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INTRODUCTION 
 
Diabetes mellitus (DM) affected 158.8 million people 
aged 20–79 years in the Western Pacific region in 
2017, translating to a 9.5% prevalence rate [1].  
As many cases of fracture are reported in patients  
with  DM  [2–7].  Mechanistic  studies  are required  to  

 
determine the cause of the decline in bone health in 
this disease context. 
 
Bone remodeling depends on bone formation by 
osteoblasts are formed by bone marrow–derived 
mesenchymal stem cells (BM-MSCs) [8]. BM-MSCs are 
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ABSTRACT 
 
Background: Stearoyl–coenzyme A desaturase-1 (SCD1) can inhibit the development of diabetic bone disease by 
promoting osteogenesis. In this study, we examined whether this regulation by SCD1 is achieved by regulating 
the expression of related miRNAs. 
Methods: SCD1 expression levels were observed in human bone-marrow mesenchymal stem cells (BM-MSCs) of 
patients with type 2 diabetes mellitus (T2DM), and the effect of SCD1 on osteogenesis was observed in human 
adipose-derived MSCs transfected with the SCD1 lentiviral system. We designed a bioinformatics prediction 
model to select important differentially expressed miRNAs, and established protein–protein interaction and 
miRNA–mRNA networks. miRNAs and mRNAs were extracted and their differential expression was detected. 
The SCD1–miRNA–mRNA network was validated. 
Findings: SCD1 expression in bone marrow was downregulated in patients with T2DM and low-energy fracture, 
and SCD1 expression promotes BM-MSC osteogenic differentiation. The predictors in the nomogram were 
seven microRNAs, including hsa-miR-1908 and hsa-miR-203a. SCD1 inhibited the expression of CDKN1A and 
FOS, but promoted the expression of EXO1 and PLS1. miR-1908 was a regulator of EXO1 expression, and miR-
203a was a regulator of FOS expression. 
Interpretation: The regulation of BM-MSCs by SCD1 is a necessary condition for osteogenesis through the miR-
203a/FOS and miR-1908/EXO1 regulatory pathways. 
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key modulators of anti-inflammatory, anti-apoptotic, and 
angiogenic processes. [9] In a rat model of type 2 
diabetes mellitus (T2DM), insufficient differentiation  
of MSCs into osteoblasts led to inflammation that 
impaired fracture healing, and metformin promoted  
this differentiation [10, 11]. However, the way in  
which hyperglycemia disturbs the bone MSC micro-
environment and the molecular mechanism underlying 
inflammatory response upregulation remain largely 
unknown. 
 
Our previous research revealed that stearoyl–coenzyme 
A desaturase-1 (SCD1), an enzyme responsible for the 
addition of unsaturation bonds to the fatty acid 
precursors of stearate and palmitate [12–17], enhanced 
osteogenesis by promoting osteogenic differentiation of 
MSCs and oxidative stress [18, 19]. Compared with 
healthy controls, postmenopausal patients with 
osteoporosis have increased levels of let-7c [19]. In vitro 
experiments showed that the overexpression of let-7c 
inhibited osteogenic differentiation, and the inhibition of 
let-7c function promoted this process. A luciferase 
reporter assay verified that let-7c is a target molecule of 
SCD1, and the silencing of SCD1 significantly reduced 
the effects of let-7c inhibitors on osteoblast markers 
[19]. These data indicate that SCD1 significantly 
promotes osteogenic differentiation. However, whether 
patients with T2DM benefit from SCD1 is not clear, as 
high SCD1 activity has been related to fatty liver and 
insulin resistance in humans [20]. On the other hand, the 
incidence of metabolic diseases is reportedly lower in 
patients with high unsaturated/saturated fat ratios and 
inflammatory responses [21]. Thus, the question arises 
of whether high SCD1 expression represents protective 
factors in the hyperglycemic microenvironment that 
prevent further development of metabolic disorders. 
 
Messenger RNAs (mRNAs) are regulated by miRNAs, 
which degrade or inhibit their translation into proteins by 
interacting with their 3’ untranslated regions [22, 23]. 
Thus, miRNAs are key factors that fine tune several 
processes, including oxidative stress, differentiation, 
remodeling, and apoptosis [24–26]. Diseases such as 
osteoarthritis [27, 28], T2DM [29], coronary heart 
disease [30], and cancer [31, 32] are influenced by 
changes in serum miRNA levels. Recently, numerous 
dysregulated miRNAs were identified and shown to have 
major effects on bone metabolism in fracture and 
diabetes [33, 34]. We showed that let-7c is involved with 
the translation of MSCs via SCD1 targeting and the 
reduction of osteogenic transcription factor activation; we 
also found that SCD1 induced significantly differential 
expression of several fracture-related miRNAs [19], 
suggesting the involvement of miRNA/SCD1 networks 
in bone health. Similarly, a recent study showed that oleic 
acid (OA), a product of SCD1 catalysis, induces miR-

203a expression [35]. Therefore, we speculated that 
SCD1, as a factor involved in diabetes development, 
exerts control over bone MSCs required for the 
proliferation and development of osteocytes in the 
hyperglycemic bone microenvironment through SCD1/ 
miRNA/mRNA regulatory pathways. The objective of 
this study was to examine this speculation. 
 
Evidence before this study 
 
Diabetic fracture is characterized by bone quality 
deterioration in the hyperglycemic microenvironment. 
Previous research revealed that stearoyl–coenzyme A 
desaturase (SCD1), which influences the development of 
diabetes and enhances osteogenesis, may regulate the 
expression of micro-RNA (miRNA). However, miRNAs 
and mRNAs expression pattern after overexpression of 
SCD1 and the underlying mechanism associated with 
fracture risk in diabetic patients remains unclear. 
 
Added value of this study 
 
According to our nomogram prediction model, hsa-
miR-550a-5p, hsa-miR-382-3p, hsa-miR-369-3p, hsa-
miR-376c-3p, hsa-miR-1908, hsa-miR-203a, and hsa-
miR-942 were identified as the predictors of fracture in 
diabetic patients. This nomogram is suitable for the 
prediction of fracture risk in diabetic patients. The 
miRNAs–mRNAs network indicated that the majority 
of hub genes associated with diabetes were influenced 
by those predictors. Furthermore, experiments and 
microarray analyses demonstrated that SCD1 could be 
beneficial in the treatment of patients with diabetes and 
high fracture risk and characterized a fracture risk 
regulatory network involving dysregulated miRNAs and 
hub genes after SCD1 overexpression in MSCs. 
 
Implications of all the available evidence 
 
This study showed that SCD1/miR-203a/FOS and 
SCD1/miR-1908/EXO1 are necessary for bone health. 
Moreover, the fracture risk nomogram and the 
miRNAs-mRNAs network identified in this study also 
provide a basis for further exploration of the therapeutic 
targets and biomarkers underlying fracture in the 
context of type 2 diabetes. 
 
Diabetic fracture is characterized by bone quality 
deterioration in the hyperglycemic microenvironment. 
Previous research revealed that stearoyl–coenzyme A 
desaturase (SCD1), which influences the development 
of diabetes and enhances osteogenesis, may regulate  
the expression of micro-RNA (miRNA). However, 
miRNAs and mRNAs expression pattern after over-
expression of SCD1 and the underlying mechanism 
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associated with fracture risk in diabetic patients remains 
unclear. 
According to our nomogram prediction model,  
hsa-miR-550a-5p, hsa-miR-382-3p, hsa-miR-369-3p, 
hsa-miR-376c-3p, hsa-miR-1908, hsa-miR-203a, and 
hsa-miR-942 were identified as the predictors of 
fracture in diabetic patients. This nomogram is suitable 
for the prediction of fracture risk in diabetic patients. 
The miRNAs–mRNAs network indicated that the 
majority of hub genes associated with diabetes were 
influenced by those predictors. Furthermore, experi-
ments and microarray analyses demonstrated that SCD1 
could be beneficial in the treatment of patients with 
diabetes and high fracture risk and characterized a 
fracture risk regulatory network involving dysregulated 
miRNAs and hub genes after SCD1 overexpression  
in MSCs. 
 
This study showed that SCD1/miR-203a/FOS and 
SCD1/miR-1908/EXO1 are necessary for bone health. 
Moreover, the fracture risk nomogram and the 
miRNAs-mRNAs network identified in this study also 
provide a basis for further exploration of the therapeutic 
targets and biomarkers underlying fracture in the 
context of type 2 diabetes. 
 
