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Abstract

Arbuscular mycorrhizal (AM) fungi, as beneficial soil microorganisms, inevitably interact

with indigenous microorganisms, regulating plant growth and nutrient utilization in natural

habitats. However, how indigenous microorganisms affect the benefits of growth and nutri-

tion regulated by inoculated AM fungi for plants in karst ecosystem habitats remains unclear

today. In this experiment, the Gramineae species Setaria viridis vs. Arthraxon hispidus and

the Compositae species Bidens pilosa vs. Bidens tripartita exist in the initial succession

stage of the karst ecosystem. These plant species were planted into different soil microbial

conditions, including AM fungi soil (AMF), AM fungi interacting with indigenous microorgan-

isms soil (AMI), and a control soil without AM fungi and indigenous microorganisms (CK).

The plant biomass, nitrogen (N), and phosphorus (P) were measured; the effect size of dif-

ferent treatments on these variables of plant biomass and N and P were simultaneously cal-

culated to assess plant responses. The results showed that AMF treatment differently

enhanced plant biomass accumulation, N, and P absorption in all species but reduced the

N/P ratio. The AMI treatment also significantly increased plant biomass, N and P, except for

the S. viridis seedlings. However, regarding the effect size, the AM fungi effect on plant

growth and nutrition was greater than the interactive effect of AM fungi with indigenous

microorganisms. It indicates that the indigenous microorganisms offset the AM benefits for

the host plant. In conclusion, we suggest that the indigenous microorganisms offset the ben-

efits of inoculated AM fungi in biomass and nutrient accumulation for pioneer plants in the

karst habitat.

Introduction

Karst ecosystem occupies approximately 7~12% of emerged land globally, mainly distributed

in southwest China, and is characterized by high habitat heterogeneity and high vegetation
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fragmentation [1] with high soil erosion, rocky desertification, and barren vegetation nutrient

deficiency [2–7]. However, the karst vegetation retains a robust natural resilience even in

harsh habitats [8, 9]. Initially, the pioneer herbaceous plants, mainly from Gramineae and

Compositae, have high resistance to drought and barrenness, grow fast, and improve soil

structure [10] in the primary succession stage ecosystem restoration [11, 12]. In addition, soil

microorganisms play an essential role in recovering degraded karst systems [13] through pro-

moting the growth and nutrient uptake by plants [14, 15] as well as increasing soil nutrient

bioavailability [16]. Thus, soil microorganisms in karst vegetation restoration cannot be

ignored.

AM fungi, a soil functional microorganism, can play critical roles in recovering degraded

terrestrial ecosystems [17]. AM fungi formed a symbiotic relationship with 80% of terrestrial

plants [18, 19], improve plant growth, nutrient accumulation [20, 21], enhance drought stress

tolerance [22] and maintain soil structure [23], e.g. Guo et al. (2021) [24] proposed that AM

fungi differently affected the competitive ability of Broussonetia papyrifera and Carpinus pub-
escens; Xia et al. (2020) [25] also showed that AM fungi increased nutrients of host plants by

regulating the morphological development of karst plant roots. In addition, Shi et al. (2015)

[26] illustrated that AM fungi increased the biomass, N, and P content in shoots and roots of

plants. Furthermore, AM fungi mycelium can transfer the photosynthetic carbohydrates from

the host plants to the soil, which recruits soil microorganisms [27]. However, we know rela-

tively little about how regulation of plant growth and nutrient by AM fungi is affected by inter-

action with indigenous microorganisms.

AM fungi via extensive extraradical hyphae interacting with indigenous microbial commu-

nities play crucial roles in plant growth in natural habitats [28, 29]. AM fungi and bacteria are

ubiquitous in natural soil [30]. Specifically, AM fungi regulate plant growth, and they are posi-

tively affected by cooperating with indigenous microorganisms [31, 32] or negatively affected

by competing with indigenous microorganisms [33, 34]. Ortiz et al. (2015) [31] suggested that

the combination of AM fungi and specific bacteria could promote plant growth by minimizing

drought-related stress effects. Artursson et al. (2006) [35] also proposed that the co-inoculation

of AM fungi and phosphorus-solubilizing bacteria positively promotes plant nutrient absorp-

tion. In addition, plant growth-promoting rhizobacteria could promote mycorrhizal fungal

activity and establishment [36–38], which are called mycorrhiza helper bacteria [39]. In con-

trast, the competition phenomenon between AM fungi and bacteria was also widely reported

[40]. Azcón-Aguilar et al. (1997) [41] presented evidence of direct competition between AM

fungi and indigenous microorganisms for photosynthetic products of the host plant. Indi-

rectly, Doumbou et al. (2005) [42] proposed that many Streptomyces sp. could exude antifungal

compounds, which indicated that they are fungal competitors under the appropriate environ-

mental conditions. Thus, the cooperation and competition between AM fungi and indigenous

microorganisms are ineluctability in karst soil.

