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Non-Invasive Tumor Budding Evaluation and Correlation
with Treatment Response in Bladder Cancer: A Multi-Center
Cohort Study

Xiaoyang Li, Chen Zou, Chunhui Wang, Cheng Chang, Yi Lin, Shuai Liang,
Haoran Zheng, Libo Liu, Kai Deng, Lin Zhang, Bohao Liu, Mingchao Gao, Peicong Cai,
Jianwen Lao, Longhao Xu, Daqin Wu, Xiao Zhao, Xiao Wu, Xinyuan Li,* Yun Luo,*
Wenlong Zhong,* and Tianxin Lin*

The clinical benefits of neoadjuvant chemoimmunotherapy (NACI) are
demonstrated in patients with bladder cancer (BCa); however, more than half
fail to achieve a pathological complete response (pCR). This study utilizes
multi-center cohorts of 2322 patients with pathologically diagnosed BCa,
collected between January 1, 2014, and December 31, 2023, to explore the
correlation between tumor budding (TB) status and NACI response and
disease prognosis. A deep learning model is developed to noninvasively
evaluate TB status based on CT images. The deep learning model accurately
predicts the TB status, with area under the curve values of 0.932 (95%
confidence interval: 0.898–0.965) in the training cohort, 0.944 (0.897–0.991) in
the internal validation cohort, 0.882 (0.832–0.933) in external validation
cohort 1, 0.944 (0.908–0.981) in the external validation cohort 2, and 0.854
(0.739–0.970) in the NACI validation cohort. Patients predicted to have a high
TB status exhibit a worse prognosis (p < 0.05) and a lower pCR rate of 25.9%
(7/20) than those predicted to have a low TB status (pCR rate: 73.9% [17/23];
p < 0.001). Hence, this model may be a reliable, noninvasive tool for
predicting TB status, aiding clinicians in prognosis assessment and NACI
strategy formulation.
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1. Introduction

Bladder cancer (BCa) represents the ninth
most common malignancy worldwide, ac-
counting for 3% of all cancer diagnoses
globally.[1,2] Approximately 20–30% of pa-
tients present with muscle-invasive blad-
der cancer (MIBC) at initial diagnosis.
Cisplatin-based neoadjuvant chemotherapy
(NAC) followed by radical cystectomy (RC)
is recommended as the standard treat-
ment for MIBC.[3] Nevertheless, more than
40% of patients experience disease progres-
sion within 3 years.[4–6] Our recent multi-
institutional phase II trial and other stud-
ies have shown that neoadjuvant chemoim-
munotherapy (NACI) may improve clin-
ical outcomes, with a pathological com-
plete response (pCR) rate of 33–50.9%.[7–10]

Phase III studies suggest that NACI may
significantly improve event-free survival
(EFS) and overall survival (OS) compared
with NAC alone.[11] Moreover, patients who
achieve clinical CR after NACI may have
the opportunity for bladder preservation,
with a 2-year OS rate of 97%.[12] How-
ever, more than half of the patients do not
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achieve CR after NACI and may even develop metastasis, result-
ing in the loss of surgical options. This underscores the need for
predictive models to assess treatment efficacy and guide person-
alized therapy.[3]

Tumor budding (TB), which is characterized by isolated sin-
gle tumor cells or small clusters at the invasive front of a tu-
mor, is significantly correlated with metastasis, poor progno-
sis, and treatment resistance in patients with various types of
solid tumors.[13–15] However, whether TB can act as a predictive
biomarker of the response to neoadjuvant treatment remains un-
clear. Considering that TB is dynamic and changes with disease
progression and treatment, performing repeated invasive proce-
dures to monitor TB is impractical.[16] Therefore, non-invasive
evaluation of TB statusmay be invaluable for longitudinal assess-
ment.
Artificial intelligence (AI) can autonomously detect and ana-

lyze pixel-level features and is increasingly used to assist pre-
cision medical and clinical decision support.[17] AI-based deep
learning represents a promising approach for predicting the re-
sponse toNAC in various cancers.[18] Recent studies have demon-
strated that several deep learningmodels leveraging non-invasive
computed tomography (CT) images have the potential to predict
tumor mutations, immune checkpoint expression, and features
of tumor microenvironment (TME), ultimately aiding in the pre-
diction of NAC response.[19–24] However, there currently appears
to be a lack of reports on TB-based prediction models for solid
tumors that utilize AI algorithms.
Herein, we integrated the clinicopathological information of

patients with BCa frommulti-institutional cohorts and developed
a deep-learning model to assess TB status. We also validated the
model’s effectiveness in assessing NACI response and OS.

2. Result

2.1. Patient Cohort

The flowchart of this study is illustrated in Figure S1 (Support-
ing Information). Overall, 2322 patients met the inclusion crite-
ria, of whom 2113 were enrolled in the study. The median age
was 66 years (interquartile range [IQR]: 59.0–74.0), with 1724
men (81.6%) and 389 women (18.4%). Among the patients, 1170
(55.4%) were diagnosed with non-muscle-invasive bladder can-
cer (NMIBC), and 943 (44.6%) were diagnosed with MIBC. Addi-
tionally, 1343 patients (63.6%) were classified as low-TB, whereas
770 (36.4%) were classified as high-TB (Table S1, Supporting In-
formation). Among the 2113 patients, 57 were from a multicen-
ter, phase II clinical study constituting the BGB-A317-2002 co-
hort. Data on 514 patients from Sun Yat-sen Memorial Hospital
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(SYMH) and 460 patients from Third Affiliated Hospital of Sun
Yat-sen University (SYUTH) pathologically diagnosed with BCa
between January 1, 2014, andDecember 31, 2023, were retrospec-
tively obtained, forming the SYMH cohort and external cohort 1,
respectively. External cohort 2 comprised 647 patients from the
Second Hospital of Dalian Medical University (SHDMU), First
Affiliated Hospital of Chongqing Medical University (FHCMU),
and Yan’an Hospital Affiliated to Kunming Medical University
(KMYAYY) pathologically diagnosed with BCa between January
1, 2017 and December 31, 2023. We also retrospectively collected
data from 108 patients from the five aforementioned hospitals in
China who received NACI, constituting the NACI real-world co-
hort. Tables S2–S4 (Supporting Information) show the detailed
characteristics of all the cohorts.
As illustrated in the workflow (Figure 1), this study initially ex-