RESULTS 
 
SCD1 is downregulated in postmenopausal diabetic 
women with high fracture risk 
 
SCD1 expression levels in purified human BM-MSCs 
from diabetic patients with high-energy fracture 
(controls) and diabetic patients with low-energy 
fracture were examined by quantitative real-time PCR. 
Patients with high-energy fracture (sustained mainly in 
traffic accidents) were equivalent to the normal control 
group (diabetic patients with good bone quality and  
no fracture), and those with low-energy fracture (such 
as that sustained in falls) were equivalent to the 
diabetic bone disease group. This grouping was based 
on ethical considerations, as the collection of bone 
marrow and bone tissue samples from healthy 
individuals would not be ethical. The results showed 
that average SCD1 expression level was significantly 
lower in diabetic patients with low-energy fracture  
than in controls (Figure 1A, 1B). To understand the 
expression of these genes in the human body more 
intuitively, we constructed human tissue–enriched  
protein expression maps using the data from the GTEX 
database (http://www.bio-info-trainee.com/3705.html), 
which contains bone marrow data from autopsy 
specimens obtained from subjects who were healthy 
before death (e.g., traffic accident victims). The  
results showed that SCD1 was highly enriched in bone 
(Figure 1C, 1D). Therefore, our findings emphasize the 

expression of SCD1 may be associated with low-energy 
fracture risk in diabetics. 
SCD1   overexpression  promotes  osteogenic 
differentiation and induces expression changes 
in BM-MSCs 
 
BM-MSCs were successfully transfected (at a rate of 
88.3%) using the SCD1 lentiviral system (Table 1), as 
indicated by fluorescence staining (Figure 2A) and 
signal histogram (Supplementary Figure 1). The RT-
PCR analysis revealed higher SCD1 mRNA levels in the 
SCD1-overexpressing group than in the EV group. 
SCD1 activity was also significantly greater in 
transfected BM-MSCs than in the EV group (P < 0.05; 
Figure 2A). These results demonstrate successful 
construction of an SCD1 overexpression system in BM-
MSCs. ALP and cetyl stain activity were significantly 
greater in SCD1-overexpressing cells than in the EV and 
control groups at 1 and 2 weeks, suggesting that SCD1 
overexpression in BM-MSCs promotes osteogenesis 
(Figure 2B). Western blot analysis revealed positive 
correlation between SCD1 and osteocalcin expression 
levels (Figure 2C), similar to our previous findings. 
Thus, osteogenesis was more active in SCD1 
overexpressing BM-MSCs than in controls. 
 
Compared with the control group, BM-MSCs had 522 
genes with ≥1.5-fold differences in gene expression 
(189 upregulated, 333 downregulated) after SCD1 
overexpression. Twelve genes had >3 times differential 
expression (2 upregulated, 10 downregulated) 
(Supplementary Figure 1A–1G). Classical pathway 
analysis suggested that these DEMs are involved 
primarily in important biological functions, such as 
activation of the nuclear factor erythroid 2–related 
factor 2 (NRF2)-mediated oxidative stress response 
pathway (Figure 2D). SCD1 overexpression 
downregulated inhibitory factors in this pathway, such 
as FOS. Disease and function analyses suggested that 
the DEMs are involved mainly in biological functions 
such as Cell Death and Survival, Cancer and 
Organismal Injury and Abnormalities (Figure 2E, and 
Supplementary Figure 1J). Bioinformatics analysis 
revealed that CDKN1A, with |logFC| > 1.5, plays a vital 
role in these pathways. However, as our subsequent 
experiments showed that CDKN1A was not as 
significant as FOS in this setting (data not shown), we 
did not further examine its role of CDKN1A in SCD1-
overexpressing MSCs. 
 
The first regulatory network identified in the regulation 
effect analysis consisted of ALB, BTC, CAMP, CXCL8, 
F2R, IL22, MARK2, NFATC2, PF4, PTPRJ, SAMSN1, 
TBK1, Tnf (family), TXN, and VCAN. These regulators 
have activation effects on organismal death through 
ANGPT1, CCL20, CDKN1A, CEBPD, COL1A1, 

http://www.bio-info-trainee.com/3705.html
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CRISPLD2, CTGF, CXCL2, CXCL3, CYP1B1, F3, 
HAS1, HSPA5, IL1A, IL1R1, INHBA, NFKBIZ, 
PTGS2, RBL2, SAA1, SOD2, SORT1, STAT2, and 
TNFAIP3, and inhibitory effects on myeloid cell 
movement and connective tissue cell pathway 
development (Supplementary Figure 1H). PPI network 
analysis revealed connections among biomolecules in 
the dataset. The network map with the highest score 
affected mainly organ development and morphology, 
and reproductive system development and function, with 
CDKN1A playing a key role (Supplementary Figure 1I). 
Together, these results suggest that SCD1 regulates the 
NRF2-mediated oxidative stress response, mitotic roles 

of polo-like kinase, hepatic stellate cell activation, and 
hepatic fibrosis, controlling necrosis and organismal 
death/survival. 
 
DE-miRNAs and DEMs selected from GEO datasets 
 
The expression levels of genes acquired from the 
GSE70318 and GSE25462 datasets are shown in  
Figure 3A, 3B. GSE70318 provides information on 
serum miRNA signatures that indicate skeletal fracture 
and influence osteogenic differentiation of MSCs in 
post-menopausal women with and without T2DM. 
GSE25462 is a dataset of miRNAs related to diabetes 

 

 
 



www.aging-us.com 9553 AGING 

Figure 1. SCD1 expression in humans. (A) (mRNA) (B) (protein) showed the difference in SCD1 expression between patients with diabetic 
high-intensity fractures and patients with low-intensity fractures. (C, D) showed the human tissue enriched protein expression maps and the 
boxplot of SCD1 expression with high levels of SCD1 expression (GTEX cohort, n = 68). 
Table 1. The quality control information of RNA sample after overexpression SCD-1. 

Number Sample 
Thermo NanoDrop 2000 2100 results 

Results 
Concentration (ng/μL) A260/A280 RIN 28S/18S 

G2017-1 NC 583.8 2 9.9 1.8 Qualified 
G2017-2 NC 1006.7 1.95 9.6 1.9 Qualified 
G2017-3 NC 1067.7 2 9.8 2.1 Qualified 
G2018-1 OE 538.1 1.97 10 2.1 Qualified 
G2018-2 OE 699.4 2.03 10 2.1 Qualified 
G2018-3 OE 65.2 2.01 9.9 1.9 Qualified 

Quality control standard: Thermo NanoDrop 2000 (1.7< A260/A280 <2.2), Agilent 2100 Bioanalyzer (RIN>=7.0 and 28S/18S>0.7). 
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Figure 2. SCD1 overexpression promotes osteogenic differentiation and induces expression changes in BM-MSCs.  
(A) Fluorescence staining showed the transfection of BM-MSCs with SCD1 lentivirus. Comparison results of SCD1 expression and activity 
between the SCD1 overexpression and control groups were showed in the table beneath. Data are expressed as means ± standard deviations 
(n = 6). *P< 0.05 vs. control (EV) group. (B) Cetyl staining (a, b: 1-week SCD1 post-transfection; c, d: 2-weeks SCD1 post-transfection; a, c: 
control; b, d: overexpression). (C) Western blot results. (D) Signal pathway histogram showing the enrichment of differentially expressed 
genes in the classical signaling pathway. All signal paths were sorted using –log(P); orange, Z score>0; blue, Z score < 0. Z scores > 2 indicate 
significant pathway activation and Z scores < –2 indicate significant pathway inhibition. The ratio of the number of differentially expressed 
genes to the number of all genes in the signaling pathway is given. The NRF2-mediated oxidative stress response was significantly inhibited, 
(Z score = –21.121). (E) Disease and function histograms showing the enrichment of differentially expressed genes. All diseases and functions 
were sorted using –log(P). 
 

and skeletal-muscle insulin resistance. We found no 
miRNA dataset related directly to diabetic bone disease; 
considering the close relationship between skeletal 
muscle and bone (and especially fracture risk), and the 
large size and good quality of the GSE25462 dataset, we 
used these data in this study (Supplementary Figure 2A–
2D). We speculated that the biological effects of SCD1 
on skeletal muscle and BM-MSCs were similar. Our 

experiments revealed that the overexpression of SCD1 
led to the overexpression of miR-1908 and miR-203a, 
confirming this hypothesis. After normalization, the 
gene distribution was uniform and adequate for further 
study (Supplementary Figure 2E). Volcano plots of 
differential expression are presented in Supplementary 
Figure 2F. For GSE70318 data, hsa-miR-382-3p, hsa-
miR-369-3p, hsa-miR-376c-3p, and hsa-miR-1908 were 

 

 
 

Figure 3. Differential expression of miRNA and mRNA. (A) Heat map of Differentially expressed micro-RNAs from GSE70318. (B) Heat 
map of Differentially expressed mRNAs from GSE25462. Red: upregulation; Blue: downregulation. GSE70318 provides information on serum 
miRNA signals regarding fractures in postmenopausal women with or without type 2 diabetes. GSE25462 is a dataset of miRNAs related to 
diabetes and skeletal muscle insulin resistance. We did not find a miRNA dataset directly related to diabetic skeletal disease; considering the 
close relationship between skeletal muscle and bone (especially fracture risk), and the large size and high quality of the GSE25462 dataset, 
we used these data. 
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the most upregulated miRNAs and hsa-miR-550a-5p, 
hsa-miR-203a, and hsa-miR-942 were the most 
downregulated miRNAs in the diabetic fracture group. 
In total, 147 DEMs (80 upregulated, 67 downregulated) 
were obtained from the GSE25462 skeletal muscle 
samples. Matrix data for differentially expressed from 
GSE70318 and DEMs from GSE25462 are presented as 
heatmaps in Figure 3A, 3B. 
 