In summary, AM fungi play important roles in improving plant growth and nutrient

absorption. However, AM fungi inevitably interact with indigenous microorganisms in the

vegetation restoration of the karst-degraded ecosystem. It remains unclear how indigenous

microorganisms affect the benefits of growth and nutrition regulated by AM fungi for plants

in karst soils. Because of the complexity and uncertainty of the interaction between AM fungi

with indigenous microorganisms, it is necessary to assess the effect size of AM fungi and indig-

enous microorganisms, and their interaction, on plant growth and nutrition. The aim is to

clarify how indigenous microorganisms affect the benefits of growth and nutrition regulated

by AM fungi for plants in karst soils. We hypothesize that: (1) AM fungi can promote the

growth and nutrients of karst plants (H1), according to that AM fungi increased plant biomass

and nutrition accumulation [20, 26]. (2) Indigenous microorganisms can offset the benefits
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from AM fungi on plant growth and nutrient accumulation (H2), according to that indigenous

microorganisms may negatively affect the AM benefits for the host plant through competition

[33, 34, 41–43].

Materials and methods

Experiment treatments

A potting experiment was conducted by using four herb species: Setaria viridis, Arthraxon
hispidus, Bidens pilosa, and Bidens tripartita in polypropylene plastic pots in a greenhouse of

Guizhou University in Guiyang, China (E: 106˚220 E; N: 29˚490 N; 1,120 m above the sea

level). Three different microbial conditions soil was created to explore the interaction of AM

fungi with indigenous microorganisms in the regulation of plant growth and nutrient utiliza-

tion. It included AM fungi inoculating into sterilized soil (AMF treatment), AM fungi inocu-

lating into natural conditions soil containing indigenous microorganisms (AMI treatment),

and the control soil by removing microorganisms with sterilization (CK treatment). In the

beginning, limestone soil (Calcaric regosols, FAO) [44] was collected from a typical karst

habitat, from which approximately two-thirds of the soil was used for sterilization at 126˚C,

0.14 Mpa for one hour to eliminate microbes, and one-third of the soil was retained for fur-

ther experiments. Subsequently, a 2.5 kg soil subsample of the sterilized or unsterilized soil

was put into each polypropylene plastic pot (180 mm × 160 mm, diameter × height). Five

seeds of Setaria viridis, Arthraxon hispidus, Bidens pilosa, and Bidens tripartita were disin-

fected with a 10% H2O2 solution for 10 minutes and repeatedly washed with sterile water,

and sown in each pot. After sowing seeds in each pot, seeds were covered with 200 g of the

respective soil for promoting seed germination. In addition, the sterilized soil was inoculated

with 10 g Glomus mosseae inoculum as the AMF treatment, and the original soil from field

habitat was inoculated with 10 g Glomus mosseae inoculum as the AMI treatment, indicating

the AM fungi interacting with the indigenous microorganisms in this experiment. Especially,

CK treatment received an additional 10ml of the filtrate by weighing 10g of Glomus mosseae
inoculum with sterile water using a double-layer filter paper, along with a 10 g of sterilized

inoculum of Glomus mosseae was added in order to maintain the consistency of microflora

except for the targeted fungus Glomus mosseae corresponding to AMF treatment. The inocu-

lum propagated for four months with Trifolium repens, including approximately 100 spores

per gram soil, hyphae, and colonized root pieces. There is mutual control between two of

three treatments: the AM fungi effect through comparing AMF with CK treatment; the inter-

active effect of AM fungi with indigenous microorganisms through comparing AMI and CK
treatment; and the indigenous microorganisms effect related to AM fungi through compar-

ing AMI with AMF treatment. Of course, we had to admit that the unsterilized soil probably

had native AM fungi under AMI treatment, even the targeted species Glomus mosseae. How-

ever, it was sure that the Glomus mosseae inoculum interacted with native AMF species and

indigenous microorganisms; further, they jointly affected plants and soil for growth and

nutrition when comparing AMI with AMF. All treatments were replicated five times, and

four plant species contained 60 pots.