plored the correlation between TB status and response to NACI
using data from the BGB-A317-2002 cohort. A deep learning-
based TB predictionmodel was then developed using the ResNet-
50 algorithm, with its performance validated in the internal vali-
dation cohort and external validation cohort 1 and 2. Finally, we
assessed the evaluation capability of this AI-basedmodel for both
prognosis and NACI response.
High-quality preoperative contrast-enhanced pelvic CT images

from 1144 patients were included in the training and validation
phases of the deep learning model. Among them, 367 patients
in the SYMH cohort were assigned to the training (n = 257) and
internal validation (n = 110) cohorts in a 7:3 ratio using a ran-
dom number method. Additionally, 342 patients from external
cohort 1 and 385 from external cohort 2 were grouped into exter-
nal validation cohorts 1 and 2, respectively. Fifty patients from the
NACI real-world cohort constituted the NACI validation cohort,
which was used to assess the ability of the model to assess NACI
response.

2.2. TB Status is Associated with NACI Response and
Dynamically Changes with NACI

Initially, we analyzed the correlation between the TB status and
NACI response in the BGB-A317-2002 cohort. Among the 57 pa-
tients, 86% (49/57) were men, with a median age of 64 years
(IQR: 59.0-68.0). All patients underwent NACI, and the pCR rate
was 50.9% (29/57). Based on the analysis of the hematoxylin and
eosin (H&E)-stained slides, 29 patients (50.9%) were assigned
to the low-TB group, whereas 28 (49.1%) were assigned to the
high-TB group (Table S2, Supporting Information). Representa-
tive H&E-stained slides of high- and low-TB samples are shown
inFigure 2A. Among the low-TB patients, 79.3% (23/29) achieved
pCR, whereas only 21.4% (6/28) of the high-TB patients achieved
pCR (p < 0.001; Figure 2B), suggesting that patients with a high
TB status were less likely to benefit from NACI than those with
a low TB status.
Next, we evaluated the TB status of patients who underwent

NACI and subsequent RC. The TB status changed significantly
following treatment; 32.1% (9/28) of the patients with a high
TB status before NACI showed a low TB status after NACI, and
67.7% (6/9) of these patients achieved pCR. Among the 29 pa-
tients with a low TB status before NACI, two transitioned to a
high TB status, and none of them achieved pCR (Figure 2C).
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Figure 1. The overall workflow for the discovery and validation of a deep learning model based on CT images to predict the TB status and assess NACI
response in patients with BCa. BCa, bladder cancer; CT, computed tomography; H&E, hematoxylin, and eosin; NACI, neoadjuvant chemoimmunotherapy;
TB, tumor budding.

Changes in the TB status during NACI treatment significantly
affected treatment outcomes and prognosis, further highlighting
the importance of dynamic monitoring of TB status.

2.3. High TB is Correlated with Poor Prognostic Outcomes

We conducted a median follow-up of 69.6 months (IQR: 49.0–
88.7 months) and analyzed the relationship between TB sta-
tus and survival outcomes. The OS and Cancer-specific survival
(CSS) rates in patients with a high TB status were significantly
worse than those in patients with a low TB status in the SYMH
cohort and external cohorts 1 and 2, with 5-year OS rates of 49.95,
45.05, and 34.76% in the high-TB group and 80.62, 80.44, and
74.29% in the low-TB group, respectively (p < 0.05; Cox propor-
tional hazards model; Figure 2D–I). The Cancer Genome Atlas
(TCGA) and BGB-A317-2002 cohorts exhibited similar results
(p < 0.001; Cox proportional hazards model; Figure S2a–e, Sup-
porting Information). Univariate andmultivariate Cox regression
analyses of the combined cohort (1621 patients from the five hos-
pitals) indicated that a high TB status was an independent risk
factor for OS (HR: 0.487; 95% CI: 0.38–0.623; p < 0.001; Table
S5, Supporting Information). Similar results were obtained for
the individual cohorts (SYMH cohort and external cohorts 1 and
2; p < 0.001; Table S6–S8, Supporting Information).
To analyze the effect of TB status on survival outcomes, we

examined its correlation with clinicopathological characteristics
and then followed by subgroup analysis. In the SYMH cohort, a
high TB status was correlated with an advanced T stage (muscu-
lar invasion), N status, grade, and likelihood of lymphovascular
invasion (LVI), perineural invasion (PNI), and tumor multifocal-

ity (p < 0.05; Table S9, Supporting Information). Similar results
were observed for external cohorts 1 and 2 andTCGA, BGB-A317-
2002, and NACI real-world cohorts (p < 0.05; Tables S9–S12,
Supporting Information). For the subgroup analysis, hazard ra-
tios (HRs) from the Cox proportional hazards model comparing
high- and low-TB subgroups based on sex, age, T stage, N status,
grade, LVI, PNI, carcinoma in situ (CIS), and tumormultifocality
are presented in a forest plot. Except for the women (p = 0.097),
concomitant CIS (p = 0.911), and PNI (p = 0.067) subgroups,
high TB status appears to negatively affect OS in all other sub-
groups (p < 0.05, Figure S3, Supporting Information). These re-
sults demonstrated the accuracy of the prognostic prediction of
TB status, independent of other clinicopathological characteris-
tics.

