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Abstract
Screening is a powerful tool for infection control, allowing for
infectious individuals, whether they be symptomatic or asymp-
tomatic, to be identified and isolated. The resource burden of
regular and comprehensive screening can often be prohibitive,
however. One such measure to address this is pooled test-
ing, whereby groups of individuals are each given a composite
test; should a group receive a positive diagnostic test result,
those comprising the group are then tested individually. Infec-
tious disease is spread through a transmission network, and
this paper shows how assigning individuals to pools based
on this underlying network can improve the efficiency of the
pooled testing strategy, thereby reducing the resource bur-
den. We designed a simulated annealing algorithm to improve
the pooled testing efficiency as measured by the ratio of the
expected number of correct classifications to the expected
number of tests performed. We then evaluated our approach
using an agent-based model designed to simulate the spread of
SARS-CoV-2 in a school setting. Our results suggest that our
approach can decrease the number of tests required to regu-
larly screen the student body, and that these reductions are
quite robust to assigning pools based on partially observed or
noisy versions of the network.
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1 INTRODUCTION

Screening and subsequent isolation of identified infectious individuals is a powerful tool in infec-
tious disease control in a given population. For example, in a modelling study Paltiel et al. (2020)
showed that screening every other day on a small college campus would be necessary to control
the spread of SARS-CoV-2.

Frequent screening is especially important in the context of a disease with high degree
of ‘silent spreading,’ that is, transmission occurring from pre-symptomatic or asymptomatic
infectives, as is the case with Coronavirus Disease 2019 (COVID-19). In certain populations, indi-
viduals with COVID-19 were found to be asymptomatic at rates from 50% to nearly 80% (Denny
et al., 2020; Oran & Topol, 2020; Sutton et al., 2020). One study estimated that over half of all trans-
mission events were through silent spreading, and hence even comprehensive and immediate
isolation of symptomatic cases is insufficient to achieve infection control (Moghadas et al., 2020).
Regular comprehensive screening can lead to identifying all infectious individuals regardless of
the presentation of symptoms, thereby pre-empting potential transmission events by isolating
infectives.

In addition, relying on contact tracing and quarantining can be less effective when contacts are
difficult to trace. For example, in a 2017 mumps outbreak at Penn State University, only around
17% of reported contacts were reached and verified to have followed quarantining protocol (Bharti
et al., 2020); the true percentage of contacts effectively quarantined was undoubtedly smaller, as
this percentage does not account for those contacts unreported by the index case.

Screening, however, requires a large amount of testing and is therefore very often cost pro-
hibitive. To illustrate this fact, during the fall semester of 2020, in the midst of the global
COVID-19 pandemic, only 6% of small colleges and universities routinely tested their students for
SARS-CoV-2 (Nadworny & McMinn, 2020). Further compounding the resources required to effec-
tively use screening for infection control is the finding that the frequency of testing is critical and
even more important than, for example, the diagnostic test’s sensitivity (Larremore et al., 2021).

One method of reducing the resource burden for frequent and comprehensive screening is
pooled testing. Dorfman (1943) first formalised the strategy of taking batches of samples and
pooling them in order to perform a single joint test. Should a pooled test result in a positive
diagnosis then each sample in the pool is subsequently tested individually in order to identify
the infected individual(s). This approach to testing is referred to as a two-stage Dorfman proce-
dure, and, perhaps due to its simplicity, has seen widespread use (Hughes-Oliver, 2006). There
has since been numerous variations on this idea, including different strategies for following up a
positive test result (e.g., Sterrett, 1957), and having more than two layers of the hierarchical test-
ing strategy (e.g., Malinovsky et al., 2020) (non-hierarchical strategies in which each sample may
appear in multiple pools also has received much attention, but this paper will not focus on these
approaches). See Hughes-Oliver (2006) or Bilder (2022) for more information on pooled testing.

