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Accumulation of abnormal tau aggregates in neuron is an important pathological signature inmultiple neurode-
generative disorders including Alzheimer's disease. Tau is a neuron specific microtubule-associated protein that
regulates microtubule stability, which is critical for axonal outgrowth and synaptic plasticity. In a pathological
condition, tau dissociates from microtubules and forms insoluble aggregates called neurofibrillary tangles
(NFTs). The accumulation of NFTs in neuron directly correlates with microtubule dysfunction and neuronal
degeneration. Due to the pathophysiological importance of tau, great efforts have been made to understand
tau aggregation processes and find therapeutics to halt or reverse the processes. However, progress has been
slow due to the lack of a suitable method for monitoring tau aggregation. In this mini-review, we will review
the conventional methods for studying tau aggregation, and introduce recent cell-based sensor approaches
that allow monitoring tau aggregation in living cells.
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1. Introduction

Tau is a neuron specific microtubule-associated protein [1–3]. In a
healthy neuron, tau binds to microtubules and regulates microtubule
stability, which is critical for axonal outgrowth and neuronal plasticity
[4–6]. When pathologically altered, tau molecules are not able to stabi-
lize microtubules and become insoluble aggregates [3,7–9]. Since Alois
2 2 958 5059.
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Alzheimer discovered the abnormal tau inclusions in a patient's brain,
the presence of tau aggregates is a critical biomarker for making the
pathological diagnosis of AD [10]. In AD patients, three forms of tau ag-
gregates occur; neurofibrillary tangles (NFTs) in neuronal somata,
neuropil threads (NTs) in neuronal dendrites, and neuritic plaques
(NPs). These tau aggregates induce neuronal degeneration. Especially,
the density of NFTs correlates fairly well with regional and global as-
pects of cognitive decline during the progression of AD [10]. Hence,
there has been great effort to understand how the deposition of NFT
causes neurodegeneration (Fig. 1). NFT may damage neurons and glial
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Fig. 1. Tau aggregation and neuronal degeneration [18]. (a) In a healthy neuron, tau stabilizesmicrotubules promoting axonal outgrowth and synaptic vesicle transport. (b)When tau goes
bad, tau becomes neurotoxic aggregates and microtubules become dissociates.
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cells in a number of ways [11]. First, aggregation of tau causes neuronal
toxicity by reducing normal function of tau promoting microtubule
stability. Also, the large filamentary tangles might be toxic to neurons
by acting as physical barriers in the cytoplasm. Therefore, neurons
containing tau tangles actively activate diverse cell metabolisms to get
rid of the abnormal protein aggregates from cytoplasm [14,15]. This
might be a great burden to a neuron that results in neuronal toxicity
and neurodegeneration.

More recent studies suggest that, instead of the large insoluble fila-
ments, soluble tau aggregates might play more critical roles in the
onset and progression of disease prior to the development of NFT-
induced neurotoxicity [6]. Especially hyperphosphorylated tau before
NFT formation leads to microtubule disassembly, impairment of axonal
transport, and organelle dysfunctions in neurons, leading to the neuro-
nal cell apoptosis [3]. Also, the oligomeric species of taumay act as seeds
for the aggregation of native tau, thereby promoting neurotoxic tau
aggregation [8,16]. Accumulating evidence has suggested that tau
aggregates are transmittable in neurons propagating as a prion-like
manner [7,17].

Due to the pathological significance, tau becomes an important ther-
apeutic target. Preventing tau aggregation becomes a potential strategy
to cure neurodegenerative disorders associatedwith tau. So far, great ef-
fort has beenmade to identifymolecularmechanism of tau aggregation
and to reverse the processes. However, progress has been slow due to
the lack of understanding the tau aggregation mechanism. Develop-
ment of a reliable model for tau aggregation would be beneficial not
only for identifying new therapeutic biomarkers but also for screening
and evaluating drug candidates. Toward that, diverse tau aggregation
methods have been developed: in vitro, cell-based, and in vivo models.
Among the diverse models here we will review the in vitro and cell-
based models for tau aggregation. In vitro tau aggregation methods
have longbeen used for elucidating structural assembly of tau in the for-
mation of PHFs. Cell-based models have recently developed to investi-
gate the intracellular tau aggregation mechanism.
Fig. 2. Diagrammatic representa
2. Multi-step Processes of Tau Aggregation