2.4. The Deep Learning Model Demonstrates Robust Predictive
Performance

Giving the significant impact of TB on the NACI response and
prognosis, as well as its dynamic nature, we developed an AI-
based non-invasive model for predicting TB status using CT
images. Representative examples of the original CT images,
the three input channels (binary tumor mask, arterial-phase re-
gion of interest [ROI], and venous-phase ROI), visualization us-
ing guided gradient-weighted class activation mapping approach
(Guided Grad-CAM), and H&E assessment of the TB status
are presented in Figure 3A. For the training cohort, the model
achieved an area under the curve (AUC) of 0.932 (95% CI: 0.898–
0.965) for predicting TB status (Figure 3B). Similarly, the model
attained AUCs of 0.944 (0.897–0.991), 0.882 (0.832–0.933), and

Adv. Sci. 2025, 12, 2416161 2416161 (3 of 10) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Adv. Sci. 2025, 12, 2416161 2416161 (4 of 10) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

0.944 (0.908–0.981) for the internal and external validation co-
horts 1 and 2, respectively (Figure 3C–E). The overall accuracies
were 87.55, 88.18, 87.43, and 95.06% for the training, internal,
and external validation cohorts 1 and 2, respectively. The sensi-
tivity, specificity, positive predictive value (PPV), and negative pre-
dictive value (NPV) were 0.884 (0.824-0.944), 0.881 (0.82-0.941),
0.826 (0.755-0.897), and 0.922 (0.872-0.972), respectively, for the
internal validation cohort (Figure 3F–I and Table 1). Similarly, the
model demonstrated robust performance regarding the results
for the other cohorts and exhibited high discriminative power
(Figure 3F–I and Table 1).
The model also demonstrated a strong ability to assess prog-

nosis. Patients predicted to have high TB status exhibited signifi-
cantly worse OS and CSS rates compared with those predicted to
have low TB status across all cohorts (p < 0.05; Cox proportional
hazards model; Figure 4A–H). Multivariate time-independent
Cox regression analysis yielded similar results (Table S13, Sup-
porting Information).

2.5. The Deep Learning Model Effectively Evaluates the NACI
Response by Predicting TB Status

To validate the ability of the model to assess the NACI re-
sponse, we retrospectively collected data from the NACI real-
world cohort (n = 108). The data distribution was similar to
that of the BGB-A317-2002 cohort, in which 46.3% (50/108)
of patients were placed in the low-TB category, of whom
82% (41/50) achieved pCR. In contrast, only 13.8% (8/58)
of high-TB patients reached pCR (p < 0.001; Pearson’s chi-
squared test; Figure 4I; Table S11, Supporting Information).
The deep learning model demonstrated high evaluation perfor-
mance in the NACI validation cohort (AUC: 0.854; 95% CI:
0.739-0.97; Figure 4J), with a sensitivity of 84.6% (22/26) and
specificity of 79.2% (19/24; Figure 4K). Notably, the predic-
tion model achieved a pCR rate of 73.9% (17/23) in patients
predicted to have a low TB status, whereas 74.1% (20/27) of
those predicted to have a high TB status did not achieve pCR
(p < 0.001; Pearson’s chi-squared test; Figure 4L), demonstrat-
ing the potential ability of the model in guiding clinical decision-
making.

3. Discussion

In this multicenter cohort study, we comprehensively analyzed
the association between TB and the response to NACI, and
demonstrated the high prognostic value of TB in cases of BCa.
Subsequently, we developed and validated a deep learning model
to non-invasively assess the TB status using CT images. We
demonstrated that the model may have significant implications
for the selection of diagnostic and therapeutic strategies.
Although TB was initially proposed as a prognostic factor for

colorectal cancer (CRC), an increasing number of studies have

suggested that it is also a crucial factor in the prognosis and ther-
apeutic outcomes of breast, pancreatic, and lung cancers, as well
as other solid tumors.[16] Consistently, this was validated across
multiple cohorts of BCa in the current study. Furthermore, the
TB prediction model we developed may have valuable applica-
tions for disease evaluation. In this study, patients predicted to
have a high TB status may have more aggressive disease and a
poorer prognosis than those predicted to have a low TB status.
Biologically, TB is closely associated with epithelial-

mesenchymal transition (EMT) and immune evasion. E-
cadherin, serving as a cell-cell adhesion molecule, is observed
to be downregulated or lost on the surface of tumor buds, lead-
ing to the dissociation of tumor cells.[16] Cytoskeletal changes
and increased proteolytic activity in tumor buds facilitate cell
migration.[25,26] TB may also affect the efficacies of immunother-
apy and chemotherapy.[27,28] Tumor cells undergoing EMT show
elevated programmed death-ligand 1 (PD-L1) levels, which sup-
presses cytotoxic T-cell attacks, leading to immune evasion and
decreased sensitivity to immune checkpoint inhibitors.[29] Viktor
et al. found that tumor buds at the invasive front can achieve
immune evasion by downregulating major histocompatibility
complex-I (MHC-I) molecules on the cell membrane.[30] These
studies have provided molecular-level insights into the correla-
tion between TB and the NACI response. Herein, patients with a
high TB status were unlikely to benefit from NACI (only 21.4%
in the BGB-A317-2002 cohort and 13.8% in the NACI real-world
cohort), further supporting this notion.
The TB status changed dynamically during NACI and was

closely associated with treatment outcomes. However, it was as-
sessed using postoperative pathological H&E-stained slides, pos-
ing a challenge for the real-timemonitoring of TB status to guide
treatment decisions. We addressed this issue using a deep learn-
ing convolutional neural network (CNN) based on CT images,
offering an innovative solution. The model may be a reliable tool
for clinicians in their decision-making processes. For patients
with predicted low TB status, NACI presents a viable treatment
option, significantly increasing the likelihood of achieving pCR.
Additionally, real-time monitoring of TB status during NACI is
crucial. A transition from low to high TB status may indicate di-
minished benefits from continued NACI, suggesting that more
aggressive interventions, such as RC, may be warranted.
Many studies have integrated CNNs with imaging modalities

such as CT, radiography, and magnetic resonance imaging to di-
rectly predict treatment outcomes or prognosis.[31–33] In compar-
ison with previous studies, our model encompasses several ad-
vancements. First, our study builds upon substantial evidence
supporting the established link between TB status and disease
prognosis, as well as its impact on treatment response. This
foundation provides a biological basis for the model’s predic-
tions and addresses a critical issue of biological interpretability
that has often been absent. Second, whereas most studies used
images from a single phase, we incorporated both arterial- and