The physicochemical properties of limestone soil (per kg) were measured by the methods

from Tan (2005) [45], the PH 8.2, total nitrogen (TN) 0.622 g, alkaline hydrolysis nitrogen

(AN) 0.315 g, total phosphorus (TP) 1.274 g, available phosphorus (AP) 0.163 g, total potas-

sium (TK) 37.79 g, and available potassium (AK) 0.532 g. All plant seeds were also collected

from the same karst habitat used to collect soil. According to the primary field survey, these

plants are successive pioneer species of karst communities as the herbaceous stage, which
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generally coexist in the same habitat as the main Gramineae and Compositae. Three weeks

after seeds germination, only two seedlings were retained in the pot and cultured for five

months. All growing seedlings were watered one time per day for maintaining field capacity,

then harvested to determine the biomass, N, and P concentrations. The Glomus mosseae inoc-

ulum was initially purchased from the Institute of Nutrition Resources, Beijing Academy of

Agricultural and Forestry Sciences (NO.BGA0046).

Determinations of the root mycorrhizal colonization, biomass, and the

accumulation of nitrogen and phosphorus

The grid line-intersect method determined the root mycorrhizal colonization rate [46]. The

biomass of S. viridis, A. hispidus, B. pilosa, and B. tripartita were respectively determined by

weighing tissue of root, stem, and leaves after drying at 80˚C to constant weight. The nitrogen

and phosphorus concentrations in plant tissue were determined by the traditional Kjeldahl

method and the Molybdenum-antimony anti-colorimetric method, respectively [47]. Addi-

tionally, the accumulations of nitrogen and phosphorus were calculated through nutrient con-

centration multiplying by biomass, respectively. Then the nutrient accumulation of plant

individuals was accumulated by root, stem, and leaf.

Calculation of effect size

The effect size was calculated using the response ratio (lnR) of treatment groups to the control

groups plant biomass referred from the proposition of [48] regarding the plant response

mycorrhizal fungi. The AM fungi effect (AME) by AMF vs. CK, the interactive effect of AM

fungi with indigenous microorganisms (AIE) by AMI vs. CK, and the indigenous microorgan-

isms effect related to AM fungi (IME) by AMI vs. AMF were calculated respectively, due to the

mutual control between two of three treatments in this experiment. Therefore, the modified

method was adopted according to Hoeksema et al. (2010) [48] and Hedges et al. (1999) [49] as

follows:

ln R ¼ ln ðXt= XcÞ

Where Xt and Xc represent the biomass or nutrient accumulation of the plant in the values of

the treatment group and control group, respectively, values> 0 indicate positive effects pro-

moting plant growth or nutrient accumulation, values< 0 indicate negative effects suppressing

plant growth or nutrient accumulation.

Statistical analyses

All of the statistical analyses were performed through SPSS 25.0 software. All of the data were

tested for normality and homogeneity of variance before analysis. Two-way ANOVA was

applied for assessing the effects of plant species (Ps; Setaria viridis vs. Arthraxon hispidus vs.

Bidens pilosa vs. Bidens tripartita), soil microbial treatments (Ms; AMI vs. AMF vs. CK), and

their interactions (Ms×Ps) on plant biomass, nitrogen accumulation, and phosphorus accu-

mulation, N/P ratio and effect size by the lnR. The least significant difference (LSD) test was

applied to compare significant differences in root mycorrhizal colonization, biomass, nitrogen,

and phosphorus accumulations, and N/P ratio with effect size by the lnR among the three dif-

ferent conditions of soil microbial treatments with AMI, AMF, and CK or four plant species of

Setaria viridis and Arthraxon hispidus and Bidens pilosa and Bidens tripartita at P�0.05. All

graphs were drawn on Origin 2018.
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Results

Root mycorrhizal colonization of four plant species under different

microbial treatments

A non-significant AMI> AMF of root mycorrhizal colonization was observed in the four spe-

cies. However, the root mycorrhizal colonization of CK treatment was zero; meanwhile, the

AM fungus spore and mycelium were not discovered under CK soil substrate via microscopic

detection (Table 1). The root mycorrhizal colonization of B. pilosa and B. tripartita were signif-

icantly greater than that of A. hispidus and S. viridis, respectively, while for A. hispidus, it was

also greater than S. viridis. Besides, there was no significant difference in root mycorrhizal col-

onization of B. pilosa and B. tripartita under AMI and AMF treatments (Table 1). These results

indicate root mycorrhizal colonization is species differences, and it provides evidence for host

preferences of AM fungal.

