [90].
Notably, the systemic inhibition of MYC in vivo with Omomyc
was well tolerated by normal regenerating tissues, and the
effects of MYC inhibition could be reversed completely and
quickly [91].

Several small molecule inhibitors of MYC/MAX dimeriza-
tion have also been developed. These compounds bind to and
stabilize the monomeric form of MAX and prevent the
association of MYC and MAX, thereby reducing MYC function
in cells (reviewed in [92]). More recently, alpha-helix mimetics
that prevent the binding of MYC/MAX heterodimers to DNA,
but do not cause the dissociation of MYC and MAX, have also
been developed [93].

Other transcription factors have been targeted by similar
strategies based on directly or indirectly preventing protein:
protein or protein:DNA interactions. For example, S3I-201
prevents the dimerization of Stat3 and the binding of Stat3 to
DNA [94], and CoIII Schiff base complexes can alter the
structure of zinc fingers, which are a common feature of
transcription factors, and selectively disrupt their DNA-
binding ability [95].

How to indirectly target MYC
(non-oncogene addiction)

Synthetic lethal screens can be performed to
identify the Achilles heel of MYC-overexpressing
cells

In addition to targeting the “oncogene addiction” to MYC
observed in many cancer types by the approaches described
above, strategies aimed at exploiting “non-oncogene addic-
tion” in cancer cells with elevatedMYC levels have also proven
useful. These studies are based on the concept of synthetic
lethality, whereby the perturbation of two or more genes in
combination, but not of either gene singly, results in a
significant deleterious phenotype, such as decreased prolifer-
ation or increased cell death [96]. In this respect, synthetic
lethal screens have been useful in identifying critical MYC
effectors that may be potential therapeutic targets [97]. These
screens have employed functional genomics approaches with
siRNA or shRNA-based knockdown, and compared the
phenotypic and molecular responses of cells with “normal”
MYC levels with cells with elevated MYC levels (and therefore
hyperactive MYC-induced transcriptional programs), in order
to identify vulnerabilities in particular pathways that are
hyperactive or compromised, specifically in MYC overexpress-
ing cells.

Toyoshima et al. compared the effects of knocking down
specific genes in isogenic control and MYC-overexpressing
fibroblasts [98]. Using a high-throughput approach, their
screen included siRNA designed to target �3,300 druggable
genes and 200 miRNAs. Importantly, siRNAs that had
significant growth inhibitory effects on the control cells were
excluded. Not surprisingly, genes that showed synthetic
lethality with MYC-overexpression belonged to key cellular
pathways known to be regulated by MYC. These included DNA

damage repair, transcription and transcriptional elongation,
senescence, ribosome biogenesis, chromatin modification,
metabolism, apoptosis, and mitotic control. Further analysis
of one of the MYC synthetic lethal genes that was identified,
CSNK1e, verified that its knockdown slowed the growth of
MYCN-amplified glioblastomas and that its expression
correlated with MYC in other human cancer types.

More recently, Huang and co-workers also screened a
shRNA library targeting 442 genes encoding proteins for
which small molecule inhibitors exist in a murine hepatocel-
lular carcinoma model driven by MYC overexpression and p53
loss [99]. They found that the kinase component of the p-TEFb
complex, CDK9, is essential to sustain the proliferation of MYC
overexpressing HCC cells.

In another synthetic lethal screen, SAE2, a SUMO-
activating enzyme, was also identified as showing potent
synthetic lethality in cells with hyperactive MYC [100]. SAE2
knockdown resulted in spindle defects and consequently,
aneuploidy and apoptosis, but only in MYC-overexpressing
cells. Mechanistically, the loss of SAE2 switched the expres-
sion pattern of several MYC dependent genes in a SUMOy-
lation-dependent manner, causing several MYC-induced
genes to become repressed. Several of these genes are known
to be involved in the assembly and maintenance of the
integrity of the mitotic spindle.

In RNAi-based screens focused on kinases, PRKDC [101],
AMPK-related kinase 5 (see later) [102] and GSK3beta [103]
were identified to exhibit synthetic lethality with MYC
overexpression. Interestingly, the downregulation of the
Gsk3b/Fbw7 signaling pathway potentiated TNF-related
apoptosis by stabilizing MYC and increasing the expression
of a death ligand receptor, which promoted cell death [103].

How to target selected MYC downstream
effectors

While screens provide an unbiased method to identify genes
that are synthetic lethal with MYC, many directed gain or loss-
of-function studies on MYC target genes have also demon-
strated similar observations of synthetic lethality.

Replicative stress stimulated by hyperactive MYC is
associated with the activation of the DNA-damage response
mediated by Atr and Chk1. In MYC-driven tumors with high
levels of replicative stress, the reduction of Atr levels prevented
disease development. Additionally, Chk1 inhibitors caused the
apoptosis of MYC-driven lymphomas, but not K-RAS(G12V)-
driven pancreatic adenomas [104]. Chk2 deficiency and the
inhibitionofChk1andChk2withsmallmoleculesalsopromoted
apoptosis and delayed lymphoma progression in vivo, and the
combination of Chk2 and Parp inhibition resulted in a
synergistic effect in MYC-overexpressing cells [105].