DEMs in the GSE25462 dataset showed enrichment in 
BPs (drug responses, negative regulation of endo-
peptidase activity) MFs (serine-type endopeptidase 
inhibitor activity, protein heterodimerization, calcium ion 
binding), and CCs (negative regulation of apical plasma 
membrane and extracellular region; Supplementary 
Figures 3A and 4). Pathway analysis showed that the 
DEMs were involved mainly in autoimmune thyroid 
disease, the oxytocin signaling pathway, bile secretion, 
and the T cell receptor signaling pathway (P < 0.05; 
Supplementary Figure 5A, 5B). The most significantly 
enriched genes in the network were associated with the 
oxytocin signaling pathway (Supplementary Figure 5). 
Enriched KEGG pathways were the oxytocin signaling 
and Epstein−Barr virus infection pathways for upregulated 
DEMs, and autoimmune thyroid disease pathways for 
downregulated DEMs (Supplementary Figures 3B and 
5). Target genes of both upregulated and downregulated 
DEMs were enriched for histidine metabolism. 
 
miRNAs selected by predictive modeling of diabetic 
fracture risk 
 
Based on the LASSO regression model, we selected  
7 key microRNA predictors of fracture risk in diabetic 
patients from 10 features: hsa-miR-550a-5p, hsa-miR-
382-3p, hsa-miR-369-3p, hsa-miR-376c-3p, hsa-miR-
1908, hsa-miR-203a, and hsa-miR-942 (Table 2; 
Supplementary Figure 6A, 6B). A nomogram model 
incorporating these independent predictors is shown in 
Figure 4A–4C. The model showed strong performance 
in the prediction of fracture risk in patients with T2DM 
(Supplementary Figure 6C). The C-index of the 
nomogram for the test cohort was 0.934 (95% CI, 0.874–
1.000), and was validated to be 0.919 by bootstrapping, 
suggesting strong discriminatory power and accurate 
predictive performance (Supplementary Figure 6D). The 
decision curve showed that application of the nomogram 
for the prediction of fracture risk is beneficial relative to 
the scheme without clinical interventions (Figure 4D). In 
this range, this predictive model can better guide clinical 
practice, including early intervention to manage fracture 
risk factors, thereby reducing this risk in patients with 
diabetes. Enriched KEGG pathways for all of these DE-
miRNAs were the oxytocin signaling and Epstein−Barr 
virus infection pathways, and miR-1908 was enriched in 
all of noteworthy pathways (Figure 4E). 

miR-1908 and miR-203a levels are related to SCD1 
expression 
 
The levels of miR-1908 and miR-203a in the SCD1-OE 
group were associated significantly with the expression 
of SCD1, as determined by quantitative real-time PCR 
analysis (P < 0.05, Figure 5A–5C). Positive miR-1908 
expression and negative miR-203a expression were 
each observed in patients with low-energy fracture 
(Figure 5D, 5E). 
 
PPI network and interrelationships between 
pathways 
 
In STRING network analysis, 104 nodes and 86 edges 
were identified in the GSE25462 data, with a PPI 
enrichment P value of 8.19e-07 (Supplementary Figure 
7). Based on the PPI network, modules were identified, 
and 19 hub genes were screened out (Figure 6A). FOS, 
CDKN1A, REM1, NTM, EXO1, PLS1, ZNF329, and 
HYAL4 played important roles in the network (P < 0.05, 
|log FC| ≥ 1.2; Figure 6A). According to enrichment 
analysis, GO functions were associated mainly  
with responses to corticosterone, mineralocorticoid, 
glucocorticoid, and corticosteroid stimuli, toxins, 
extracellular stimuli, and stress. KEGG pathways were 
associated mainly with oxytocin signaling and hepatitis 
B (Figure 6B). FOS, CDKN1A and EXO1 were 
involved in the most enrichment processes, with high 
degrees of interaction (Table 3). 
 
Pearson correlation analysis showed that CDKN1A 
correlated significantly with molecules associated with 
its function, including FOS (r D= 0.518), PLS1 (r D = –
0.224), and EXO1 (r D = –0.203). CCNA2 also 
correlated with molecules associated with its function, 
including CDKN1A (r D = 0.999), FOS (r D = 0.535), 
and EXO1 (r D = –0.87; Figure 6C). 
 
Based on the miRWalk3.0 and miRTarBase databases, 
linkage between DEMs and miRNAs is displayed in 
Figure 6D. Ten hub genes (ABCG5, PLTP, CCDC3, 
REM1, FOS, CDKN1A, NTM, ABCC2, GCG, and 
CALCB) were likely influenced by the down-regulation 
of miR-550a-5p in T2DM. Three hub genes (EXO1, 
CNTN3, and ZNF329) were modulated by miR-382-3p. 
And miR-1908 targeted five hub genes (HYAL-4, PLS1, 
EOX1, CNTN3, and ZNF329) in the diabetic fracture 
group. Ten hub genes were controlled by miR-942. 
Combined with the logistic regression results, these 
results indicate that miR-203a and miR-1908 are key 
modulators of fracture and nonunion in patients with 
diabetes. FOS and CDKN1A were the strongest targets 
of hsa-miR-203a, and PLS1 and EXO1 appeared to be 
the strongest targets of hsa-miR-1908. hsa-miR-203a 
and hsa-miR-1908 displayed similar expression patterns.
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Table 2. DE-miRNAs' expression (from GSE70318) of DM and DMFX between all groups. 

Group DE-miRNAs Log FC Ave Expr t P value adj. P value B 
DM vs. DF hsa-miR-1908 1.971433518 37.25828601 3.108424187 0.003589719 0.078461002 -1.932506566 
DM vs. NF hsa-miR-1908 2.072686981 37.53576177 2.625233193 0.012484124 0.159172582 -2.862992842 
DM vs. DF hsa-miR-550a-5p -3.297139889 39.68187327 -4.175946403 0.00017111 0.013089881 0.809395368 
DM vs. NF hsa-miR-550a-5p -2.052091413 40.22924515 -2.559383961 0.014673316 0.17269364 -2.99553445 
NM vs. DF hsa-miR-550a-5p -3.820107929 39.4024267 -4.64777946 4.55E-05 0.003477881 2.009361175 
DM vs. DF hsa-miR-376c-3p 1.459958449 33.26060249 3.136343478 0.003330441 0.078461002 -1.865877696 
NF vs. DF hsa-miR-376c-3p 1.088885042 33.40756579 2.528879569 0.015800129 0.117673065 -3.272405749 
NM vs. DF hsa-miR-376c-3p 1.510121259 33.03627315 3.055844618 0.00425526 0.059186792 -2.181922657 
DM vs. DF hsa-miR-382-3p 3.257160665 39.2225831 3.621318593 0.000866714 0.044202412 -0.659953251 
NF vs. DF hsa-miR-382-3p 2.358594183 39.41555055 2.392036678 0.021906492 0.139653883 -3.554802592 
NM vs. DF hsa-miR-382-3p 3.495299708 38.76599151 3.700970715 0.00072775 0.019514414 -0.567368574 
DM vs. DF hsa-miR-369-3p 1.594729917 36.12329294 3.23304419 0.002562973 0.078461002 -1.632574009 
NF vs. DF hsa-miR-369-3p 1.450477839 36.14316136 3.19582501 0.002837101 0.075890586 -1.753163692 
NM vs. DF hsa-miR-369-3p 1.977112143 35.58799383 4.04832837 0.000268212 0.013678815 0.356239113 
DM vs. DF hsa-miR-203a -2.246267313 38.16271122 -2.592728721 0.013519407 0.188042665 -3.097298217 
DM vs. NF hsa-miR-203a -2.686184211 38.03373615 -3.219709086 0.00265963 0.070320793 -1.575412588 
DM vs. DF hsa-miR-942 -1.531087258 37.1696295 -2.470627692 0.018176238 0.19864032 -3.352699045 

Note: 
DM (postmenopausal women with T2DM, without histories of at least one osteoporotic fracture), 
NM (postmenopausal women without T2DM, without histories of at least one osteoporotic fracture), 
NF (postmenopausal women without T2DM, with histories of at least one osteoporotic fracture), 
DF (postmenopausal women with T2DM, with histories of at least one osteoporotic fracture). 
 
Representation: 
DM vs. DF: the DE-miRNAs between DM and DMFX. 
DM vs. NF: the DE-miRNAs between DM and NF. 
NF vs. DF: the DE-miRNAs between NF and DF. 
NM vs. DM: the DE-miRNAs between NM and DM. 
 

CDKN1A, FOS, EXO1 and PLS1 are regulated by 
SCD1 
 
Based on the above-reported findings, hsa-miR-203a and 
hsa-miR-1908 were selected as co–DE-miRNAs of 
GSE70318 and BM-MSCs after SCD1 overexpression. 
PLS1, EXO1, FOS, and CDKN1A were selected as co-
DEMs of GSE25462 and BM-MSCs after SCD1 
overexpression. Quantitative real-time PCR showed that 
the average expression levels of EXO1 and PLS1 were 
significantly lower in the bone marrow of diabetic 
patients with low-energy fracture than in that of controls, 
whereas the opposite was observed for FOS and 
CDKN1A (Figure 7A). To understand the expression of 
these genes in the human body more intuitively, we 
constructed human tissue–enriched protein expression 
maps. We found that SCD1, PLS1, and EXO1 are highly 
enriched in bone, whereas CDKN1A and FOS 
expression levels in bone are relatively low (Figure 7B, 
7C). The expression of osteogenesis-promoting proteins 

may be higher and that of osteogenesis-free proteins may 
be lower in the normal bone environment; thus, SCD1, 
EXO1, and PLS1 may be more important for 
osteogenesis, whereas FOS and CDKN1A could be 
detrimental to skeletal development. Furthermore, gene 
microarray assays, western blotting and qPCR confirmed 
that SCD1 inhibits CDKN1A/FOS expression, and may 
upregulate EXO1/PLS1 (Figure 7D, 7E). 
 
miR-1908 inhibits and miR-203a promotes the 
proliferation and osteogenic differentiation of BM-
MSCs 
 