Contradictory to its pathological aggregation, tau is a naturally ‘un-
folded’ protein, which is highly soluble in physiological condition [8,9].
To be a susceptible intermediate for aggregation taumolecules undergo
a series of post-translational modifications and conformational changes
in a neuron [19]. It is generally believed that tau aggregation is initiated
by hyperphosphorylation (Fig. 2). Microtubule binding domains of tau
contain a number of lysine residues, of which positive charges drive
tau to bind negatively charged microtubules [20]. When tau is abnor-
mally hyperphosphorylated, the balance is disrupted and taudissociates
from microtubules. Then, unbound tau undergoes conformational
change to form a compact structure, called “Alz50 state” [21]. In this
state, tau begins to aggregate and the further fibrillization is facilitated
with proteolytic cleavages [1,13,22]. The truncated tau, named tau-66,
assemblesmuch faster than its native form [23]. NFTs are predominant-
ly composed of paired helical filaments which appear to be made up of
10-nm filaments helically twisted with each other [24].

2.1. Tau Aggregation Assays In Vitro

To identify the ultra-molecular structure of PHFs, it is of obvious in-
terest to reconstitute tau assembly process in vitro [12–14]. However,
recombinant tau, which is purified from Escherichia coli, shows very lit-
tle intrinsic tendency to aggregate in vitro due to the lack of a series of
post-translational modifications required for aggregation. Over the last
thirty years, the slow aggregation rate of purified tauhas been improved
by a combination of diverse advances (Table 1). First, recombinant trun-
cated tau isoforms (e.g., the repeat domain alone aggregates) are more
frequently used for in vitro tau aggregation, instead of full-length tau.
Tau-repeat domains such as K18 or K19 alone aggregate much faster
than the full-length tau (Fig. 3) [25,26]. Second, tau mutations such as
P301L or ΔK280 occurring in FTDP-17 are known to enhance the β-
sheet propensity to increase the aggregation reaction [27–31]. Third,
tion of tau aggregation [25].
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Table 1
Tau aggregation assay in vitro.

Tau isoform Mutants Aggregation inducer Incubation Detection Ref.

Temp Time

Tau-40 – Free fatty acid 37 °C 24–100 h TEM [38]
Arachidonic acid 37 °C 3–25 h ThS, TEM [28,32]
Heparin 30 °C 48–72 h ThS, TEM [33,34]
Polyglutamate 30 °C 48–72 h ThS [34,37]

Tau-23 – Arachidonic acid 37 °C 3–25 h TEM [26]
Pre-aggregated PHFs 37 °C 20 h ThS [40]
PHFs from AD patient 37 °C 20 h ThS, TEM [40]

K18 – Heparin 37 °C 3–25 h ThS, TEM [26,34]
Arachidonic acid 37 °C 3–25 h ThS, TEM [28,32]
RNA 30 °C −7 weeks TEM [41]
Zinc 37 °C 1 h ThS, TEM [42]

K19 – Heparin
RNA

37 °C
30 °C

72 h
−7 weeks

ThS, TEM
TEM

[43]
[41]

K18 ΔK280 – 37 °C 2–4 days ThS, TEM [29,30]
K18 P301L – RT 7 h LLS [31]
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addition of artificial cofactors also facilitate tau aggregation rate. Lysine-
rich tau protein is extremely soluble in physiological conditions and it
has very little intrinsic tendency to aggregate into filaments. So, the an-
ionic cofactors screen the basic charges of tau and facilitate aggregation.
There are two major classes of cofactors; polyanions (e.g., heparin,
polyglutamate, or RNA) and fatty acids or fatty acid-like molecules
(e.g., arachidonic acid, docosahexaenoic acid and alkyl sulfonate deter-
gents) [26,28,32–34]. Poly-anionic cofactors such as heparin have a
great efficiency in promoting the polymerization of tau fragments con-
taining microtubule-binding domains (K18 or K19). Arachidonic acid
also increases polymerization of full-length tau more rapidly than
heparin.