Biomass and its response ratio of four plant species under different

microbial treatments

The soil microbial condition treatments (Ms) significantly affected biomass (Table 2). Signifi-

cantly AMF> AMI> CK of biomass were observed in A. hispidus, B. pilosa, and B. tripartita
seedlings except for S. viridis. Plant biomass was increased by AM fungus when comparing

AMF with CK and AMI with CK, respectively. However, the plant biomass under AMI was sig-

nificantly lower than under AMF (Fig 1A). The plant species (Ps) also significantly affected

individual biomass (Table 2). Under AMF and CK treatments, the biomass of A. hispidus was

significantly greater than the other three species. The biomass of S. viridis was significantly

lower than the other three species under AMF and AMI treatments. In addition, there was a

non-significant difference in biomass observed between B. pilosa and B. tripartita seedlings

under any soil microbial condition treatments (Fig 1A). Meanwhile, the interaction of Ms×Ps

Table 1. The mycorrhizal colonization rates of Setaria viridis, Arthraxon hispidus, Bidens pilosa, and Bidens tripartite.

Treatment Mycorrhizal colonization

S.viridis A.hispidus B.pilosa B.tripartita
AMI 20.40 ± 0.68cx 48.60 ± 1.17bx 65.00 ± 1.48ax 67.40 ± 1.29ax

AMF 18.80 ± 1.43cx 46.40 ± 1.78bx 62.20 ± 1.46ax 64.60 ± 1.17ax

The different lowercase letters (a, b, c, d) indicate significant differences between plant species of Setaria viridis, Arthraxon hispidus, Bidens pilosa, and Bidens tripartita
at the 0.05 level; The different lowercase letters (x, y) indicate significant differences between AMF, AMI, treatments under the same plant.

https://doi.org/10.1371/journal.pone.0266526.t001

Table 2. Two-way ANOVAs for the effects of plant species (S. viridis vs. A. hispidus vs. B. pilosa vs. B. tripartita) and soil microbial condition (AMF vs. AMI vs. CK)

on the biomass, the N accumulation, and their response ratio (lnR).

Factors df Biomass Response ratio of biomass

(lnRBiomass)

N accumulation Response ratio of N (lnRN)

F P F P F P F P
Ms 2 124.072 0.000��� 542.979 0.000��� 117.557 0.000��� 416.907 0.000���

Ps 3 34.012 0.000��� 59.966 0.000��� 21.133 0.000��� 54.208 0.000���

Ms×Ps 6 27.106 0.000��� 33.041 0.000��� 13.492 0.000��� 24.766 0.000���

Abbreviations: Ms = Soil microbial condition treatments; Ps = Plant species;

� or �� or ��� indicates a significant difference in P< 0.05 or P < 0.01 or P < 0.001.

https://doi.org/10.1371/journal.pone.0266526.t002
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significantly affected the individual biomass for the four species (Table 2). The results revealed

that AMF and AMI treatments significantly increased the biomass accumulation of four karst

pioneer species. Meanwhile, the biomass was significantly different between A. hispidus and S.

viridis of Gramineae, except for B. pilosa and B. tripartita under AMF.