We next aimed to determine whether miR-1908 and 
miR-203a regulated the osteogenic differentiation of 
BM-MSCs. First, the expression of miR-203a and miR-
1908 was greatly enhanced by infection with mimics 
(Figure 8A), and an ALP assay showed that the miR-
1908 mimic reduced ALP activity, whereas the miR-
203a mimic increased it (Figure 8B). Then, the protein 
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Figure 4. The establishment and validation of the risk prediction model of diabetic fracture. (A) Developed diabetic fracture 
nomogram. Note: The diabetic fracture nomogram was developed in the cohort, with hsa-miR-550a-5p, hsa-miR-382-3p, hsa-miR-369-3p, 
hsa-miR-376c-3p, hsa-miR-1908, hsa-miR-203a and hsa-miR-942 incorporated. (B) Predictive factors of fractures in patients with DM2.  
(C) Differential miRNA expression levels between with (DMFX) and without (DM) fragility fractures in the postmenopausal women with type 2 
diabetes. To enable intuitive interpretation of upregulation and down-regulation, Cq values are inverted along the y axis. (D) Decision curve 
analysis for the diabetic fracture nomogram. (E) Enrichment analysis of hsa-miR-550a-5p, hsa-miR-382-3p, hsa-miR-369-3p, hsa-miR-376c-3p, 
hsa-miR-1908, hsa-miR-203a and hsa-miR-942 using mirPath v.3. 
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expression of the BM-MSCs was analyzed by western 
blotting under the condition of infected with an miR-
203a or miR-1908 mimic or transfected with an miR-
203a or miR-1908 inhibitor respectively (Figure 8C). 
The miR-203a mimic significantly reduced the 
expression of FOS, and the miR-1908 mimic 
significantly decreased the expression of EXO1. The 
proliferation of BM-MSCs after miRNA overexpression 
or knockdown was then evaluated by MTT assay. The 
miR-1908 mimic significantly reduced proliferation at 
2, 3, and 4 days, whereas the miR-203a mimic increased 
proliferation at the same timepoints (Figure 8D, 8E). 
These data indicate that miR-1908 reduces the 
proliferation and differentiation of BM-MSCs, whereas 
miR-203a increases them, in a hyperglycemic 
microenvironment. 
 
Identification of miR-1908 and miR-203a as direct 
regulators of EXO1 and FOS expression, respectively, 
in the hyperglycemic microenvironment 
 
The MiRWalk and miRanda databases predict that EXO1 
and FOS are regulated by hsa-miR-1908 and hsa-miR-
203a, respectively (Figure 9A). We performed luciferase 
reporter assays to determine whether miR-203a regulated 

FOS expression and miR-1908 regulated EXO1 
expression (Figure 9B). We confirmed the transfection 
efficiency of miR-1908 and miR-203a in UM-Chor1 cells 
(Figure 9C). UM-Chor1 cells co-transfected with pGL3-
FOS-wt and miR-203a showed less luciferase activity 
than did those co-transfected with pGL3-FOS-mt and 
miR-negative control (NC; p < 0.05). Similarly, UM-
Chor1 cells co-transfected with pGL3-EXO1-wt and 
miR-1908 showed less luciferase activity than did those 
co-transfected with pGL3-EXO1-mt and miR-NC (P < 
0.05, Figure 9D). These results support the 
bioinformatics predictions and indicated that miR-1908 
and miR-203a were direct regulators of EXO1 and PLS1 
expression, respectively, in bone marrow. 
 
miR-203a/FOS and miR-1908/EXO1 are regulated 
by SCD1 
 
First we confirmed the transfection efficiency of SCD1 
in BM-MSC cells (Figure 10A). The proliferation of 
BM-MSCs was then evaluated after overexpression of 
SCD1 and co-transfection with the miR-203a inhibitor 
or miR-1908 mimic. Cells transfected with SCD-1 
showed significantly increased proliferation compared 
with the others, whereas proliferation was decreased in 

 

 
 

Figure 5. Correlation between miR-1908 and miR-203a expression levels and SCD1. Differential expression of miR-1908 and miR-
203a after 3 days (A, B) and 1 week (C) of SCD1 overexpression in BM-MSCs. (D, E) showed the relative expression of miR-1908 and miR-203a 
detected by qPCR in patients with clinical diabetic fractures. 
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cells treated with the miR-203a inhibitor and miR-1908 
mimic (Figure 10B). Similar effects were observed for 
ALP activity; miR-1908 markedly reduced the ALP 
level, whereas miR-203a played a protective role 
(Figure 10C). Western blots showed significantly 
reduced FOS expression and increased EXO1 expres-
sion in SCD1-overexpressing cells, whereas the 
expression of FOS was increased by treatment with the 
miR-203a inhibitor, and the combination of SCD1-OE 
and miR-1908 mimic resulted reduced the expression of 
EXO1 to control levels (Figure 10D, 10E). Therefore, 
MiR-203a/FOS pathway may be repressed and the 
MiR-1908/EXO1 pathway could be active in patients 
with diabetic fracture (Figure 10F). SCD1 may protect 
bone from fracture in diabetic patients by regulating 
miRNA expression changes caused by diabetes, such as 
those in hsa-miR-203a and hsa-miR-1908. 
 
DISCUSSION 
 
The present study revealed that SCD1 is involved in the 
regulation of hsa-miR-203a and hsa-miR-1908, which 

mediate the expression of FOS and EXO1 and may be 
associated with diabetic fracture. Additionally, we 
developed a novel predictive tool for fracture risk in 
patients with T2DM using seven available variables. 
Importantly, the results of this research suggest that  
six crucial miRNAs (hsa-miR-1908, hsa-miR-943,  
hsa-miR-203a, hsa-miR-550a-5p, hsa-miR-382-3p, and  
hsa-miR-376c-3p) regulate the expression of 16 genes 
(especially in FOS, PLS1, EXO1, and CDKN1A), 
thereby influencing how T2DM exerts negative effects 
on bone. 
 
Gene microarray analysis revealed that SCD1 
downregulated the expression of CDKN1A and FOS, 
and possibly upregulated the expression of EXO1 / PLS1. 
The miRNA-mRNA interaction network predicted that 
EXO1 / PLS1 and CDKN1A / FOS expression is 
regulated by hsa-miR-1908 and hsa-miR-203a, 
respectively. Western blot analysis further showed that 
CDKN1A and FOS expression was significantly reduced, 
whereas EXO1 and PLS1 expression was increased, in 
BM-MSCs transfected with SCD1. These results indicate

 

 
 

Figure 6. Prediction of molecules interaction network. (A) Modules inferred from protein-protein interaction (PPI) network. The 
degrees of connectivity are represented by different colors, with red representing strong correlation. (B) Enrichment analysis of key genes 
with |logFC|>1.2 including “HYAL4”, “ZNF329”, “PLS1”, “EXO1”, “FOS”, “GPR84”, “CALCB”, “NTM”, “CDKN1A”, and “CHODL”. (C) Correlation 
of diabetes highly related molecules (key genes with |logFC| > 1.2). (D) The regulatory network between dysregulated miRNAs and hub 
genes. ①. For downregulated miRNAs; ②. For upregulated miRNAs. Notes: “circle” means Co-Differentially expressed mRNAs after 
overexpression of SCD1. 
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Table 3. Key DEMs with logFC>1.2. 

DEMs of 
GSE25462 Log FC Average 

expression t P value Adjusted  
P value B Combined 

score of string 
HYAL4 -1.36517 8.247334 -2.73949 0.009551 0.476416 -2.61867 <0.9 
ZNF329 -1.36517 8.247334 -2.73949 0.009551 0.476416 -2.61867 <0.9 
PLS1 -1.35695 8.201552 -3.10767 0.003693 0.4401 -1.89868 <0.9 
EXO1 -1.32507 8.755316 -4.02141 0.000287 0.3128 0.051724 ≥0.9 
FOS 1.211449 6.710579 2.256556 0.030271 0.587803 -3.47818 ≥0.9 
GPR84 1.31698 7.330985 2.425427 0.02049 0.556097 -3.19002 ≥0.9 
CALCB 1.336993 7.669626 3.199253 0.002892 0.426542 -1.71246 ≥0.9 
NTM 1.501358 8.30572 3.881903 0.00043 0.342329 -0.25681 ≥0.9 
CDKN1A 1.554932 8.23666 3.865263 0.000451 0.342329 -0.29342 ≥0.9 
CHODL 1.554932 8.23666 3.865263 0.000451 0.342329 -0.29342 <0.9 

 

 
 

Figure 7. CDKN1A, FOS, EXO1 and PLS1 are regulated by SCD1. (A) Independent t-test results for the association between mRNAs 
(EXO1, PLS1, FOS and CDKN1A) and trauma energy in patients with clinical diabetic fractures patients. (B) Human tissue-enriched protein 
expression map of EXO1, PLS1, CDKN1A and FOS. (C) In the bone marrow, PLS1 and EXO1 are highly expressed, whereas CDKN1A and FOS are 
relatively low. (D) A represent Western blot showing overexpression of SCD1 in BM-MSCs transduced with lentivirus (“SCD1-OE”). “Control” 
cells are intact BM-MSCs before transduced with lentivirus. (E) Relative expression of mRNAs (EXO1, PLS1 FOS and CDKN1A) showing 
overexpression of SCD1 in BM-MSCs transduced with lentivirus (“SCD1-OE”); “Control” cells are intact BM-MSCs before transduced with 
lentivirus. 
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Figure 8. miR-1908 inhibits and miR-203a promotes the proliferation and osteogenic differentiation of BM-MSCs.  
(A) Transfection efficiency of miR-203a and miR-1908 in BM-MSCs. (B) ALP activity was measured in BM-MSCs treated with miRNA inhibitor 
or mimic (miR-203a and miR1908). (C) The expression of EXO1 and FOS were assessed in BM-MSCs transfected with miR-203a mimic, miR-
203a inhibitor, miR-1908 mimic and miR-1908 inhibitor. (D, E) Proliferation of BM-MSCs following the evaluation of the overexpression and 
knockdown of microRNAs (miR-203a and miR1908). 
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that SCD1 inhibited the expression of CDKN1A and 
FOS by promoting hsa-miR-203a. Hsa-miR-1908 might 
also be silenced by SCD1 and promote the expression of 
EXO1 and PLS1. However, further research is needed to 
reveal the positive effects of SCD1 on diabetic fractures. 
 