By reducing the resource requirements, pooled testing allows for screening to be used as
infection control in settings where comprehensive individual-level screening would be infeasible.
Anthony Fauci, the Director of the National Institute of Allergy and Infectious Diseases, stated
at a U.S. Senate hearing, ‘[Pooled testing] is a really good tool. It can be used in any of a number
of circumstances, including at the community level or even in schools’ (Associated Press, 2020)
and others have noted its potential application at schools, offices, religious organisations and
factories (Lee et al., 2020). In low prevalence areas, pooled testing can be particularly effective.
Wacharapluesadee et al. (2020) determined that in low prevalence settings the required laboratory
resources could be decreased by up to 80%; Pilcher et al. (2020) estimated that when compared
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with individual testing, pooled testing could screen 2 to 20 times as many individuals for the same
cost; and Abdalhamid et al. (2020) estimated that so long as the incidence rate of COVID-19 is
10% or less pooled testing could save 69% of reagents and personnel time.

In recent practice, China, Germany, Israel, and Thailand have implemented pooled testing
for SARS-CoV-2 (Mandavilli, 2020). In the United States, the Nebraska Public Health Laboratory
performed pooled testing until prevalence became too high (Stone, 2020), and Duke University
effectively implemented twice-per-week screening of its student population via a pooled testing
strategy (Denny et al., 2020). While pooled testing is widely used beyond infectious disease set-
tings (Bilder, 2019, cites its usage in determining virus transmission from an insect to a plant,
bacteria screening for food, discovery of new pharmaceuticals, and verification of computer net-
work security), the focus of this paper is the use of pooled testing in screening a population for
an infectious disease; the terminology used henceforth will reflect this focus.

The goal of this work is to reduce the total number of expected tests required to screen
infectious diseases by leveraging how the members of the population are connected without com-
promising the number of correctly classified individuals. By using the network and how one
individual may transmit the disease to another, we can construct pools of individuals which can
reduce the total number of expected tests. There is a long history of optimising pooled testing
strategies when there is available additional information on the heterogeneity of probabilities
of being infected (Bilder et al., 2010; Black et al., 2015; Hwang, 1975; Malinovsky et al., 2020;
Yao & Hwang, 1988). This paper also relates to obtaining an efficient pooling strategy, yet the
direction is orthogonal to previous work. While previous literature assumes subjects are inde-
pendent with perhaps differing conditional probabilities of being infected given some exogenous
information, our focus is on minimising the total number of expected tests based on the interrelat-
edness of the individuals of the population. Work by Lendle et al. (2012) showed that when those
being tested belong to clusters with inter-cluster variation in disease prevalence, the association
between individuals within clusters can be leveraged to improve the testing strategy. However,
this work assumed (1) units in different clusters were independent, and (2) units within a cluster
were exchangeable. Both these assumptions are incompatible with complex networks connecting
individuals.

The remainder of the paper is structured as follows. Section 2 describes the proposed meth-
ods for minimising the expected number of tests. Section 3 outlines an agent-based model and
describes its use for evaluating the efficacy of our proposed approach. Finally, we provide a brief
discussion in Section 4.

2 METHODOLOGY

2.1 Objective

Let n denote the total number of individuals in the population. In order to screen all n individuals
using a two-stage Dorfman procedure, we first partition the n individuals into P pools of K = n∕P
individuals each. Let p ⊂ {1, 2, … ,n}, |p| = K, denote the set of individuals assigned to the pth
pool. (Later we will relax |p| = K ∀p, allowing for K not necessarily being a factor of n, but for the
purposes of exposition we will currently make this simplifying assumption.) If any pool results
in a positive test, we subsequently test the K individuals in the corresponding pool. Finally, let
y = (y1, … , yn)′ denote the n × 1 vector such that yi equals 1 if the ith individual is infected and
zero otherwise, and let y

p
denote the K × 1 sub-vector of y corresponding to the individuals in

the pth pool.
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One of the primary outcomes of interest is the total number of tests, denoted T, and we wish
to minimise the expected number of tests, E(T). Let Se denote the sensitivity of the pooled test if
at least one individual in the pool is positive, and let Sp denote the specificity of the pooled test. If
individuals are independent and are infected according to the prevalence rate 𝜌, then the expected
total number of tests in a pool of size K was given by Dorfman (1943) as

1 + KSe − K(Sp + Se − 1)(1 − 𝜌)K . (1)