These in vitro tau aggregationmethods have been used in identifying
structural assembly of tau in the formation of PHFs. Transmission elec-
tronmicroscopy technique (TEM) identifies that NFTs are predominant-
ly composed of paired helical filaments [35]. Also,whether thefibers are
paired helical filaments or not, PHFs isolated from Alzheimer's patients
showed typical 80 nm crossover repeats. Whether it is artificial or not,
these in vitro assays are commonly used to estimate the amount of tau
aggregation in real time by using fluorescence probes such as thioflavin
S (ThS); ThS is a widely used fluorescence probe to sensing the relative
amount of β-sheet aggregates in solution [36,37].
Fig. 3. Illustration represents human tau isoforms and truncated repeat domains. Human tau ha
K19) are known to facilitate tau aggregation.
3. Intracellular Modifications of Tau

Though the pathophysiological importance of NFTs in tauopathies,
little progress has been made in understanding the packing of tau in
the fibrils. The in vitro studies only provided the simple framework of
tau aggregation hypothesis [38,44,45]. The cause andmolecularmecha-
nisms underlying tau aggregation remains still largely unknown. Prog-
ress has been slow because there is no reliable method for monitoring
tau aggregation in physiological conditions, where tau is spontaneously
altered and aggregated. Prior to or during NFT formation, tau undergoes
numerous, and potentially harmful, modifications [39].

Among the diverse modifications of tau, phosphorylation induces
the most critical change of tau leading to tau aggregation (Fig. 4) [46,
47]. Full-length tau protein has 80 serine and threonine residues and 5
tyrosine residues (Fig. 4b). In an intact cell, tau is constantly phosphor-
ylated and dephosphorylated for the regulation of microtubule assem-
bly. Once the balance is disrupted, tau is highly phosphorylated. The
additional phosphates disrupt the charge balance between tau and mi-
crotubules, and tau dissociates from microtubules. Therefore, hyper-
phosphorylation is the critical event in the initiation of tau pathology
[48]. Tau phosphorylation is tightly regulated by kinases or phospha-
tases [49,50]. Among diverse enzymes, GSK3β is the most effective tau
s six isoforms resulting from alternative splicing. The truncated tau repeat domains (K18 or

image of Fig.�3


Fig. 4. Tau phosphorylation. (a) Initiation of tau phosphorylation by GSK3β. (b) Putative tau phosphorylation residues. The red colored residues indicate GSK3βmediated tau phosphor-
ylation sites.
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kinase in the human brain (Fig. 4a). Increased GSK3β activity is directly
linked to elevated levels of tau phosphorylation in AD patients [51–53].

Tau contains a number of lysine residues, of which positive charges
are critical for binding to negatively charged microtubules. Similar to
tau phosphorylation, acetylation of those lysine residues disrupts the
charge balance between tau and microtubules resulting in tau aggrega-
tion. Lys280 is known as the major acetylation site and the increased
acetylation promotes pathological tau aggregation [54]. Biochemical
analysis of tau isolated from patient's brain also indicated the increased
level of tau acetylation in AD [55]. Due to the diverse intracellular mod-
ifications of tau, tau aggregation has to be investigated in the complex
cellular system. In the next section, we will introduce diverse cell-
based approaches to induce and visualize tau aggregation in cells
(Table 2).
Table 2
Induction of tau aggregation in cells.

Tau isoform Mutants Host cell Expression

K18 ΔK280
ΔK280/PP
(I277P/I308P)

N2a Stable doxicyclin i

Tau-40 – HEK293 Stable tetracycline
Tau-40 N279K

ΔK280
P301L
S305N
V337M
R406W

CHO Stable expression

Tau-40 QBI–293 Transient express
Tau-46
Tau-37

SH-SY5Y Transient express

Tau-40
Tau-39

P301L
V337M
R406W

NIH 3T3 Stable expression
3.1. Tau Aggregation Assays in Cells

As the simplest model of tau expression, Pouplana and co-workers
expressed tau in E. coli and confirmed its aggregation in inclusion
body by ThS stain [56]. Although it is an efficient way to enrich tau pro-
tein, bacterial system does not allow post-translational modifications
required for spontaneous tau aggregation in cells. For the mammalian
expression, Mandelkow's group generated tau-inducible cell lines [57,
58]. In their study, tau overexpressionwas toxic to the N2a neuroblasto-
ma cells. Thus they expressed tau by using doxycycline-inducible sys-
tem. The N2a cells expressing tau showed robust tau aggregation,
which was detected by a fluorescence dye, ThS. Similarly, Jeff Kuret's
group generated a tetracycline-insoluble tau cell line for tau aggregates.
In their study, tau aggregation was promoted by the treatment of congo
Aggregation inducer Detection Ref.

nducible – ThS antibody [57]

inducible Congo red Antibody [59]
– Antibody [63]

ion Exogenous tau Antibody [60]
ion Exogenous tau Antibody

GFP
[62]

– GFP
CFP
YFP

[61]
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Table 3
Cell-based sensor for tau aggregation.