Fig 1. The biomass (A) and its response ratio lnRBiomass (B) of four plant species through the different microbial treatments. Abbreviations: S. v =

Setaria viridis; A. h = Arthraxon hispidus; B. p = Bidens pilosa; B. t = Bidens tripartita; AMF = the mycorrhizal fungi soil by AM fungi inoculation;

AMI = the combining soil by AM fungi with indigenous microorganism; CK = the sterilized soil as the control by removing microorganism; AME =

AM fungi effect; AIE = interactive effect related to AM fungi interacting with indigenous microbes; IME = indigenous microbial effect related to AM

fungi. The different lowercase letters (a, b, c, d) indicate significant differences between species under AMF, AMI, and CK treatments, respectively. The

different lowercase letters (x, y, z) indicate significant differences between AMF, AMI, and CK treatments for the same species (P< 0.05).

https://doi.org/10.1371/journal.pone.0266526.g001
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Similarly, the soil microbial condition treatments (Ms), the plant species (Ps), and their

interaction significantly affected the response ratio of biomass (lnRBiomass) (Table 2). On the

one hand, a positive effect (lnRBiomass > 0) of biomass was observed in the four species under

AME and AIE conditions except for S. viridis in AIE (Fig 1B). However, a significant AME>
AIE was observed in lnRBiomass, indicating that AM fungus was beneficial for plant biomass,

but the positive effect was decreased when AM fungi interacted with indigenous microorgan-

isms. On the other hand, a negative effect (lnRBiomass < 0) was shown in the IME condition

(Fig 1B), indicating that indigenous microorganisms offset the AM fungi promotion in plant

growth. Precisely, the results indicated that AM fungi significantly increased the biomass accu-

mulation of four karst pioneer species; however, the lnRBiomass reduction by comparing AIE to

AME specified that the indigenous microorganisms offset the benefits of inoculated AM fungi

in promoting plant biomass.

Nitrogen accumulation and its response ratio of four plant species under

different microbial treatments

The soil microbial condition treatments (Ms) significantly affected N accumulation (Table 2).

Significantly AMF> AMI> CK of N accumulation were shown in A. hispidus, B. pilosa, and

B. tripartita seedlings, except for S. viridis. Specifically, the N accumulation was enhanced by

AM fungus when comparing AMF with CK and AMI with CK, respectively. At the same time,

N accumulation under AMI was significantly lower than under AMF (Fig 2A). The plant spe-

cies (Ps) also significantly affected N accumulation (Table 2). Under AMF and AMI treat-

ments, N accumulation in S. viridis was significantly lower than other three species. For CK
treatment, N accumulation in A. hispidus was significantly greater than the other three species.

Moreover, there was a non-significant difference in N accumulation between B. pilosa and B.

tripartita seedlings under any soil microbial condition treatments (Fig 2A). Furthermore, the

interaction of Ms×Ps significantly affected the N accumulation for the four species (Table 2).

These results showed that AMF and AMI treatments significantly increased the N accumula-

tion of four karst pioneer species. Meanwhile, N accumulation was significantly different

between A. hispidus and S. viridis, but not for B. pilosa and B. tripartita under AMF.

Similarly, the soil microbial condition treatments (Ms), the plant species (Ps), and their

interaction significantly affected the response ratio of N (lnRN) (Table 2). One side has a posi-

tive effect (lnRN> 0) of N was observed in four species under AME and AIE conditions except

for S. viridis in AIE (Fig 2B). However, a significant AME> AIE was observed in lnRN, indicat-

ing that AM fungus was beneficial for plant N accumulation, but the positive effect was

decreased when AM fungi interacted with indigenous microorganisms. Another side has a

negative effect (lnRN < 0) obtainable in the IME condition (Fig 2B), indicating that indigenous

microorganisms offset the AM fungi promotion in N accumulation. Overall, the results indi-

cated that AM fungi significantly increased the N accumulation of four karst pioneer species;

however, the lnRN reduction by comparing AIE to AME specified that the indigenous microor-

ganisms offset the benefits of inoculated AM fungi in promoting N accumulation.

Phosphorous accumulation and its response ratio of four plant species

under different microbial treatments

The soil microbial condition treatments (Ms) significantly affected P accumulation (Table 3).