Figure 2. Correlation between TB status and NACI response and prognosis. A) Representative H&E-stained slides showing high TB and low TB statuses
(20×). B) The correlation between TB status and response to NACI in the BGB-A317-2002 cohort (n = 57; p < 0.001; Pearson’s chi-squared test). C)
Changes in the TB status before and after NACI treatment in patients. D–I) Kaplan-Meier analysis of overall and cancer-specific survival of patients
with BCa stratified by the TB status in the SYMH cohort (n = 514; p < 0.001), external cohort 1 (n = 460; p < 0.001), and external cohort 2 (n = 647;
p < 0.001). p-values were calculated using the Cox proportional hazards model. H&E, hematoxylin and eosin; HR, hazard ratio; K-M curve, Kaplan-Meier
curve; NACI, neoadjuvant chemoimmunotherapy; pCR, pathological complete response; SYMH, Sun Yat-sen Memorial Hospital; TB, tumor budding.
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Figure 3. Performance of the TB-based deep learning prediction model across different cohorts. A) Representative examples of the original CT images
showing the three input channels: binary tumor mask, arterial-phase ROI, and venous-phase ROI. The model prediction is visualized using Guided
Grad-CAM, along with the corresponding pathological images. B–E) AUCs and 95% CIs of results obtained using the deep learning TB prediction model
for the training cohort (n = 257), internal validation cohort (n = 110), external validation cohort 1 (n = 342), and external validation cohort 2 (n = 385).
F–I) Sensitivity and specificity of results obtained using the TB-based deep learning prediction model for the training cohort (n = 257), internal validation
cohort (n= 110), external validation cohort 1 (n= 342), and external validation cohort 2 (n= 385). AUC, the area under the curve; 95%CI, 95% confidence
interval; CT, computed tomography; Guided Grad-CAM, guided gradient-weighted class activation mapping; H&E, hematoxylin, and eosin; ROI, region
of interest; TB, tumor budding.

venous-phase contrast-enhanced CT images to train the model.
By integrating features fromdifferent phases, themodel achieved
enhanced generalization capability and reduced overfitting.[20]

Third, we built the model using a pre-trained ResNet-50 frame-
work, which addressed the issues of vanishing and explod-
ing gradients in deep neural network training by introducing
residual blocks. By stacking 50 residual blocks, complex fea-
tures were captured. This led to outstanding prediction accuracy

and generalization ability, with high robustness and low error
rates.
The current study had a few limitations. First, the TB predic-

tion model was based on retrospectively collected imaging data,
which, despite the implementation of quality control and assur-
ance measures, remained susceptible to significant bias. Second,
the prediction model required manual annotation of ROI, which
introduces bias and poses challenges for routine clinical use.
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Figure 4. Evaluation ability of the model for prognosis and response to NACI. A–D) Kaplan-Meier analysis of the overall survival of patients with BCa
stratified by the predicted TB status in the training cohort (n = 257; p < 0.001), internal validation cohort (n = 110; p < 0.001), external validation
cohort 1 (n = 342; p < 0.001), and external validation cohort 2 (n = 385; p < 0.001). P-values were calculated using the Cox proportional hazards model.
E–H) Kaplan-Meier analysis of the cancer-specific survival of patients with BCa stratified by the predicted TB status in the training cohort (n = 257;
p = 0.002), internal validation cohort (n = 110; p < 0.001), external validation cohort 1 (n = 342; p < 0.001), and external validation cohort 2 (n = 385;
p = 0.026). p-values were calculated using the Cox proportional hazards model. I) H&E-based TB status and response to NACI in the NACI real-world
cohort (n = 108; p < 0.001; Pearson’s chi-squared test). J) AUCs and 95% CIs of results obtained using the TB-based deep learning prediction model for
the NACI validation cohort (n = 50). K) Sensitivity and specificity of results obtained using the TB-based deep learning prediction model for the NACI
validation cohort (n = 50). L) Predicted TB status and response to NACI in the NACI validation cohort (n = 50; p < 0.001; Pearson’s chi-squared test).
AUC, the area under the curve; BCa, bladder cancer; 95% CI, 95% confidence interval; H&E, hematoxylin, and eosin; HR, hazard ratio; NACI, neoadjuvant
chemoimmunotherapy; pCR, pathological complete response; TB, tumor budding.

Third, due to the relatively small sample size of patients under-
going NACI, the prediction model does not provide direct pre-
dictions (Figure S4 and Table S14, Supporting Information) but
instead assesses the correlation between tumor burden (TB) sta-
tus and treatment response. Future studies with larger cohorts of
patients undergoing NACI are necessary to validate and expand
these findings.
In summary, we explored the positive correlations among

TB, NACI resistance, and disease prognosis. Our prediction
model, developed using preoperative contrast-enhanced CT im-
ages, may enable the non-invasive prediction of TB status in
patients with BCa. This model can improve the accuracy of
prognostic predictions and guide treatment decisions in pa-
tients with MIBC who require NACI. Prospective validation

and pan-cancer analyses are required to confirm the repro-
ducibility and generalizability of the model in a broader patient
population.