However, simply minimising the total number of tests is insufficient when the sensitivity and
specificity of the test are not both equal to 1. Rather, one should also account for the number of
correctly classified individuals being tested, denoted C (see, e.g., Aprahamian et al., 2019; Graff
& Roeloffs, 1972; Litvak et al., 2020). Malinovsky et al. (2016) suggested using the ratio of the
expected number of correct classifications to the expected number of tests, E(C)∕E(T), which
we will adopt here as our objective. In a similar way as E(T), Malinovsky et al. showed that for
independent individuals the expected number of correctly classified individuals in a pool of size
K can be computed as

K
[
S2

e + (1 − 𝜌)(SeSp + 1 − Se − S2
e ) + (1 − 𝜌)K(1 − Sp)(Sp + Se − 1)

]
. (2)

The objective function we which to maximise then is the ratio of (1) to (2).
In the setting of infectious disease, individuals within the population are not independent, but

rather a network describing the contact patterns, or more generally transmission opportunities,
between these individuals induces dependency amongst them. A network, consisting of a set of
individuals and a set of edges which act to connect pairs of individuals, can be represented as a
n × n symmetric adjacency matrix A where Aij = Aji equals 1 if there is an edge between the ith
and jth individuals and zero otherwise; note that the diagonal elements all equal zero. A related
matrix we will utilise later is D−1, the matrix whose (i,j)th element, D−1

ij , is the reciprocal of the
geodesic distance between the ith and jth individuals, where the geodesic distance between two
individuals in the network is defined to be the length of the shortest path between them. That
is, Dij = min{L ∶ Ai𝓁1 A𝓁1𝓁2 · · ·A𝓁L−1j = 1}, and D−1 contains the element-wise inverses (and does
not represent the matrix inverse of D).When there does not exist a path between every pair of
individuals, that is, we have a disconnected graph, the distance between unreachable pairs is
defined by convention to be ∞, and hence D−1

ij = 0. For our purposes (see Section 2.3) we set the
diagonal elements of D−1 to be zero.

In this context, individuals are no longer exchangeable, and both the expected number of
correct classifications and the correct number of tests are inherently functions of the pool assign-
ments. Let Z denote the n × P matrix of pool assignments, so that Zip equals 1 if the ith individual
belongs to the pth pool and zero otherwise. This matrix then induces the sets p, p = 1, … ,P.
The expected number of tests given the pool assignments can be derived as follows:

E(T|Z) =
P∑

p=1

(
1 + KpP(pth pool tests +)

)

= P +
P∑

p=1
Kp

[

Se(1 − P(y′
p
1Kp = 0)) + (1 − Sp)P(y′p

1Kp = 0)
]

= P + nSe − (Sp + Se − 1)
P∑

p=1
KpP(y′p

1Kp = 0), (3)



1652 SEWELL

where 1m is the m × 1 vector of ones. Note that we have added a subscript to K to denote the
size of the pth pool, since K will not in general be a factor of the total number of individuals to
be tested. For example, in the analyses presented in this paper we have taken the remainder and
distributed them across the other pools, so that pools will have either K or K + 1 members.

Similarly, we can evaluate the expected number of correctly classified individuals given the
pool assignments as

E(C|Z) =
P∑

p=1

⎡
⎢
⎢
⎣

Kp∑

k=1
P(y′

p
1Kp = k)

(
Se(kSe + (Kp − k)Sp) + (1 − Se)(Kp − k)

)

+ P(y′
p
1Kp = 0)

(
KpSp + (1 − Sp)KpSp

)⎤
⎥
⎥
⎦

= nS2
e +

P∑

p=1

[

(Kp − 𝜇p)
(

SeSp + 1 − Se − S2
e
)

+Kp(1 − Sp)(Sp + Se − 1)P(y′
p
1Kp = 0)

]

, (4)

where 𝜇p ∶= E(y′
p
1Kp |Z), the expected number of infected individuals in the pth pool. Taken

together with (3), we have the following objective function we wish to maximise:

Q(Z) ∶= E(C|Z)
E(T|Z)

. (5)

2.2 Estimation of objective function

Unlike in the case of independent individuals, 𝜇p and P(y′
p
1Kp = k), p = 1, … ,P, cannot be com-

puted from the prevalence alone, yet prevalence and perhaps some disease characteristics are
typically all that is known in practice. However, there is a wealth of well-studied transmission
models available (see, e.g., Allen et al., 2008) which can be applied here.