Significantly AMF> AMI> CK of P accumulation was admissible in four species. Unambigu-

ously, AM fungus enhanced P accumulation when comparing AMFwith CK and AMI with

CK; but the P accumulation under AMI was significantly lower than under AMF (Fig 3A). The

plant species (Ps) also significantly affected P accumulation (Table 3). Under AMF and AMI
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treatments, the P accumulation in S. viridiswas significantly lower than other three species. For

CK treatments, the P accumulation of A. hispidus was significantly greater than the other three

species. In addition, there was no significant difference in P accumulation between B. pilosa and

B. tripartita seedlings under any microbial condition soil treatments (Fig 3A). Meanwhile, the

interaction of Ms×Ps significantly affected the P accumulation for four species (Table 3). It

shows that AMF and AMI treatments significantly increased the P accumulation of four karst

pioneer species. Meanwhile, P accumulation was significantly different between A. hispidus and

S. viridis of Gramineae, except for B. pilosa and B. tripartita of Compositae under AMF.

Fig 2. N accumulation (A) and response ratio lnRN (B) of four plant species through the different microbial treatments. The meanings of abbreviations

(S. v, A. h, B. p and B. t; AMF, AMI, and CK; AME, AIE and IME) and the lowercase letters (a, b, c, d; x, y, z) are the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0266526.g002
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Likewise, the soil microbial condition treatments (Ms), the plant species (Ps), and their inter-

action significantly affected the response ratio of P (lnRP) (Table 3). Alternatively, it has a positive

effect (lnRP> 0) of P on four species under AME and AIE conditions. However, a significant

AME> AIE was observed in lnRP, indicating that AM fungus was beneficial for plant P accumu-

lation, but the positive effect was decreased when AM fungi interacted with indigenous microor-

ganisms (Fig 3B). It also has a negative effect (lnRP< 0) in the IME condition and depicts that

the indigenous microorganisms offset the AM fungi promotion in P accumulation. Therefore,

the results consolidated that AM fungi significantly increased P accumulation of four karst pio-

neer species, then the lnRP reduction by comparing AIE to AME designated that the indigenous

microorganisms offset the benefits of inoculated AM fungi in promoting P accumulation.

N/P ratio and its response ratio of four plant species under different

microbial treatments

The soil microbial condition treatments (Ms) significantly affected the N/P ratio (Table 3), sig-

nificantly greater N/P ratio between plant species ranked as the CK> AMF� AMI for S. viri-
dis, the AMI> CK� AMF for A. hispidus, the AMI> AMF> CK for B. Pilosa, and CK�AMI
> AMF for B. tripartita (Fig 4A). The plant species (Ps) also significantly affected the N/P ratio

(Table 3), and the N/P ratio for four plants showed species differences under different soil

microbial treatments. Explicitly, there was a non-significant difference in the N/P ratio of the

four species under AMF treatments. Under AMI treatments, the N/P ratio of A. hispidus and

B. tripartita were significantly greater than S. viridis and B. pilosa, respectively. In the interim,

the N/P ratio of the B. pilosa was greater than S. viridis seedlings. Under CK treatment, the N/P

ratio of B. tripartita was significantly greater than the other three species, while the N/P ratio

of B. pilosa was significantly lower than the other three species (Fig 4A). Likewise, the interac-

tion of Ms×Ps significantly affected the N/P ratio for four species (Table 3). Therefore, AM

fungi significantly reduced the N/P ratio of four species. Equally, the soil microbial condition

treatments (Ms), the plant species (Ps), and their interaction significantly affected the response

ratio of N/P (lnRN/P) (Table 3, Fig 4B). Overall, AM fungi significantly reduced the N/P ratio

for the four-karst pioneer species, portraying that the AM fungi alleviate P limitation and pro-

mote plant growth in karst areas with low P.

Discussion

AM fungi differently regulated the plant growth and nutrient accumulation

AM fungi significantly increased biomass and N and P accumulation for the four karst pioneer

species (Figs 1A, 2A and 3A). Consistently, the positive influence of AM fungi inoculation

on host plant growth and nutrient accumulation was also observed in some previous studies

Table 3. Two-way ANOVAs for the effects of plant species (S. viridis vs. A. hispidus vs. B. pilosa vs. B. tripartita) and soil microbial condition (AMF vs. AMI vs. CK)

on the P accumulation, the N/P ratio, and their response ratio (lnR).