4. Experimental Section
Patients: This multicenter cohort study was conducted across a phase

II multicenter clinical trial (trial number: ChiCTR2000037670), five hospi-
tals in China (Figure S5, Supporting Information), and TCGA database
(https://portal.gdc.cancer.gov). The inclusion criteria included a histolog-
ically confirmed diagnosis of BCa (including NMIBC and MIBC) and the
availability of clinicopathological and follow-up data. Patients with other
concurrent malignancies or a history of NAC treatment were excluded.
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Patient demographics, pathological examination results, and H&E
slides were obtained. Sex was reported as “sex assigned at birth.” Cancer
staging was conducted based on the criteria outlined in the eighth edition
of the American Joint Committee on Cancer TNM Staging Manual.[34] For
patients in the TCGA datasets, high-quality H&E images suitable for TB
status evaluation were obtained; however, data on neoadjuvant treatment
were unavailable. The surgical options (transurethral resection of bladder
tumor [TURBT] or RC) and follow-up protocols were conducted in accor-
dance with guidelines of the European Association of Urology (EAU) and
the ChineseUrological Association (CUA).[35,36] Patients with TURBTwere
monitored every 3–6months during the first 2 years, primarily through cys-
toscopies and urinary cytology. For patients with RC, follow-up was per-
formed at 3, 6, 12, 18, and 24 months after surgery, including physical
examinations, routine laboratory panels, and CT of the chest, abdomen,
and pelvis. OS was defined as the period from surgery to death from any
cause. CSS was defined as the period from surgery until death attributable
to cancer. The NACI response was evaluated using the pCR, which was
defined as the achievement of a pathological stage of pT0N0 after RC.

Following the analysis of the correlation between TB and the NACI re-
sponse, as well as the prognosis of all included patients, we developed a
TB prediction model using preoperative contrast-enhanced pelvic CT im-
ages. Patients were excluded if they lacked preoperative contrast-enhanced
pelvic CT images, or if their primary tumors could not be clearly identified
due to factors such as poor bladder filling, large blood clots, or metallic
artifacts from joint replacements or intrauterine devices.

This study was approved by the Ethics Committees of SYUTH (approval
number: II2023-303-02), SYMH (approval number: SYSKY2023-467-01),
SHDMU (approval number: 2022–141), FHCMU (approval number: 2022-
K508), and KMYAYY (approval number: 2024-148-01). Informed consent
was acquired from all patients. This investigation was carried out in strict
adherence to the ethical standards set forth in the Declaration of Helsinki.

Assessment of TB: The method for assessing TB status was adapted
from the standardized protocol recommended by the 2016 International
Tumor Budding Consensus Conference and modified to accommodate
the unique characteristics of BCa.[37] Briefly, the H&E-stained section
with the deepest tumor invasion was selected, and a whole slide image
was generated by scanning it at 20× magnification. Ten individual fields
were selected to identify the field with the highest density of tumor buds
(hotspots) at the invasive front. Tumor buds were counted in the selected
“hotspot” (20× objective), and the number of buds was divided by the
normalization factor to determine the tumor bud count per 0.785 mm2.

Considering that the current standards for classifying TB are primarily
based on the guidelines for CRC and that the classification criteria for BCa
remain unclear, we believe that simply adopting the CRC standards for BCa
would not yield accurate results as CRC and BCa are tumors with different
histological origins.[34] Therefore, we utilized the data obtained by us to
determine the optimal cutoff value for TB based on prognostic outcomes,
which was calculated to be 6. Coincidentally, this cutoff value aligns with
those selected in two other related studies that included 621 and 108 pa-
tients with BCa, respectively, further supporting the reliability of our cutoff
value.[38,39]

Dual-independent assessments were performed by two investigators
blinded to all clinical parameters to evaluate observer concordance. The
classification concordance was 90% (Cohen’s kappa = 0.867).

CT Image Acquisition and Processing: All patients, whose data were
analyzed using the deep learning model, underwent contrast-enhanced
pelvic CT prior to surgery. All CT sequences were obtained from each hos-
pital and standardized in Neuroimaging Informatics Technology Initiative
(NIfTI) format for further processing.

To comply with the model’s computational specifications, CT images
underwent preprocessing through bilinear interpolation resampling to
256 × 256 pixel resolution. Image intensities were normalized to a stan-
dardized Hounsfield unit (HU) range of −25 to 175 to enhance soft-tissue
contrast. The ROI was defined as the tumormass and its basal region, with
a focus on the anteriormargin of tumor invasion. Consistent with previous
studies, we selected the CT axial slice displaying the largest tumor base for
manual ROI segmentation and labeling.[19,40] Efforts were made to avoid
necrotic areas, calcifications, and large vessels whenever possible.
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The ROIs were delineated using ITK-SNAP (version 4.0.0) by two uro-
logical radiologists: one with more than 10 years and the other with over
30 years of experience in pelvic CT interpretation. Both radiologists were
blinded to the clinical and pathological findings.

Development of the PredictionModel: The TB predictionmodel was de-
veloped using the ResNet-50 framework pre-trained on ImageNet, which
employs residual blocks and skip connections to mitigate challenges
such as vanishing gradients and model degradation. We modified the
model by replacing the original fully connected layer with a linear layer
(torch.nn.Linear) containing a single output node, enabling the model to
produce a single prediction value. The loss function used was BCEWith-
LogitsLoss for binary classification, and the Adam optimizer with weight
decay for L2 regularization was employed to prevent overfitting. The struc-
ture of the modified model is shown in Figure S6 (Supporting Informa-
tion). The input image consisted of three 150 × 150 pixels channels: the
binary tumor mask, derived from the ROI, provides fundamental anatom-
ical delineation, while the arterial- and venous-phase ROI, segmented us-
ing the tumor mask, offers unique functional and morphological informa-
tion for comprehensive tumor characterization.