SCD1 modulates the biological metabolism of cells and 
promotes the formation of unsaturated fatty acids. [21, 
36] Our study showed that SCD1 overexpression 
promotes BM-MSC osteogenesis in vitro in the context 
of diabetic bone disease, similar to previous findings 
[18]. In addition, SCD1 overexpression significantly 
downregulated the activity of NRF2 pathway–
associated genes. This pathway is associated with 
antioxidants and is activated by increases in oxygen free 
radicals in the body [37]. Park et al. [38] suggested that 
Nrf2 promotes antioxidant synthesis to bind oxygen free 
radicals and repair cellular damage caused by them. 
Loss-of-function mutation of Nrf2 decreased load-
driven anabolic responses and bone mass [39], 
indicating that Nrf2 has important regulatory functions 
in bone homeostasis. In this study, despite NRF2 
pathway down-regulation, osteogenesis-related gene 
expression was stronger in the SCD1-overexpressing 
group than in the control group. On the other hand, our 
disease and functional analyses showed significant 
upregulation of genes involved in cell differentiation 
and proliferation with SCD1 overexpression. Some 
previous studies have shown that SCD1 promotes the 
proliferation and survival of cells [40–42]. In addition, 
cell cycle regulation depends on the synthesis of 
unsaturated fatty acids, and SCD1 affects the cell cycle 

by regulating the levels of cyclin D1 and cyclin-
dependent kinase 6, which play important roles in the 
G1/S phase [43]. SCD1 may promote bone formation 
by regulating osteoblast differentiation and 
proliferation. 
 
In this study, we observed reduced levels of hsa-miR-
203a in diabetic fracture samples. We did not know if 
this reduction was related to poor glycemic control, as 
miR-203 expression in diabetic patients is down-
regulated at all timepoints [44, 45]. Modification of the 
miR-203 level in diabetic mice resulted in marked 
apoptosis of beta cells [46]. Based on our diabetic 
fracture nomogram, we postulated that high miR-203 
expression promotes MSC differentiation into 
osteoblasts and helps to reduce fracture risk, and this 
result was similar to previous research results [47]. 
Similarly, miR-203 promotes stem cell differentiation 
by inducing cell cycle exit via its target protein p63 
[48]. Pre-transduction of miR-203 into BM-MSCs 
alleviated cell injury induced by low nutrition, which 
enhanced BM-MSC survival [49]. Alternatively, high 
miR-203a expression may prevent fracture and bone 
damage by blocking the nuclear factor (NF)-κB 
signaling pathway, but this possibility requires further 
investigation. 
 
Our bioinformatics analysis suggested that SCD1 
induced CDKN1A down-regulation. The effects of 
CDKN1A are thought to play vital roles in pathways 
related to cell death and survival. CDKN1A/P21, a 
cyclin-dependent kinase inhibitor, plays an important 

 

 
 

Figure 9. Prediction and verification of EXO1 and Fos expression regulated directly regulation by miR-1908 and miR-203a 
respectively. (A) Putative miR-203a and miR-1908 binding sites in the 3'-untranslated regions of FOS mRNA (predicted by miRanda) and 
EXO1 mRNA (predicted by miRWalk), respectively. (B) Luciferase reporter assays to evaluate FOS regulation by miR-203a and EXO1 regulation 
by miR-1908. (C) Transfection efficiency of miR-203a and miR-1908 in UM-Chor1 cells under the hyperglycemic circumstance. (D) UM-Chor1 
cells co-transfected with pGL3-FOS-wt and miR-203a vs. those co-transfected with pGL3-FOS-mt and miR-NC; UM-Chor1 cells co-transfected 
with pGL3-EXO1-wt and miR-1908 vs. those co-transfected with pGL3-EXO1-mt and miR-NC. 
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Figure 10. miR-203a/FOS and miR-1908/EXO1 are regulated by SCD1. (A) Transfection efficiency of SCD1 in BM-MSCs.  
(B) Proliferation of BM-MSCs after SCD1 overexpression, miR-1908mimic and miR-203a inhibitor were evaluated. (C) ALP activity was 
measured in SCD1-overexpressing BM-MSCs treated with miR-203a inhibitor or miR-1908 mimic. (D, E) Expressions of FOS and EXO1 were 
assessed in BM-MSCs transfected with high-glucose, SCD-OE miR-1908 mimic and miR-203a inhibitor. (F) The regulatory network between 
dysregulated miRNAs and hub genes after overexpression SCD-1. 
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role not only in cell proliferation and differentiation, but 
also in apoptosis [50, 53]. CDKN1A knockdown in late-
passage MSCs increased the cells’ osteogenic and 
proliferation capacities [51]. CDKN1A expression in 
mesenchymal progenitor cells differs between osteo-
arthritic and non-arthritic individuals, with high 
expression correlated with reduced chondrogenic 
potential [52]. 
 
FOS, a member of the AP-1 family of transcription 
factors, participates in osteogenesis [54, 55]; according 
to our findings, it is regulated by miR-203a. The 
hyperglycemic microenvironment increases c-Fos 
expression, impairing mitochondrial function and 
osteoblast differentiation in the bone microenvironment 
[56, 57]. In diabetic animal models, curcumin and Zinc 
inhibited bone resorption by limiting osteoclastogenesis 
and the expression of c-Fos or reduced receptor 
activator of nuclear factor-κB ligand expression a fos-
related pathway [58–60]. Some anti-diabetic drugs,  
such as sitagliptin and thiazolidinediones, also  
promote osteogenesis through anti-Fos [61, 62]. This 
evidence suggests that anti-FOS treatment benefits bone 
health in diabetic patients. Our findings may provide the 
basis for new ideas about the treatment of diabetic 
osteopathy. 
 
miR-1908, an intragenic miRNA, is located in the first 
intron of the FADS1 gene on human chromosome 11. 
Clinical studies have shown that patients with high 
FADS1 expression are more susceptible to metabolic 
syndrome and inflammatory reactions in response to 
dietary linoleic acid [62, 63]. miR-1908 expression is 
also increased in human mature adipocytes, and this 
miRNA is involved in the regulation of Wnt receptor 
signaling, glucose/insulin metabolism, the cell cycle, 
and cell apoptosis; it thus regulates the differentiation 
and proliferation of normal adipocytes and multiple 
cytokines [64, 65]. In our study, we observed 
upregulated hsa-miR-1908 expression in diabetic 
fracture samples. Jiang et al. [65] also reported the 
correlation between TNF-α and miR-1908. TNF-α, as 
the activator of NF-κB, is upregulated in diabetic 
patients [66–68]. As a transcriptional factor, NF-κB fine 
tunes inflammatory responses and promotes bone loss 
through effects on osteoclasts and osteoblasts [69, 70]. 
MiR-1908 expression functions are enforced by positive 
regulation of the NF-κB pathway [71, 72]. Therefore, 
miR-1908, which was upregulated in diabetic fracture 
samples in our study, may be associated with an NF-
κB/TNF-α–related pathway and osteoblast apoptosis, 
but more studies needed to be conducted. 
 
In addition, EXO1 and PLS1, which are regulated by 
SCD1, are related to diabetic fracture development. 
EXO1 and PLS1 were downregulated in our T2DM 

samples. Some types of actin-mediated hearing 
impairment are influenced by mutations in the human 
PLS1 gene [73]. Plastins contribute, in an isoform-
specific manner, to the development of invadosomes of 
immune and cancer cells, adhesion contacts, endocytic 
patches, immune synapses, inner ear stereocilia, and 
intestinal and kidney microvilli [73–76]. Thus, PLS1, an 
essential part of actin that was downregulated in our 
T2DM samples, may be linked to the function or growth 
of skeletal muscle in patients with T2DM. Additional 
studies of the effects of PLS1 on skeletal muscle and 
T2DM are needed. 
 
EXO1, which this study showed is targeted by miR-
1908, maintains genome stability by regulating 
telomeres and DNA replication and recombination  
[77, 78]. EXO1 expression was higher in 395 German 
centenarians than in 411 controls, showing the 
importance of this function in increasing longevity in 
humans [79]. A genome-wide association study showed 
that a lack of EXO1 contributed to low BMD [80], 
suggesting that EXO1 holds huge promise as a marker 
for the early detection of osteoporotic fracture. 
 