Tau isoform Mutants Tag Host cell Expression Aggregation inducer Detection Ref.

Tau-40
Tau (1–421)

– HEK293 Transient expression GSK3β FRET [65]

K18 ΔK280
P301L
V337M
I277P
I308P

HEK293 Transient expression K18 FRET [66]

Tau-40
K18

ΔK280
I277P
I308P

HEK293 Transient expression GSK3β BiFC [71]

Tau-40 – HEK293 Stable expression Forskolin okadaic acid BiFC [72]
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red,which is a known small-molecule agonist of tau aggregation,within
cells expressing full length tau isoform [59]. In addition, Lee's group
demonstrated intracellular tau aggregation that can be facilitated by
the treatment of exogenous tau fibrils [60]. In their study, full-length
of tau 40 was expressed in QBI-293 cells and tau aggregation was in-
duced by the treatment of preformed tau fibrils, which act as a seed
for intracellular tau aggregation. These studies successfully demonstrat-
ed that overexpressed tau could be aggregated in cells and also the ag-
gregated tau induces cellular toxicity. However, these approaches
require secondary methods to confirm intracellular tau aggregation
such as or ThS or immune-stains against phosphorylated tau. To moni-
toring intracellular tau aggregation without any secondary detection
methods, diverse fluorescence proteins (GFP, CFP, and YFP) are intro-
duced to label tau and showed tau aggregation in living cells [61,62].
Fig. 5. Cell-based sensors for tau aggregation. (a) FRET-based sensor. Tau protein is fused to CFP
turn-off sensor. Tau is fused to a smaller fragment of GFP (GFP11) and co-expressedwith a large
giving the strongGFP fluorescence.When tau aggregates, GFP1–10 cannot access to GFP11, resu
C-terminal fragment of Venus fluorescence protein (VN173 or VC155). The Venus fluorescence
These cellular systems provide evidence of tau aggregation in cells and
also enable the investigation of pathological mechanism of tau aggrega-
tion. However, these cell-based systems are not validated enough to
quantify tau aggregation in living cells.

4. Cell-based Sensor for Tau Aggregation

A cell-based model that could monitor and quantify tau assembly in
living cells would be a useful tool to investigate tau pathology and to
discovermethods to prevent and reverse the process. In this regards, di-
verse fluorescence protein technologies such as fluorescence resonance
energy transfer (FRET) or bimolecular fluorescence complementation
(BiFC) have been introduced to investigate tau–tau interaction in cells
(Table. 3).
or YFP. In the system, the FRET sensor is activated only when tau assembles. (b) BiFC/GFP
GFP fragments (GFP1–10).When tau exists as amonomer, GFP1–10 freely binds to GFP11
lting in the decrease of GFPfluorescence intensity. (c) Tau is fused to non-fluorescent N- or
turns on only when tau assembles together.

Unlabelled image
image of Fig.�5
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4.1. FRET-based Tau Aggregation Sensor

First, Johnson's group introduced FRET technique to investigate tau–
tau interaction in living cells. Fluorescence resonance energy transfer
(FRET) is a process by which energy is transferred from a donor
fluorophore (CFP) to an acceptor fluorophore (YFP) (Fig. 5a). The CFP
and YFP are tagged to the proteins of interest [64]. Energy transfer be-
tween CFP and YFP occurs only when those proteins of interest are
close enough (typically 2–6 nm). In their study, full-length tau and
caspase-cleaved tau were labeled respectively with CFP and YFP, and
then co-expressed in HEK293 cells [65]. When tau aggregation was in-
duced by GSK3β, the two different tau isoforms bind to each other
resulting in the energy transfer between CFP and YFP. By measuring
the FRET intensity, the level of tau aggregation could be quantified in a
living cell. More interestingly, Diamond's group used this FRET tech-
nique to identify trans-cellular propagation of tau aggregation [66]. In
their study various tau mutants (K18) was labeled with YFP or CFP,
and then expressed separately. Then, cell-medium was collected from
donor cells expressing tau–CFP and treated to adopter cells expressing
tau–YFP. FRETmicroscopy showed that taufibrils secreted into extracel-
lular space could be taken up by other cells and aggregate with intracel-
lular tau. FRET technology has great advantage in differentiating the
aggregated tau species from non-aggregated tau in living cells.