The deep learning model was developed using the PyTorch framework
(version 2.2.2+cu121) on a GeForce RTX 3080Ti GPU. The batch size was
set to 64, with an initial learning rate of 0.0005 and a decay rate of 0.1 per
50 epochs. The training was conducted for a maximum of 2000 epochs,
with early stopping triggered after 50 consecutive epochs without improve-
ment.

A Guided Grad-CAM approach was used to identify and visualize the
areas within the ROI that contributed most to the prediction. All relevant
code was executed using Visual Studio Code (VS Code, version 1.60.0)
with Python (version 3.11.7) and can be accessed at https://github.com/
854544429/load_dataset.git.

Accuracy of the Imaging Model in Predicting TB Status: Performance
indicators, such as overall accuracy, AUC, sensitivity, specificity, PPV, and
NPV, were evaluated. The formulae for these metrics are provided in the
method section of the Supporting Information.

Statistical Analysis: Descriptive statistics were used to summarize the
baseline characteristics. Continuous variables are presented as medians
with IQR when they are skewed. Categorical variables are presented as
frequencies and percentages. Continuous variables were compared us-
ing the Mann–Whitney U test or the Kruskal–Wallis test. Differences in
categorical variables were evaluated using Pearson’s chi-squared test or
Fisher’s exact test. The correlation analysis between TB and prognosis
was performed using the Kaplan-Meier method and the Cox proportional
hazards model. Schoenfeld residuals were used to evaluate the propor-
tional hazard (PH) assumption for each variable. For variables that vio-
lated the PH assumption, multiplicative interaction terms were incorpo-
rated into the time-dependent Cox regression analysis for OS and CSS.
Relative risk was assessed by calculating HRs with 95% confidence inter-
vals (95% CIs). Variables with prognostic significance in the univariate Cox
regression analysis (p < 0.1) were incorporated into the multivariate anal-
ysis. The results of the subgroup analysis are presented using forest plots.
The 95% CIs were calculated using the Clopper-Pearson method. R soft-
ware (version 4.3.1) was used for statistical analyses. A two-sided p-value
of less than 0.05 was considered statistically significant.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This study was supported by the National Natural Science Founda-
tion of China (Grant Nos. 82373254, 82072831, U21A20383, 92459303);
the Science and Technology Planning Project of Guangdong Province
(Grant Nos. 2021A1515011541, 2023A1515010258); Basic and Ap-
plied Basic Research Foundation of Guangdong Province (Grant No.

2021A1515110200); Guangzhou Municipal Science and Technology
Project (Grant No. SL2022A04J01754); the Foundation of the Third Affili-
ated Hospital of Sun Yat-sen University (Grant No. YHJH202303); Sun Yat-
Sen Memorial Hospital Clinical Research 5010 Program (Grant No. SYS-
5010Z-202401); Guangzhou Basic and Applied Basic Research Subject-
Young Doctor’s “Sailing” Project (Grant No. 2024A04J4702); and Guang-
dong Provincial Clinical Research Center for Urological Diseases (Grant
No. 2020B1111170006).

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
X.L., C.Z, C.W, and C.C. contributed equally to this work. T.L. and W.Z. pro-
posed the hypothesis and designed the study. X.L. and C.Z. designed the
study and conducted the data analysis and manuscript writing. C.W. and
C.C. contributed to data analysis and manuscript revision. Y.L., S.L., and
H.Z. performed theH&E staining of the pathological slides. L.L., K.D., L.Z.,
and B.L. collected clinical data and conducted the slide scanning. M.G.,
P.C., and J.L. collected samples and additional clinical data. L.X., D.W.,
X.Z., and X.W. conducted the patient follow-ups. X.L. and Y.L. modified
and revised the manuscript; X.L., Y.L., W.Z., and T.L. supervised the study
design and finalized the manuscript. All authors reviewed the manuscript,
approved the submitted version, had full access to all the data reported
in the study, and had final responsibility for the decision to submit the
manuscript for publication.

Data Availability Statement
The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.

Keywords
bladder cancer, deep learning, multicenter study, neoadjuvant chemoim-
munotherapy, tumor budding

Received: December 3, 2024
Revised: February 17, 2025

Published online: May 20, 2025

[1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I.
Soerjomataram, A. Jemal, CA Cancer J. Clin. 2024, 74, 229.

[2] J. Y. Teoh, J. Huang, W. Y. Ko, V. Lok, P. Choi, C. Ng, S. Sengupta, H.
Mostafid, A. M. Kamat, P. C. Black, S. Shariat, M. Babjuk, M. C. Wong,
Eur. Urol. 2020, 78, 893.

[3] L. Dyrskjot, D. E. Hansel, J. A. Efstathiou, M. A. Knowles, M. D.
Galsky, J. Teoh, D. Theodorescu, Nat. Rev. Dis. Primers 2023, 9, 58.

[4] T. Powles, T. Csoszi, M. Ozguroglu, N. Matsubara, L. Geczi, S. Y.
Cheng, Y. Fradet, S. Oudard, C. Vulsteke, B. R. Morales, A. Flechon, S.
Gunduz, Y. Loriot, A. Rodriguez-Vida, R. Mamtani, E. Y. Yu, K. Nam,
K. Imai, M. B. Homet, A. Alva, Lancet Oncol. 2021, 22, 931.

[5] J. Hu, J. Chen, Z. Ou, H. Chen, Z. Liu, M. Chen, R. Zhang, A. Yu, R.
Cao, E. Zhang, X. Guo, B. Peng, D. Deng, C. Cheng, J. Liu, H. Li, Y.
Zou, R. Deng, G. Qin, W. Li, L. Wang, T. Chen, X. Pei, G. Gong, J. Tang,
B. Othmane, Z. Cai, C. Zhang, Z. Liu, X. Zu, Cell Rep. Med. 2022, 3,
100785.