This study is the first to detail the serum profiles of 
miRNAs and mRNAs in women with T2DM and their 
effects on fracture risk, and to suggest that SCD1 could 
be beneficial in the treatment of diabetic patients at high 
risk of fracture. It demonstrates that miRNA signatures 
can be used to study miRNA–mRNA interactions in in 
vitro experiments. We anticipate that additional 
experiments will leverage the novel findings presented 
here to expand our knowledge about the roles of 
differentially expressed mRNAs and miRNAs in bone 
tissue and to develop clinically important molecular 
markers for fracture risk assessment in the context of 
diabetes. The major strength of this study is that we 
constructed a PPI network coupled with an SCD1–
miRNA–mRNA interaction network for T2DM based 
on experiments. Furthermore, the nomogram developed 
in this study displayed a high degree of accuracy and is 
suitable for the clinical assessment of fracture risk in 
patients with diabetes. This tool will help patients and 
clinicians to develop management and preventive 
measures, such as lifestyle adjustments and other 
suitable interventions. 
 
The effects of the selected genes on bone health in 
patients with T2DM need to be verified in further 
experiments, and more combined bioinformatics and 
laboratory analyses are needed to confirm the functional 
implications of the identified genes. Related animal 
studies and additional in vitro experiments involving 
targeted SCD1 inhibition are also needed. This study 
has several limitations: (1) only the most significantly 
differentially expressed miRNAs and genes were 
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included in the analysis and miRNA–mRNA interaction 
network construction; (2) the model does not 
incorporate all factors related to fracture risk in diabetic 
patients; (3) although bootstrap testing was used to 
assess the robustness of the nomogram, we did not 
perform external validation and thus the findings may 
not be generalizable to diabetic populations in other 
countries and regions; (4) the sample used to develop 
the nomogram did not include men with diabetes; (5) 
immunohistochemistry of bone marrow tissue in our 
study did not perform as well as we expected. 
Therefore, we suggest that further studies be performed 
to evaluate these findings in the context of a wider 
diabetic population. 
 
In summary, the newly proposed SCD1/miR-
203a/FOS and SCD1/miR-1908/EXO1 pathways may 
enhance our understanding of the patho-mechanisms 
of osteogenesis in diabetes. The findings may aid the 
early detection and prevention of bone disease induced 
by T2DM. In addition, this study provides new targets 
and a nomogram prediction model that form the 
foundation for further exploration of the molecular 
causes, biomarkers, and treatments of fracture in the 
context of T2DM. 
 
MATERIALS AND METHODS 
 
Study participants and sample collection 
 
This study involved a total of 30 postmenopausal 
women with diabetes aged 55–70 years, comprising 20 
women with low-energy lower-limb fracture and 10 
otherwise healthy premenopausal women with high-
energy lower-limb fracture, who were recruited at 
Shanghai General Hospital between August 2017 and 
January 2019 (Tables 4, and 5). Human BM-MSCs 
were provided by Shanghai First People's Hospital 
from healthy postmenopausal women, to limit the 
effects of hormones on the outcomes. Exclusion 
criteria including: history of osteoporosis treatment or 
hormone replacement therapy, early menopause 
(before the age of 40 years), chronic renal failure, 
abnormal menopause, and acute gastrointestinal tract 
inflammation. In addition, healthy postmenopausal 
women with normal bone mineral density (BMD) and 
no history or X-ray evidence of fracture were recruited 
from the hospital’s personnel. The study complied 
with the Declaration of Helsinki and was approved by 
Shanghai First People’s Hospital (no. 2018KY094); all 
subjects provided written informed consent. 
 
BM-MSCs were isolated as reported previously [81, 
82]. In brief, bone marrow samples were aspirated from 
patients with fractures during surgery. The mononuclear 
cell fraction was recovered by density centrifugation 

over a Ficoll gradient at 800 × g for 20 min and washed 
twice with phosphate-buffered saline. 
 
Lentivirus transfection 
 
A lentiviral system (with pCDH-SCD1, psPAX2, and 
pMD) that we previously constructed successfully was 
used in this study [83]; system development is 
described in detail elsewhere [17]. Briefly, BM-MSCs 
in the logarithmic growth stage were digested by 
trypsin, and cell suspensions were prepared at 
concentrations of 3–5 × 104/mL and inoculated in 6-
cm culture dishes; infection was carried out when the 
concentration of planks reached ~15–30%. The 
original medium was replaced with infection medium 
(Polybrene, #abs42025397; Absin, China), and 4 mL 
virus supernatant was added. Forty-eight hours after 
infection, green fluorescent protein–positive cells were 
detected by flow cytometry. 
 
Cell culture and treatment 
 
Human adipose-derived MSCs (PCS-500-011) were 
purchased from the American Type Culture Collection 
(Manassas, VA, USA). After thawing at 37°C, the 
cells were cultured conventionally in high-glucose 
Dulbecco’s modified Eagle’s medium (Gibco cell 
culture; Thermo Fisher Scientific, Waltham, MA, 
USA) supplemented with 15% fetal bovine serum and 
1% antibiotics (Sigma-Aldrich, St Louis, MO, USA), 
and incubated at 37°C in 5% CO2. The culture medium 
was replaced every 24 h throughout the experimental 
period. 
 
Two study groups were formed. In the experimental 
group, BM-MSCs were transduced with lentiviral 
vector pCDH-SCD1 to form SCD1-overexpressing 
cells. In the empty vector (EV) group, BM-MSCs were 
transduced with lentivirus/empty pCDH. Downstream 
assays (described below) were performed at 3, 7, and 
14 days to assess BM-MSC osteogenesis. 
 
Cell viability and proliferation 
 
Cell viability and proliferation were measured using 
the Cell Proliferation Reagent Kit I (MTT; Roche, 
Basel, Switzerland) according to the manufacturer’s 
instructions and as described previously [19]. First, 
 the stably transfected cells were digested with trypsin. 
The cells were then centrifuged, collected, 
resuspended in a single cell suspension, and seeded in 
96-well plates. The cell culture was maintained in 
maintenance. The OD value at a wavelength of 490 nm 
was measured using a multifunctional microplate 
reader. The cell growth curve was plotted with time 
serving as the abscissa and OD as the ordinate. Each 
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Table 4. Clinical characteristics of participants. 

 
High-energy fracture Low-energy fracture 

(n=10) (n=20) 
Age (year) 63.6±2.1 61.9±4.3 
Length of Stay (day) 15±4.4 9.7±3.6 
Height (cm) 152.9±6.9 158.6±12.0 
Weight (kg) 57.9±8.1 60.7±9.3 
BMI (kg/m2) 24.8±3.3 24.1±3.4 
FBG (mmol/L) 6.21±1.4 6.23±2.0 
2HPG (mmol/L) 7.38±1.8 9.06±3.2 
Fracture site    

femur 4 4 
tibia 6 4 
fibula 3 4 
patella 0 8 
calcaneus 0 1 

 

Table 5. Clinical characteristics of participants grouped by the degree of blood glucose control. 

Blood glucose 
Control well Control bad 

(n=13) (n=17) 
Age (year) 61.4±3.4 63.3±3.9 
Length of Stay (day) 12.8±5.4 10.4±3.7 
Height (cm) 158.6±11.7 155.2±10.1 
Weight (kg) 57.6±10.8 61.4±7.1 
BMI (kg/m2) 22.7±2.5 25.6±3.4 
Low energy fracture (%) 61.5% 70.6% 
Fracture site   

femur 4 4 
tibia 3 7 
fibula 4 3 
patella 4 4 
calcaneus 0 1 

Note:  
Blood glucose control well: HbA1c<7.0%; 
Blood glucose control bad: HbA1c≥7.1%. 
 

experiment was performed six times, and average 
values were used. 
 
Detection of SCD1 expression and activity 
 
Total RNA was extracted from transduced BM-MSCs 
using Trizol (Invitrogen, Carlsbad, CA, USA). RNA 
integrity was confirmed by agarose gel electrophoresis, 
and RNA concentration and purity were evaluated by 
spectrophotometry (Nanodrop 2000; Thermo Fisher 
Scientific). Real-time polymerase chain reaction  
(RT-PCR) was performed using the SYBR premix Ex 
Taq II kit (TaKaRa Bio Inc., Shiga, Japan) with 

appropriate primers and the ABI Prism 7500 HT 
system (Applied Biosystems, Foster City, CA, USA), 
and detection was performed using a Bio-Rad 
(Hercules, CA, USA) sequence detection system. SCD1 
activity was assessed by measuring the conversion of 
C14 stearic acid to C14 OA [84, 85]. The experiment 
was repeated three times. 
 
Total RNA (1 µg) was used to synthesize cDNA with 
random primers and a PrimeScript RT reagent kit 
(TaKaRa Bio Inc.). PCR conditions were pre-
denaturation at 95°C for 10 min, 40 cycles of 
denaturation at 95°C for 30 s and annealing at 60°C for 
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20 s, and extension at 72°C for 30 s. The SCD1 gene 
was amplified using the following primers: forward,  
5’-AAAGAGAAGGGCGGAAAGC-3’ and reverse,  
5’-GGCGTGATGGTAGTTGTGG-3’. GAPDH was  
used as an endogenous control and amplified using  
the forward 5’-TGACTTCAACAGCGACACCCA-3’ 
and reverse 5’-CACCCTGTTGCTGTAGCCAAA-3’ 
primers. 
 
Alkaline phosphatase assay and staining 
 
The alkaline phosphatase (ALP) assay and staining 
were performed at the end of the appropriate culture 
period. The medium was removed, and the cells were 
washed with phosphate-buffered saline and fixed with 
100% ethanol for 10 min. The ALP staining kit was 
acquired from the Blood Institute of the Chinese 
Academy of Medical Sciences (Tianjin, China). The 
stained cells were examined and photographed under a 
light microscope. Each experiment was performed six 
times, and average values were used. 
 