Suppose we have a data generating function F. In very simple cases F may correspond to a
closed-form likelihood, but in more realistic cases will be a simulator such as a network-based
compartmental model, or even a highly complex agent-based model. We assume that F is param-
eterised by 𝜃 ∶= (𝜃1, 𝜃2), where 𝜃1 is the set of parameters of known disease characteristics (e.g.,
average recovery time), and 𝜃2 is the set of unknown parameters with prior 𝜋(𝜃2). From F we can
generate M iid samples of the n-dimensional vector of infection statuses, y(m), m = 1, 2, … ,M.
The goal will be to generate such draws from F in order to obtain Monte Carlo estimates of
P(y′

p
1Kp = 0) and 𝜇p.

Since the prevalence 𝜌 is typically the only thing known, we wish to generate y(m) from F
conditional on 1

n
y(m)′1n = 𝜌. That is, when writing P(y′

p
1Kp = 0) and 𝜇p above, we are implicitly

conditioning on y ∼ F and 1
n

y(m)′1n = 𝜌. (Note that in the pooled testing literature, the prevalence
is always implicitly conditioned on, but the way the data is generated, F, is not.) This may be
computationally infeasible to generate many draws of y with prevalence exactly equal to 𝜌 and
impossible in the likely case that n𝜌 is not an integer. Hence we are interested in the approximate
Bayesian computation (ABC) distribution
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𝜋ABC(y, r, 𝜃|𝜌) ∝ 1{|r−𝜌|<h}𝛿r(r(y))f (y|𝜃)𝜋(𝜃2), (6)

where 1{a} equals one if condition a is true and zero otherwise, 𝛿 is the dirac delta function, r(y) is
the prevalence of y, and f is the probability mass function obtained from F (not necessarily known
in closed form). As the tuning parameter h → 0, the ABC marginal of y becomes 𝜋(y|r(y) = 𝜌).
Draws from 𝜋ABC can easily be obtained in the following way:

1. SET m = 1
2. GENERATE 𝜃(m)2 ∼ 𝜋(𝜃2)
3. GENERATE y(m) from F parameterised by (𝜃1, 𝜃

(m)
2 )

4. SET r(y(m)) = y(m)′1n.
5. IF |r(y(m)) − 𝜌| < h THEN m ← m + 1.
6. IF m = M + 1 stop. ELSE Go back to step 2.
7. RETURN

{
y(1), … , y(M)

}

With M draws of y with the desired prevalence 𝜌 (up to ±h) and underlying data generating
mechanism F, we can well approximate Q(Z) by plugging in

P̂

(

y′
p
1Kp = 0

)

= 1
M

M∑

m=1
1{y(m)

′
p

1Kp=0
}
,

and 𝜇p =
1
M

M∑

m=1
y(m)

′

p
1Kp .

Because the y(m)’s are sparse, both of these estimates are reasonably fast to compute.
This approach is extremely flexible by allowing any data generating process to be used.

Although this ABC algorithm may be somewhat time consuming depending on F, it only needs
to be run once in order to provide the y(m)’s necessary to optimise Z (see next section). It is also
an embarrassingly parallel task.

2.3 Optimising pool assignments

In the context of networked individuals, the absence of exchangeability implies that the specific
pool assignments matter, and that the computation of the objective function depends on a specific
set of assignations of n individuals into P pools of equal (or nearly equal) size. The constraint
on equal sized pools leads us to formulate the problem in the following way. (For simplicity, we
will assume that all pools have exactly K members; extending this to fixed Kp is trivial.) Let Z ∶=
IP ⊗ 1K , where IP is the P × P identity matrix and ⊗ denotes the Kronecker product; let 𝜎 be a
permutation of {1, 2, … ,n} which will be used to control the pooling assignments; and let Z𝜎
= (Z′

𝜎,1, … ,Z′
𝜎,n)′ denote Z with its rows permuted according to 𝜎. That is, the ith row of Z𝜎 , Z𝜎,i,

has a one in the place marking the pool to which i belongs and zeros everywhere else, and the pth
column, Z𝜎,⋅p, has Kp ones marking those belonging to the pth pool and zeros everywhere else.