Adv. Sci. 2025, 12, 2416161 2416161 (9 of 10) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://github.com/854544429/load_dataset.git
https://github.com/854544429/load_dataset.git


www.advancedsciencenews.com www.advancedscience.com

[6] M.Minoli, T. Cantore, D. Hanhart, M. Kiener, T. Fedrizzi, F. LaManna,
S. Karkampouna, P. Chouvardas, V. Genitsch, A. Rodriguez-Calero, E.
Comperat, I. Klima, P. Gasperini, B. Kiss, R. Seiler, F. Demichelis, G.
N. Thalmann, J. M. Kruithof-De, Nat. Commun. 2023, 14, 2214.

[7] R. Cathomas, S. I. Rothschild, S. Hayoz, L. Bubendorf, B. C. Ozdemir,
B. Kiss, A. Erdmann, S. Aeppli, N. Mach, R. T. Strebel, B. Hadaschik,
D. Berthold, H. John, D. Zihler, M. Schmid, I. Alborelli, M. Schneider,
J. Musilova, M. Spahn, U. Petrausch, J. Clin. Oncol. 2023, 41, 5131.

[8] J. Brown, H. Z. Kaimakliotis, W. K. Kelly, V. Ammons, J. Picus, R.
Walling, N. Hashemi-Sadraei, P. Fu, S. P. Margevicius, N. Adra, J. Clin.
Oncol. 2023, 41, 448.

[9] S. Gupta, G. Sonpavde, C. J. Weight, B. A. Mcgregor, S. Gupta, B. L.
Maughan, X. X. Wei, E. Gibb, B. Thyagarajan, D. J. Einstein, J. Clin.
Oncol. 2020, 38, 439.

[10] K. Li, W. Zhong, J. Fan, S. Wang, D. Yu, T. Xu, J. Lyu, S. Wu, T. Qin,
Z. Wu, L. Xu, K. Wu, Z. Liu, Z. Hu, F. Li, J. Wang, Q. Wang, J. Min, Z.
Zhang, L. Yu, S. Ding, L. Huang, T. Zhao, J. Huang, T. Lin,Nat. Cancer
2024, 5, 1465.

[11] T. Powles, J. W. F. Catto, M. D. Galsky, H. Al-Ahmadie, J. J. Meeks,
H. Nishiyama, T. Q. Vu, L. Antonuzzo, P. Wiechno, V. Atduev, A. G.
Kann, T. Kim, C. Suarez, C. Chang, F. Roghmann, M. Ozguroglu, B.
J. Eigl, N. Oliveira, T. Buchler, M. Gadot, Y. Zakharia, J. Armstrong,
A. Gupta, S. Hois, M. S. van der Heijden, N. Engl. J. Med. 2024, 391,
1773.

[12] M. D. Galsky, S. Daneshmand, S. Izadmehr, E. Gonzalez-Kozlova,
K. G. Chan, S. Lewis, B. E. Achkar, T. B. Dorff, J. P. Cetnar, B. O.
Neil, A. D’Souza, R. Mamtani, C. Kyriakopoulos, T. Jun, M. Gogerly-
Moragoda, R. Brody, H. Xie, K. Nie, G. Kelly, A. Horowitz, Y. Kinoshita,
E. Ellis, Y. Nose, G. Ioannou, R. Cabal, D.M. Del Valle, G. K. Haines, L.
Wang, K. W. Mouw, R. M. Samstein, et al., Nat. Med. 2023, 29, 2825.

[13] T. Yoshizawa, S. M. Hong, D. Jung, M. Noe, A. Kiemen, P. H. Wu, D.
Wirtz, R. H. Hruban, L. D.Wood, K. Oshima, J. Pathol. 2020, 251, 400.

[14] M. S. Landau, S.M. Hastings, T. J. Foxwell, J. D. Luketich, K. S. Nason,
J. M. Davison,Mod. Pathol. 2014, 27, 1578.

[15] F. Stogbauer, S. Beck, I. Ourailidis, J. Hess, C. Poremba, M.
Lauterbach, B. Wollenberg, A. Buchberger, M. Jesinghaus, P.
Schirmacher, A. Stenzinger, W. Weichert, M. Boxberg, J. Budczies,
Br. J. Cancer 2023, 128, 2295.

[16] A. Lugli, I. Zlobec, M. D. Berger, R. Kirsch, I. D. Nagtegaal, Nat. Rev.
Clin. Oncol. 2021, 18, 101.

[17] Y. Zhang, Y. Deng, Q. Zou, B. Jing, P. Cai, X. Tian, Y. Yang, B. Li, F. Liu,
Z. Li, Z. Liu, S. Feng, T. Peng, Y. Dong, X. Wang, G. Ruan, Y. He, C.
Cui, J. Li, X. Luo, H. Huang, H. Chen, S. Li, Y. Sun, C. Xie, L. Wang, C.
Li, Q. Cai, Cell Rep. Med. 2024, 5, 101551.

[18] C. V. Suartz, L. M. Martinez, M. D. Cordeiro, H. A. Flores, S. Kodama,
L. Cardili, J. M. Mota, F. M. A. Coelho, J. de Bessa Junior, C. P.
Camargo, J. Y. Teoh, S. F. Shariat, P. Toren, W. C. Nahas, L. A. Ribeiro-
Filho, Can. Urol. Assoc. J. 2024, 18, E276.

[19] L. Liu, L. Xu, D. Wu, Y. Zhu, X. Li, C. Xu, K. Chen, Y. Lin, J. Lao, P. Cai,
X. Li, Y. Luo, X. Li, J. Huang, T. Lin, W. Zhong, EBioMedicine 2024, 104,
105152.

[20] Y. Jiang, K. Zhou, Z. Sun, H. Wang, J. Xie, T. Zhang, S. Sang, M. T.
Islam, J. Y. Wang, C. Chen, Q. Yuan, S. Xi, T. Li, Y. Xu, W. Xiong, W.
Wang, G. Li, R. Li, Cell. Rep. Med. 2023, 4, 101146.