Aurora kinase A and B have been shown to be upregulated
by MYC in human and murine B cell lymphomas, and their
pharmacological inhibition resulted in mitotic arrest, poly-
ploidy, and apoptosis [106]. In a diverse panel of cancer cell
lines, the therapeutic efficacy of PF-03814735, an Aurora
kinase A/B inhibitor, was shown to be significantly associated
with MYC overexpression or amplification, and this was
confirmed in vivo using small cell lung cancer models [107].
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The efficacy of Aurora kinase B inhibition has been further
validated in a MYC-overexpressing medulloblastoma model
using the small molecule inhibitor, AZD1152-HQPA [108].

MYC-overexpressing tumors have also been shown to
display increased sensitivity to inhibition of cyclin dependent
kinases, including Cdk1 [109, 110] and Cdk2 [111], the
activation of the death receptor pathway [112] and Pim1
inhibition [113, 114].

Can we target core MYC-regulated
cellular functions and avoid toxic
effects?

As described previously, two of the core pathways regulated
by MYC are protein translation and mRNA metabolism.

A key regulator of translation is the mTOR pathway [115].
As such, pharmacologically targeting the mTOR pathway with
inhibitors (e.g. rapamycin), several of which are already in
clinical trials, may be effective in MYC-driven tumors. For
example, in a MYC-driven lymphoma model, the phosphor-
ylation of 4EBP1 by mTOR was required for tumor initiation
and maintenance [16], and oncogene-induced senescence was
restored following treatment with everolimus, an mTORC1
inhibitor [116]. Additional essential components of the
translation machinery that are downstream of MYC include
the translation initiation factor eIF4E, a critical substrate in
the mTOR pathway [117] and PRMT5, which is necessary for
cap-dependent translation by eIF4E [118].

Furthermore, cells with elevated MYC show enhanced
sensitivity to ARK5 inhibition [102]. ARK5 controls several
aspects of cellular metabolism, regulating AMPK and inhibit-
ing signaling downstream of mTORC1, thereby limiting
protein synthesis. Additionally, it sustains mitochondrial
respiration and glutamine metabolism. Accordingly, inhibi-
tion of ARK5 results in a profound depletion of ATP levels and
the activation of apoptosis [102].

As previously reported, MYC is a direct transcriptional
modulator of both Pol I and Pol III. The aberrantly high levels
of ribosome biogenesis observed in MYC-driven cancers may
contribute to oncogenesis by increasing the capacity of a cell
for protein synthesis, which is necessary to support prolifer-
ative growth. Indeed, targeting ribosome biogenesis in the
context of MYC overexpression has proven to be a successful
strategy, both by genetically reducing the dosage of the
ribosomal proteins eIF6 [119], L24 or L38 [120], or by directly
targeting RNA polymerase I by small molecule inhibitors [121,
122]. The effects of Pol I inhibition was also potentiated by
inhibiting ATR [122], which was previously shown to be
important for Myc-driven cancers that exhibit high levels of
replicative stress [104]. This combinatorial approach suggests
the potential of targeting multiple MYC synthetic lethal
pathways to achieve greater synergy.

The overexpression of MYC, but not other genes known to
be involved in transformation, such as a dominant negative
version of p53, rendered neural stem cells more sensitive to U2
snRNP splicing inhibition with the Sf3b inhibitors, Sudemycin
C1 and Pladeinolide B [31]. Srsf1 was also shown to cooperate
with MYC, but not other oncoproteins, such as Erbb2 or

Hpv16E7, in mammary cell transformation [23]. While small
molecule inhibitors targeting alternative splicing factors are
not available at present, in the future, antisense oligonucleo-
tide technologies might open new therapeutic opportunities
to target, for example, Srsf1 or hnRNPA1, as critical
downstream effectors of MYC [123, 124].

On the other hand, there are several inhibitors of the
general splicing machinery [31, 125], which may represent
ideal candidates to be tested in the context of MYC
overexpression. Furthermore, the inhibition of Bud31, a core
spliceosomal component, has also recently been demon-
strated to be synthetic lethal with MYC overexpression [30].

A unique molecule that has raised the interest of pharma
companies lately is Prmt5, an enzyme at the crossroad
between pre mRNA-processing [29] and translation regula-
tion [118]. Whether Prmt5 inhibitors will prove to be more
effective in MYC-overexpressing tumors over other malignan-
cies remains to be proven.

Conclusions and prospects

In conclusion, we argue that MYC is an ideal drug target in
oncology. It fits all the requirements of such a molecule,
because it is one of the few proteins that is always, in one way
or another, upregulated in cancer. Furthermore, it constitutes
a signaling hub, which, we would predict, is absolutely
essential and non-redundant, for tumor initiation and
maintenance, thus making it difficult to be bypassed.
Evidence from genetic models of Myc inactivation [91] has
convincingly proven that it is feasible to inactivate such a
central molecule with few deleterious effects on normal
tissues. The current knowledge of the regulation of MYC
abundance, as well as of MYC-regulated downstream path-
ways, coupled to novel pharmacological opportunities,
provide multiple angles to inhibit this key transcription
factor. In addition and quite surprisingly, two core house-
keeping functions, specifically, ribosome and spliceosome
biogenesis, may provide the long sought after Achilles’ heel to
target: what was not so long ago thought to be the
undruggable MYC, could be the target for generation of the
next series of blockbuster drugs.
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