By optimising over permutations of the rows of Z, we are able to maintain the constraint
over the pool sizes, that is, the row and column sums of Z𝜎 are constant regardless of the per-
mutation. To perform this optimisation with respect to Q(Z) as given in (5), we propose using
a simulated annealing (SA) algorithm (Kirkpatrick et al., 1983). SA is a widely used stochastic
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optimisation approach that is more effective than greedy algorithms at avoiding local modes. The
algorithm requires a sequence of L decreasing temperatures {𝓁}L

𝓁=1 which controls the freedom
of movement around the space of permutations. Higher (lower) temperatures imply that it is
easier (harder) to transition to permutations with poorer values of the objective function. Much
attention has been given to evaluating the theoretical properties of various cooling schedules,
for example, Cohn and Fielding (1999). Speaking coarsely, the optimal solution is guaranteed for
a cooling schedule which is sufficiently slow, such as the logarithmic schedule of Geman and
Geman (1984). However, such schedules tend to be too slow to be practical, and instead faster
schedules are implemented (Nourani & Andresen, 1998). In the analyses that follow, we used an
exponential schedule of 𝓁 = 2 ⋅ (0.95)𝓁 which worked well.

At the 𝓁th iteration, we randomly generate a candidate permutation �̃�. To determine if we
move from the current permutation 𝜎(𝓁−1) to the candidate, we draw u ∼ Unif (0, 1) and set 𝜎(𝓁)
equal to �̃� if

u < exp
{

log Q (Z�̃�) − log Q (Z𝜎(𝓁−1) )
𝓁

}

,

and equal to 𝜎(𝓁−1) otherwise.
To generate the candidate permutation transitioning from some permutation 𝜎, we propose

the following. Let S𝜎 ∶= Z′
𝜎

D−1Z𝜎 , the P × P matrix which sums the inverse geodesic distances
between the individuals in each pair of pools as assigned by 𝜎. The off-diagonal elements of S𝜎
provide a measure as to the closeness between individuals belonging to different pools. To gener-
ate a candidate permutation, we first choose a pair of pools with probability proportional to the
upper triangular elements of S𝜎 . We then randomly choose one individual from each pool. These
individuals’ rows of Z𝜎 are swapped, corresponding to a new permutation �̃�. By basing our candi-
date permutation based on how close the two pools are, we avoid proposing unlikely candidates
for a swap, thereby improving the acceptance rate. Should �̃� be accepted, we can compute S𝜎(𝓁)
by first assigning it to be equal to S𝜎(𝓁−1) and then updating those elements which involve the two
pools whose members have changed. Convergence is reached when no swaps are accepted for a
sufficiently long period of the chain.

We initialised our algorithm in the following way. We start by using the geodesic distances
in a k-medoids clustering algorithm (Everitt et al., 2011), where the number of clusters is P. We
then ordered each individual by the difference between the distance to the nearest cluster medoid
and the median distance to the other medoids. We then in this order assigned individuals to their
nearest non-full cluster until all individuals were assigned to a pool with K − 1 others.

3 EVALUATION VIA AN AGENT-BASED MODEL

3.1 Agent-based model for COVID-19

In order to evaluate our approach to refining a pooled testing strategy, we built an agent-based
model (ABM) to simulate the spread of COVID-19 in a high school setting. The goals were to (1)
compare the objective function Q(Z) as given in (5) when assigning individuals to testing pools
randomly versus using our proposed network-based approach, and (2) determine how any poten-
tial improvement might be attenuated by adding noise to the network used to assign individuals
to pools.
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The agents in the model were students, and their infection status was recorded on a daily
time scale. Students were set a pre-specified screening schedule of testing once per week. Test
results were delayed by 1 day, and if a student obtained a positive test result, that student went
into isolation. Isolation lasted for 10 days during which the student could not infect or be infected
by others.