[21] S. Ziegelmayer, S. Reischl, H. Havrda, J. Gawlitza, M. Graf, N.
Lenhart, N. Nehls, T. Lemke, D. Wilhelm, F. Lohofer, E. Burian, P.
A. Neumann, M. Makowski, R. Braren, JAMA Netw. Open 2023, 6,
e2253370.

[22] A. Lin, N. Manral, P. Mcelhinney, A. Killekar, H. Matsumoto, J.
Kwiecinski, K. Pieszko, A. Razipour, K. Grodecki, C. Park, Y. Otaki,
M. Doris, A. C. Kwan, D. Han, K. Kuronuma, T. G. Flores, E. Tzolos,
A. Shanbhag, M. Goeller, M. Marwan, H. Gransar, B. K. Tamarappoo,
S. Cadet, S. Achenbach, S. J. Nicholls, D. T. Wong, D. S. Berman, M.
Dweck, D. E. Newby, M. C. Williams, et al., Lancet Digit Health 2022,
4, e256.

[23] X. Huang, Y. Huang, K. Liu, F. Zhang, Z. Zhu, K. Xu, P. Li, NPJ Precis.
Oncol. 2024, 8, 202.

[24] W. Mu, L. Jiang, Y. Shi, I. Tunali, J. E. Gray, E. Katsoulakis, J. Tian, R.
J. Gillies, M. B. Schabath, J. Immunother. Cancer 2021, 9, e002118.

[25] R. Derynck, R. A. Weinberg, Dev. Cell 2019, 49, 313.
[26] B. Zhou, S. Zong, W. Zhong, Y. Tian, L. Wang, Q. Zhang, R. Zhang, L.

Li, W.Wang, J. Zhao, X. Chen, Y. Feng, B. Zhai, T. Sun, Y. Liu,Oncogene
2020, 39, 1527.

[27] T. Shibue, R. A. Weinberg, Nat. Rev. Clin. Oncol. 2017, 14, 611.
[28] S. Brabletz, H. Schuhwerk, T. Brabletz, M. P. Stemmler, EMBO J.

2021, 40, 108647.
[29] A. Dongre, M. Rashidian, F. Reinhardt, A. Bagnato, Z. Keckesova, H.

L. Ploegh, R. A. Weinberg, Cancer Res. 2017, 77, 3982.
[30] V. H. Koelzer, H. Dawson, E. Andersson, E. Karamitopoulou, G. V.

Masucci, A. Lugli, I. Zlobec, Transl. Res. 2015, 166, 207.
[31] N. M. Braman, M. Etesami, P. Prasanna, C. Dubchuk, H. Gilmore, P.

Tiwari, D. Plecha, A. Madabhushi, Breast Cancer Res. 2017, 19, 80.
[32] M. Li, Y. Fan, H. You, C. Li, M. Luo, J. Zhou, A. Li, L. Zhang, X. Yu,

W. Deng, J. Zhou, D. Zhang, Z. Zhang, H. Chen, Y. Xiao, B. Huang, J.
Wang, Radiology 2023, 308, e230255.

[33] R. Arora, V. Bansal, H. Buckchash, R. Kumar, V. J. Sahayasheela, N.
Narayanan, G. N. Pandian, B. Raman, Phys. Eng. Sci. Med. 2021, 44,
1257.

[34] M. B. Amin, F. L. Greene, S. B. Edge, C. C. Compton, J. E.
Gershenwald, R. K. Brookland, L. Meyer, D. M. Gress, D. R. Byrd,
D. P. Winchester, CA Cancer J. Clin. 2017, 67, 93.

[35] EAU. EAU Guidelines. EAU Guidelines Office, Arnhem, The Nether-
lands, 2024.

[36] J. Huang, X. Zhang, Guidelines for Diagnosis and Treatment of Uro-
logical and Andrological Diseases in China, 2022 ed., Science Press,
Beijing 2022.

[37] A. Lugli, R. Kirsch, Y. Ajioka, F. Bosman, G. Cathomas, H. Dawson, Z.
H. El, J. F. Flejou, T. P. Hansen, A. Hartmann, S. Kakar, C. Langner, I.
Nagtegaal, G. Puppa, R. Riddell, A. Ristimaki, K. Sheahan, T. Smyrk,
K. Sugihara, B. Terris, H. Ueno, M. Vieth, I. Zlobec, P. Quirke, Mod.
Pathol. 2017, 30, 1299.

[38] N. S. Seker, E. Tekin, A. Ozen, C. Can, E. Colak, M. F. Acikalin, Ann.
Diagn. Pathol. 2021, 54, 151786.

[39] Y. Yang, H. Xu, H. Zhu, D. Yuan, H. Zhang, Z. Liu, F. Zhao, G. Liang,
Front. Oncol. 2022, 12, 986006.

[40] Z. Sun, T. Zhang, M. U. Ahmad, Z. Zhou, L. Qiu, K. Zhou, W. Xiong,
J. Xie, Z. Zhang, C. Chen, Q. Yuan, Y. Chen, W. Feng, Y. Xu, L. Yu, W.
Wang, J. Yu, G. Li, Y. Jiang, J. Clin. Invest. 2024, 134, e175834.

Adv. Sci. 2025, 12, 2416161 2416161 (10 of 10) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com

	Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study
	1. Introduction
	2. Result
	2.1. Patient Cohort
	2.2. TB Status is Associated with NACI Response and Dynamically Changes with NACI
	2.3. High TB is Correlated with Poor Prognostic Outcomes
	2.4. The Deep Learning Model Demonstrates Robust Predictive Performance
	2.5. The Deep Learning Model Effectively Evaluates the NACI Response by Predicting TB Status

	3. Discussion
	4. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Author Contributions
	Data Availability Statement

	Keywords