4.2. BiFC: Turn-off Sensor

It is clear that FRET is one of the outstandingmethods that can quan-
tify protein–protein interactions in living cells. However, one drawback
of the approach is that the use of quite huge fluorescence protein tag-
ging that might interfere with the interaction between the proteins of
interest. Therefore, there have been efforts to minimize the size of fluo-
rescence protein tagging. The best example is bimolecular fluorescence
complementation (BiFC) technique. To reduce the size of tagging, a fluo-
rescence protein is split into two non-fluorescent fragments in the BiFC
approach. Then the non-fluorescent constituents are tagged to the pro-
teins of interest. Fluorescent turns on onlywhen those proteins of inter-
est are associated together [67–69].

Johnson's group applied this BiFC technique to visualize tau aggrega-
tion in living cells. A split green fluorescent protein (GFP) complemen-
tation technique was used to quantify tau aggregation in situ [70,71]
(Fig. 5b). In this assay, full-length tau protein was directly fused to a
smaller GFP fragment (GFP11), and co-expressed in cells with a larger
GFP fragment (GFP1–10). When tau exists as a monomer or low degree
aggregate, the complementary large GFP fragment is able to access the
small GFP fragment fused to tau, leading to the association of the fluo-
rescently active GFP. As a fluorescence “turn-off” approach, when tau
aggregates, the reconstitution of active GFP is prohibited and then, in-
tensity of GFP fluorescence decreases in cells.

4.3. BiFC: Turn-on Sensor

As a method of quantifying tau aggregation in living cells, the split-
GFP complementation assay has been highlighted. However, as a fluo-
rescence “turn-off” sensor, the split-GFP technique has an intrinsic lim-
itation to monitoring the initial tau aggregation processes such as
soluble tau intermediates. This limitation was overcome by using a
Venus-based BiFC system. In this approach, Venus fluorescence protein
is split into two non-fluorescent N- and C-terminal fragments (VN173
and VC155) and used to label tau [72] (Fig. 5c). As a fluorescence
“turn-on” approach, Venus fluorescence turns on only when tau assem-
bles together. There is little fluorescence background in basal condition,
suggesting that most tau molecules exist as a monomer. Tau–BiFC fluo-
rescence turns on dramaticallywhen tau aggregationwas stimulated by
the treatment of small molecules inducing tau phosphorylation. As fluo-
rescence ‘turn-on’ technology, tau–BiFC approach enables to achieve
spatial and temporal resolution of tau aggregation in living cells.
5. Concluding Remark

Due to the implications of tau pathology in diverse neurodegenerative
disorders, tau becomes an important therapeutic target and great effort
has beenmade to develop tau-targeted therapy. The primary therapeutic
tactics considered include; (i) reduction of tau hyperphosphorylation
using kinase inhibitors and phosphatase activators, (ii) activation of
proteosomal degradation pathways of tau, (iii) tau clearance by immuno-
therapy, (iv) inhibition of tau aggregation using small molecules, and
stabilizing microtubules. A reliable method to detect and monitor tau
aggregation would accelerate understating tau aggregation mechanism
and also expedite the development of tau-targeted therapeutics.
Although innovative, the FRET-based tau aggregation sensor needs fine
control to measure tau aggregation, thus it is not applicable for massive
drug screening that needs robust screening platform. In contrast, the
recently developed tau–BiFC “Turn-On” system allows simple and
quantitative measurement of tau aggregation by measuring the in-
creased YFP intensity in cells as an indication of tau aggregation. Also,
as an established cell line, it allows 384-well based high-throughput
drug screening providing reliable results. While the fluorescence protein
tagging approaches enable monitoring intracellular tau aggregation, the
use of a large tagging protein itself is a limitation of the approaches by
adding an artificial manipulation of the system.We believe that this lim-
itation can be overcomeby developing a tau-selectivefluorescence probe
that can detect intracellular tau aggregationwithout the need for genetic
manipulation. In this regards, the recently developed tau imaging probes
give us a hope to facilitate the entire tau research [73,74].
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