Microarray detection and statistical analysis 
 
aRNA was prepared after the analysis of total RNA 
samples using the Nanodrop 2000 (Thermo Fisher 
Scientific) and Agilent 2100 devices (Agilent 
Technologies Inc., California, USA). According to the 
Affymetrix gene expression profile chip manipulation 
manual, cDNA, a double-stranded DNA template, and 
biotin-labeled aRNA were synthesized, and the aRNA 
was purified, then fragmented and hybridized with the 
chip probe. After hybridization, the chip was washed and 
then obtain an image and raw data. The chip scan image 
was analyzed using Agilent image extraction software for 
dot matrix analysis. GeneSpring GX software (version 
11.5; Agilent Technologies Inc.) was used to homogenize 
the probe fluorescence intensity data for determination of 
differential gene expression and selection of genes with 
absolute expression differences > 1.5. Chip data were 
subjected to intelligent analysis using IPA software 
(http://www.ingenuity.com), including classical pathway 
analysis and disease and functional analyses. Regulation 
effect analysis was performed to determine the 
downstream roles and upstream regulatory networks 
involved in differential gene expression. All gene chip 
data were uploaded to the Gene Expression Omnibus 
(GEO) database of the National Center for Biotechnology 
Information (no. GSE106596). 
 
Data retrieval 
 
The dataset supporting the conclusions of this article is 
available in the GEO database (http://www.ncbi.nlm. 
nih.gov/geo/). Initially, datasets in which mRNA 
expression was compared between muscle from humans 

with T2DM and that from normoglycemic insulin-
resistant subjects were included, as well as those that 
compared miRNA from patients with and without 
histories of osteoporotic fracture. The abstracts and titles 
of studies identified were scrutinized, and the full texts of 
studies that met the criteria were read and evaluated. The 
R language affyPLM package (http://www.r-project.org/) 
was used to assess raw data quality (Supplementary 
Figure 2A–2D). [86, 87] The GSE25462 gene expression 
array dataset, based on the GPL20631 platform (Custom 
LNA™ Universal RT microRNA PCR panels), was 
selected for further study due to high data quality. Four 
groups from the GSE70318 miRNA expression array 
dataset were included: samples from postmenopausal 
women without T2DM, with (n = 19) and without (n = 
16) histories of at least one (non-recent) osteoporotic 
fracture, and those from postmenopausal women with 
T2DM with (n = 19) and without (n = 19) fracture 
histories. All original files and platform probe annotation 
information files were saved. 
 
Identification of differentially expressed genes 
 
All data were normalized using the “normalize between 
array” function of the “LIMMA” R package from the 
bioconductor project [88]. This package was also used 
to identify DEMs between diseased and normal samples 
from the GSE25462, and GSE70318 datasets. 
Thresholds set at P < 0.05 and |logFC| > 1. In total and 
35 samples from GSE25462 (10 diabetes, 25 normal) 
were divided into two groups, and 83 samples from 
GSE70318 were divided into four groups (according to 
microarray data). All DEM results were saved in text 
format for subsequent hierarchical clustering analysis 
using the Complex Heatmap package. 
 
Logistic regression of diabetes fracture data 
 
The series matrix from the GSE25462 dataset 
containing diabetes fracture miRNA information was 
downloaded from the GEO database. Data from patients 
in the DM and NM groups, including age, sex, 
ethnicity, and disease characteristics, were analyzed 
using R software (version 3.5.2; https://www.R-
project.org). Our clinical data were used to confirm the 
resulting model. 
 
To identify relevant risk factors in diabetic patients (n = 
38), the least absolute shrinkage and selection operator 
(LASSO) method was applied and features with 
nonzero coefficients were selected. This method is used 
widely to reduce high-dimensional data [89–91]. A 
predictive model including the selected features was 
established using multivariable logistic regression (two-
sided P < 0.05) [92]. Odds ratios with 95% confidence 
intervals (CIs) were calculated. 

http://www.ingenuity.com/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.r-project.org/
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A predictive model was also established for predicting 
diabetic fracture risk based on all potential predictors [93, 
94]. For determination of the diabetic fracture 
nomogram, we established calibration curves. Calibration 
accuracy was assessed statistically using the rms 
package, with high significance indicating that the model 
could not provide accurate calibration [95]. Harrell’s C-
index was calculated to assess the discriminatory 
performance of the diabetic fracture nomogram and 
corrected by bootstrapping (1,000,000 bootstrap 
resampling) [95]. The clinical utility of the nomogram 
was assessed by decision curve analysis, by determining 
net benefits at various threshold probabilities in the 
diabetic fracture cohort [96]. The net benefit was 
calculated by subtracting the number of patients with 
false-positive results from the number of those with true-
positive results, and by evaluating the negative effects of 
intervention nonuse relative to those of unnecessary 
intervention use [97]. 
 
DEMs ontology and pathway enrichment analysis 
 
To examine pathway enrichment and functional 
annotation for the predicted targets of screened DEMs, 
the database for annotation, visualization, and integrated 
discovery (DAVID 6.8; http://david-d.ncifcrf.gov/) was 
applied, including Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and gene ontology (GO) pathway 
analyses [98]. Three categories of GO functional 
annotation were examined: molecular functions (MFs), 
cellular components (CCs), and biological processes 
(BPs). Values with P < 0.05 were saved in text format. 
Enrichr (http://amp.pharm.mssm.edu/Enrichr/enrich) 
and the R language GOplot package were used to 
analyze pathway enrichment (P < 0.10). In addition, we 
also examined the enrichment of differentially 
expressed miRNAs in GSE70318 by using mirPath v.3 
(http://snf-515788.vm.okeanos.grnet.gr/). 
 
Protein–protein interaction network construction 
and module analysis 
 
DEMs were loaded onto the Search Tool for the Retrieval 
of Interacting Genes (STRING; https://string-db.org/) to 
identify functional interactions between proteins of target 
genes, and the Cytoscape software (version 3.7.0, 
MCODE plug-in) was used to visualize interaction scores 
with values of 0.4 [99, 100]. Hub genes were identified 
by analyzing the degree of connectivity within  
the protein–protein interaction (PPI) network using 
Cytoscape. The results were used to design a miRNA–
mRNA and hub gene network. The DAVID and Enrichr 
platforms were used for functional enrichment analysis 
by module. In addition, we loaded genes from each 
module onto Enrichr for KEGG pathway enrichment 
analysis using a threshold of P < 0.05. 

PPI networks were analyzed using IPA software 
(http://www.ingenuity.com), which utilizes an 
algorithm to create segmentation on the network map 
between biomolecules, producing multi-networks. 
Scoring was performed according to the hypergeometric 
network distribution, and the networks were filtered 
based on scores. Correlations of diabetes-related 
molecules were examined, and a ternary plot of gene 
expression frequencies was generated, using the 
“circlize” and “ggtern” packages, respectively. 
 
Prediction of miRNA targets 
 
Differentially expressed mRNAs (DEMs) were 
obtained using the parallel method described above. 
The miRWalk3.0 database (http://mirwalk.umm.uni-
heidelberg.de/), which includes 10 databases 
(Targetscan, RNA22, PITA, PICTAR5, PICTAR4, 
RNAhybrid, miRWalk, miRDB, miRanda, and 
DIANAmT), and the miRTarBase, which comprises 
validated miRNA target interactions from experiments, 
were used to assess correlations between DEMs and 
DE-miRNAs [101]. 
 
Analysis of data from the GTEX and TCGA databases 
 
The R software (https://www.r-project.org/) with several 
publicly available packages was used for statistical 
analysis of data from the GTEX and TCGA databases. A 
human tissue–enriched protein expression map and a 
boxplot of genes were generated using the 
“gganatogram” and “ggpubr” models, respectively. For 
the genotypic correlation analysis, the χ² test or Fisher’s 
exact test (two-sided) was used. 
 
Western blot analysis 
 
To evaluate protein expression, cells were harvested in 
RIPA buffer containing a protease inhibitor cocktail, 
and total protein was quantified using a bicinchoninic 
acid kit (Pierce, Rockford, IL, USA). Aliquots 
containing 8 µg total protein were separated by sodium 
dodecyl sulphate polyacrylamide gel electrophoresis 
and then electroblotted onto a 0.45-µm PV membrane 
(Immobilon™; Merck Millipore, Darmstadt, Germany). 
The membranes were blocked and then probed 
overnight with the primary antibodies anti-SCD1 
(1:1000, #ab19862; Abcam, USA), anti-CDKN1A 
(1:10,000, #ab47300; Abcam, USA), anti-FOS (1:500, 
#ab184666; Abcam, USA), anti-EXO1 (1:2000, 
#ab95068; Abcam, USA), anti-PLS1 (1:2000, 
#ab236976; Abcam, USA), anti–β-catenin (1:5000, 
#ab32572; Abcam, USA), and anti–active β-catenin 
(1:500, #05-665; Merck Millipore). Results are 
expressed as means ± standard deviations of six 
independent experiments. 

http://david-d.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/enrich
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Quantitative real-time PCR (qPCR) 
 
Total RNA was isolated from cell cultures using 
TRIzol® reagent (Gibco/Life 270 Technologies, Thermo 
Fisher Scientific). RNA quantity and quality were 
detected by stem-loop quantitative RT-PCR (TaqMan 
probe method). Purified RNA was used for first-strand 
cDNA synthesis with M-MLV reverse transcriptase and 
primers according to the manufacturer’s instructions 
(Promega, Fitchberg, MA, USA). The primer sequences 
were designed by Primer Premier and the sequences were 
as follows: FOS forward 5’-GGAGATGTAGCAAAA 
CGCAT-3’ and reverse 5’- GTTAATTCCAATAATGA 
ACCCAA-3’; EXO1 forward 5’- GCGGCTGCAGTCG 
TATGG-3’ and reverse 5’-ATTTGCGCGGGTTCCT 
TG-3’; PLS1 forward 5’-TGGTTTGATTTTTTTGGT 
GTGT-3’ and reverse 5’- CAAGAGAGTGAACTTTG 
GGGT-3’; CDKN1A forward 5’- GAGCCTCCCTCCA 
TCCCTA-3’ and reverse 5’- CCATCCCCTTCCTCACC 
TG-3’; miR-1908 forward 5’-CGGCGGGGACGGCGA-
3’ and reverse 5’- CCGCAGGGTCCGAGGTATTC-3’; 
miR-203a forward 5’-CGCGCGGGAAAGAGGA-3’ 
and reverse 5’- AGTGCAGGGTCCGAGGTATT-3’; U6 
(endogenous control) was amplified using forward 5’- 
CTCGCTTCGGCAGCACA-3’ and reverse 5’- AACGC 
TTCACGAATTTGCGT-3’. 
 