Factors df P accumulation Response ratio of P (lnRP) N/P ratio Response ratio of N/P (lnRN/P)

F P F P F P F P
Ms 2 102.158 0.000��� 394.863 0.000��� 8.263 0.000��� 10.936 0.000���

Ps 3 15.069 0.000��� 24.168 0.000��� 20.876 0.000��� 40.158 0.000���

Ms×Ps 6 12.138 0.000��� 44.834 0.000��� 9.569 0.000��� 12.175 0.000���

Abbreviations: Ms = Soil microbial condition treatments; Ps = Plant species;

� or �� or ��� indicates a significant difference in P< 0.05 or P < 0.01 or P < 0.001.

https://doi.org/10.1371/journal.pone.0266526.t003
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[50, 51]. For instance, He et al. (2017) [20] showed that AM fungi enhanced plant growth and

nutrient absorption of B. papyrifera and B. pilosa in karst soil, which is consistent with our

results that AM fungi significantly increased biomass and accumulation of N and P for the

four plants. There are two main mechanisms that AM fungi promote plant growth and nutri-

ent accumulation. One side is that AM fungi can extend the absorbing network beyond the

rhizosphere nutrient depletion region and absorb a larger amount of soil mineral nutrients,

thereby improving the ability of plants to obtain nutrients [52] and ultimately benefit plant

growth [53–55]. Another is that AM fungi can secrete organic acids and soil enzymes to

Fig 3. P accumulation (A) and response ratio lnRP (B) of four plant species through the different microbial treatments. The meanings of abbreviations

(S. v, A. h, B. p and B. t; AMF, AMI, and CK; AME, AIE and IME) and the lowercase letters (a, b, c, d; x, y, z) are the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0266526.g003
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dissolve the insoluble nutrients and mineralize the organic nutrient [56–58], thereby promot-

ing the availability of soil nutrients [59]. Elbon and Whalen (2014) [60] illustrated that AM

fungi could increase the plant-available P concentration by secreting organic acids and phos-

phatase enzymes. Therefore, AM fungi facilitated the growth and nutrient accumulation of

four karst pioneer plants, which can verify the hypothesis of H1. However, the specific mecha-

nism of AM fungi affecting nutrient accumulation of karst pioneer species needs to be

explored further.

Fig 4. N/P ratio (A) and response ratio lnRN/P (B) of four plant species through the different microbial treatments. The meanings of abbreviations (S. v,

A. h, B. p and B. t; AMF, AMI, and CK; AME, AIE and IME) and the lowercase letters (a, b, c, d; x, y, z) are the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0266526.g004
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The N/P ratio can predict plant nutrient restrictions [61]. A low N/P ratio (< 14) indicates

N limitation, whereas a high N/P ratio (> 16) indicates P limitation, and both N and P limit

plant growth when the N/P ratio is between 14 and 16 [62]. In our experiment, the N/P ratio

of all species was greater than 16 under AMI and CK treatments, except for S. viridis under

AMI and B. pilosa under CK, showing that plant growth was mainly limited by phosphorus in

karst soil. However, the N/P ratio of the four species significantly decreased under AMF treat-

ments compared with AMI and CK treatments for a whole (Fig 4A). AM fungi reduced the

N/P ratio of seedlings, representing that AM fungus is more effective in assisting plants in

obtaining P than N by alleviating P limitation. These results were similar to those of Shen et al.

(2020) [63], who suggested that AM fungi alleviated the P limitation of plants via the mycor-

rhizal network in low-P karst soils. Consequently, the AM fungi play a vital role in alleviating

the nutritional restriction of nutrient-deficient karst soils.

AM fungi enhanced four plants’ biomass, N, and P accumulation differently. Meanwhile,

the A. hispidus, B. pilosa, and B. tripartita obtained greater benefits than the S. viridis (Figs 1A,

2A and 3A), demonstrating that the promotion effect of AM fungi on plants was different by

host type. Besides, the mycorrhizal colonization of A. hispidus, B. pilosa, and B. tripartita was

significantly higher than S. viridis (Table 1). It was well proof of the different roles of AM fungi

on different species, and these differences reflected that AM fungi had the selectivity for host

plants. AM fungi showed host-specific growth response [64] and induced differential growth

responses in host plant species [65]. It was similar to the research conducted by Liu et al.

(2003) [66], who proposed that Nicotiana tabacum was a more favorable host plant for Glomus
constrictum and Glomus multicaule to the other hosts. Therefore, AM fungi are crucial for

plant growth and nutrient utilization. However, the mutual selection between AM fungi and

host plants cannot be ignored, and thus the specific mechanism of selective plant-AMF combi-

nations of karst pioneer species needs to be explored in further study.

Indigenous microorganisms affected the benefits of AM fungi on plant

growth and nutrient accumulation

In this experiment, the positive AM fungi effect on plant growth and nutrition was greater

than the interactive effect related to AM fungi interacting with indigenous microorganisms for

a whole (Figs 1B, 2B and 3B). It seems to imply that the indigenous microorganisms offset the

benefits of AM fungi on plant growth and nutrient accumulation, signifying a negative rela-

tionship between AM fungi and indigenous microorganisms. Previous studies have demon-

strated that AM fungi interact with a wide variety of indigenous microorganisms [67, 68].

Meanwhile, AM fungi regulated plant growth positively affected by cooperating with indige-

nous microorganisms [32] or negatively affected by competing with indigenous microorgan-

isms [34], which depended on the species of indigenous microorganisms that interact with

AM fungi [69–71]. Positively, Mortimer et al. (2012) [72] presented a synergistic relationship

between AM fungi and nitrogen-fixing bacteria showing additive benefits for the growth and

nutrient accumulation in the Acacia cyclops. Artursson et al. (2006) [35] illustrated that the

plant growth-promoting rhizobacteria (PGPR) could enhance the activity of AM during a

symbiotic relationship with the host plant. It is because of the stimulatory effects of PGPR on

AM growth [73]. Negatively, AM fungi can compete with indigenous microorganisms to pro-

duce different effects on plant growth [74]. Some bacteria in the rhizosphere would compete

for resources with AM fungi or inhibit the activity of AM fungi, thereby affecting plant growth

[75]. It is because indigenous microorganisms have great advantages in colonizing plant roots

due to their priority in resources and allocating root space of the host plants compared with

colonizers [76, 77]. In addition, Dąbrowska et al. (2014) [78] presented that inoculation AM
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fungi promoted the growth of plants, but interactive effects of AM fungi with indigenous

microorganisms inhibited plant growth. It was similar to our study that AM fungi positively

affected plant growth and nutrient accumulation; however, indigenous microorganisms

reduced this effect, indicating a negative relationship between AM fungi and indigenous

microorganisms. It is possibly caused by the competition between AM fungi and indigenous

microorganisms, mainly two sides. One side is interference competition, meaning that some

microbes directly inhibit the function of AM fungi via exuding allelochemical substances [79]

and bacterial antibiotics [80, 81]. For example, Doumbou et al. (2005) [42] proposed that

numerous Streptomyces sp. could exude antifungal compounds, thereby inhibiting the func-

tion of AM fungi under certain environmental conditions. The other side is resources, and

ecological niches competition, which was proposed by Leigh et al. (2011) [43] who suggested

that resource competition for decomposition products between AM fungi and bacteria, result-

ing in an antagonistic relationship between them. Niwa et al. (2018) [76] suggested that the

fungus inoculum mainly competed with the indigenous fungi, probably because their life-his-

tory strategy was identical to the inoculum fungus. All the above-mentioned can explain why

the indigenous microorganisms relieved the benefits of AM fungi on plant growth and nutri-

ent accumulation. It was consistent with Biró et al. (2000) [82], who found the indigenous

microflora greatly reduced the functioning of the functioning of the mycorrhizal inoculum.

Collectively, indigenous microorganisms offset the benefits of AM fungi in this study, which

illustrated the interactions between AM fungi and indigenous microorganisms in karst areas

should be mainly a negative relationship, it verified the hypothesis of H2 that indigenous

microorganisms offset the benefits of AM fungi on plant growth and nutrient accumulation.

However, the specific mechanisms of the negative relationship between specific microorgan-

isms and AM fungi in karst soil remain to be further studied.

Conclusions

In this experiment, AM fungi significantly enhanced the biomass, N, and P accumulation for

the four species but reduced the N/P ratio partly. AM fungi interacting with indigenous micro-

organisms increased plant biomass, N, and P accumulation, except for S. viridis seedlings.

However, the benefits from interaction were lower than benefits from AM, indicating that the

indigenous microorganisms offset the benefits of AM fungi for host plants. In conclusion, we

suggest that the indigenous microorganisms offset the benefits of growth and nutrition regu-

lated by inoculated AM fungi for pioneer plants in karst soil. Finally, it is necessary to under-

stand the interactions of AM fungi with indigenous microbial communities to better apply

mycorrhizal technology to the degraded ecosystem in karst areas.
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