Transfection of miRNAs 
 
The transfection of miRNAs was performed as 
previously described [19]. In brief, chemically 
synthesized miRNAs mimic and inhibitor (Gene Pharma 
(Shanghai, China) were used to augment and inhibit 
miR-203a and miR-1908 function. At 24h after seeding, 
cells were transfected with miR-203amimic, miR-
1908mimic, miR-203ainhibitor, or miR-1908inhibitor 
for 24 h using the riboFECT™ CP Transfection Kit 
according to the manufacturer’s protocol (Ribobio, 
Guangzhou, China). 
 
Dual luciferase reporter assay 
 
As mentioned above, the double luciferase reporter gene 
was determined [102]. In short, UM Chor1 cells were 
inoculated into a 96-well plate at the density of 1×104 
cells per well 48 h after 3'-UTR plasmid co-transfection. 
The dual luciferase reporter assay system (Promega, 
Madison, WI, USA) was used to harvest cell lysates and 
firefly and detect renilla luciferase activities. 
 
Statistical analysis 
 
Statistical analysis was performed using GraphPad 
Prism (version 7.0) software. Results are expressed as 
mean ± SD deviation of three or six independent 
experiments. Statistical significance was analyzed by 

two-tailed t-test or one-way analysis of variance. The 
difference was statistically significant at P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. SCD1 overexpression induces expression changes in BM-MSCs. (A) The signal value distribution graph 
shows the distribution of the expression values of all the chip probes. Each curve represents the number of probe statistic for a chip in 
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different expression value intervals. The better the coincidence of the signal value distribution curve, the higher the reliability of the chip 
experiment. All the chips in this project are very reliable. (B) The relative logarithmic expression box plot shows the distribution of relative 
logarithmic expression values for all chips. The closer the distribution of the relative logarithmic expression value box plot is, the higher the 
repeatability of the data. All samples in this project are highly reproducible. (C) The Pearson correlation coefficient (signal value) plot shows 
the level of signal value correlation between all chips and chips. There is a high correlation between G2017-1, G2017-2 and G2017-3 in this 
project and the correlation coefficient is greater than 0.95. (D) This three-dimensional Principal Component Analysis chart is used to indicate 
the similarity between groups and the degree of difference between groups. The higher the degree of aggregation between samples, the 
higher the similarity of samples. Obviously, there was a large difference between the overexpressed group and the control group in this 
project. (E) The scatter plot shows the distribution of signal values between the experimental and control groups on the Cartesian coordinate 
plane. Above the green line is a probe that overexpresses expression after overexpression of SCD1, and a probe that is downregulated after 
expression of SCD1 is expressed below the green line. (F) The volcano plot shows the differential gene distribution between the experimental 
and control groups. The abscissa represents the difference multiplier through the base 2 logarithmic transformation, the ordinate represents 
the corrected significance level through the base 10 logarithmic transformation; the red represents all probes with a difference multiple 
greater than 1.5 and a significance level less than 0.05. (G) The heat map of Differentially expressed micro-RNAs from the Differentially 
expressed mRNAs within the expression of SCD1. The clustering graph shows the aggregation of all samples and differential genes at the 
expression level. Red indicates that the signal value of the gene is relatively up regulated. Green indicates that the signal value of the gene is 
relatively downregulated, black indicates that the signal value of the gene is moderate, and gray indicates that the signal value of the gene is 
not detected. (H) The gene interaction network map shows a network of interactions from the defined functional area (Organ Development, 
Organ Morphology, Reproductive System Development and Function) between the Differentially expressed mRNAs within the expression of 
SCD - 1. (I) The regulatory effect network map shows the interaction between genes and regulators and functions in the dataset. (J) The 
disease and functional heat maps show the up-regulation and down-regulation of differential gene expression on the activation-inhibition of 
function and disease. Orange represents Z-score>0, blue represents Z-score<0, gray indicates no Z-score value; Z-score>2 indicates that the 
function is significantly activated, and Z-score<-2 indicates that the function is significantly inhibited. The related functions of this project 
have obvious activation: organismal death (2.715) promotion of cells, 2.639; the functions of significant inhibition are: survival of organism (-
3.890), size of body, -3.162, etc. 
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Supplementary Figure 2. DE-miRNAs and DEMs selected from GEO datasets. (A) Quality control of GSE25462 data by using the R 
language “affyPLM” package (grey-scale map, weighted graph, residuals plots, residual symbol diagram); (B) RLE graph: the logarithm of the 
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expressed value of a probe group in a sample which reflects the consistency of the parallel experiment divided by the median expressed by 
the probe group in all samples; (C) RNA degradation plot: RNA degradation began at the 5 'end, because the fluorescence intensity at the 5' 
end was much lower than that at the 3 'end; (D) NUSE graph: the logarithm of the standard deviation of the PM value of a probe group in a 
sample divided by the median of the PM value standard deviation of the probe group in each sample reflects that the consistency of parallel 
experiments is more sensitive than that of RLE; (E) Normalization of GSE25462 and GSE70318. Blue: data before normalization; Red: data 
after normalization; (F) Volcano Plots of GSE70318 and GSE25462. 
 

 
 

Supplementary Figure 3. Circularly composited overviews of selected genes and their terms. (A) GO functional enrichment of 
Differentially expressed mRNAs in GSE25462; (B) KEGG enrichment analysis of Differentially expressed mRNAs in GSE25462. 
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Supplementary Figure 4. GO functional enrichment analysis of Differentially expressed mRNAs in GSE25462. (A) Bar: Z-score 
coloured barplot of terms ordered alternatively by z-score or the negative logarithm of the adjusted p-value; (B) Circular plot: the plot 
combines gene expression and gene- annotation enrichment data. A subset of terms is displayed like the GOBar plot in combination with a 
scatterplot of the gene expression data. The whole plot is drawn on a specific coordinate system to achieve the circular layout; (C) Bubble 
plot: The x- axis of the plot represents the z-score. The negative logarithm of the adjusted p-value (corresponding to the significance of the 
term) is displayed on the y-axis. The area of the plotted circles is proportional to the number of genes assigned to the term; (D) Graphic 
representation of A, B, and C; (E) GOCluster: generates a circular dendrogram of the data clustering. The inner ring displays the color coded 
logFC while the outside one encodes the assigned terms to each gene. 
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Supplementary Figure 5. KEGG enrichment analysis of Differentially expressed mRNAs in GSE25462. (A) Bar: Z-score coloured 
barplot of terms ordered alternatively by z-score or the negative logarithm of the adjusted p-value; (B) Circular plot: the plot combines gene 
expression and gene- annotation enrichment data. A subset of terms is displayed like the GOBar plot in combination with a scatterplot of the 
gene expression data. The whole plot is drawn on a specific coordinate system to achieve the circular layout; (C) GOCluster: generates a 
circular dendrogram of the data clustering. The inner ring displays the color coded logFC while the outside one encodes the assigned terms to 
each gene. 
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Supplementary Figure 6. miRNAs selected and detected by predictive modeling of diabetic fracture risk. (A) Differentially 
expressed micro-RNAs and demographic selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression 
model. Optimal parameter (lambda) selection in the LASSO model was performed via fivefold cross-validation using minimum criteria. The 
partial likelihood (binomial) deviance curve is plotted versus log(lambda). Dotted vertical lines indicate optimal values determined by the 
minimum criteria and 1 standard error of the minimum criteria. (B) LASSO coefficient profiles of the 10 features. The coefficient profile plot 
was produced against the log(lambda) sequence. The vertical line indicates the value selected using fivefold cross-validation, where the 
optimal lambda enabled the identification of seven features with nonzero coefficients. (C) Calibration curves for nomogram-based diabetic 
fracture prediction in the cohort. X axis, predicted fracture risk; y axis, actual diabetic fractures. The diagonal dotted line represents perfect 
prediction by an ideal model and the solid line represents the performance of the nomogram. (D) The area under the curve for the diabetic 
fracture nomogram (0.933518) indicates that a randomly chosen positive example will likely be ranked higher than a randomly chosen 
negative example. 
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Supplementary Figure 7. Construction of protein-protein interaction (PPI) network. PPI enrichment, P-value=8.19e-0. 