Each day, each susceptible student was infected according to a baseline importation probabil-
ity of 0.0015, roughly corresponding to a 2% community prevalence rate. Upon becoming infected,
each student would go through a cycle of up to 25 days of being infectious (1 to 12 pre-symptomatic
days + day of symptom onset + 12 days after symptom onset), after which the student would
no longer be infectious nor susceptible to becoming reinfected. (Note that for the sake of brevity
we will simply refer to the time of symptom onset; for those who are asymptomatic this can be
inferred to mean the day of peak viral load.) The length of infectivity varied due to a random incu-
bation period. We randomly generated an incubation period in the range of 1 to 12 for each newly
infected student according to He et al. (2020); after this period the student remained infectious
for 13 additional days.

Excluding those students in isolation, the probability that an infectious individual who is
t days away from their symptom onset infects a susceptible individual who is adjacent in the
network was set to equal 𝜏ct, t = −12,−11, … , 11, 12, where ct are values corresponding to the
infectiousness profile of He et al. (2020), t = 0 corresponds to the date of symptom onset, and 𝜏
controls the overall transmission rate. We set 𝜏 to fix the basic reproduction number at 2.79, as
was estimated in an early survey by Liu et al. (2020), accounting for the average degree in the
network.

To estimate the sensitivity of tests according to how long an individual has been infected,
we used data from Kucirka et al. (2020) to fit a logistic regression model using splines to fit a
non-linear relationship between sensitivity and date relative to symptom onset. To account for
dilution effects on sensitivity, we reduced the sensitivity of pooled tests by 16.4%, as was given in
the COVID-19 example with pool size of 5 in Polage et al. (2020). The specificity was set at 0.995.

3.2 Data generator

In computing the optimal pooling assignments, we did not use the ABM described above as our
data generating function F. This was done intentionally for two reasons. First, while the ABM
was not computationally onerous, it still required too much time to be used efficiently in the ABC
algorithm described in Section 2.2 in our simulation study. A second and most important reason
is that in practice our models will always be a simplification of reality with incorrect parameter
estimates, and in our simulation study we wished to accurately reflect this disparity between how
the data is actually generated (the ABM of Section 3.1) and how the data is posited to have been
generated (F as described below).

We used a susceptible-infected-susceptible (SIS) model as F when determining optimal
pool assignments. The SIS discrete-time network-based simulator takes as input a transmis-
sion parameter 𝛽, a number of days T, and a n × n network adjacency matrix A and outputs a
n-dimensional binary vector indicating the infection status of each individual on the Tth day.
The SIS simulator begins by randomly infecting one individual who remains infected for 7 days.
Each day, each infected individual with probability 𝛽 infects her/his susceptible contacts. We
set T = 300 to ensure we had reached a state of equilibrium, and used a uniform prior on 𝛽

over the range 1.15 to 1.85 times the epidemic threshold divided by the length of the infectious
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F I G U R E 1 High school friendship network of 355 students

period1 for an infectious period of 7 days. Values larger or smaller than this tended to yield preva-
lence rates too small and too large, respectively. As described in the next section, we altered the
true network A in various ways when implementing our SIS simulator, which in turn was used
to estimate the P(y′

p
1Kp = 0) and 𝜇p values in the simulated annealing algorithm.

3.3 Simulation setup

We used a real friendship network of 355 high schoolers (McFarland, 2001), available in the R
package NetData (Nowak et al., 2012). This network, shown in Figure 1, was treated as the
ground truth network used in the ABM to generate secondary infections. We considered pool
sizes to range from 2 to 25 and chose the value that yielded the highest value of E(C|Z)∕E(T|Z).
We then ran the ABM to simulate a 10-week period.

Because in reality we usually do not have the true network, we considered the following
six settings for altering the true network when assigning students to pools. In all settings, the
transmission in the ABM corresponded to the ground truth network.

1This threshold relates 𝛽 to the recovery rate and the largest eigenvalue of A. Specifically, when 𝛽 divided by the recovery
rate is larger than the reciprocal of the largest eigenvalue of A, the epidemic will not die out. See, for example,
Newman (2010) for details.
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• Random. Individuals were assigned randomly to pools.
• Oracle. Individuals were assigned to pools using our proposed approach on the true network.
• Nomination. We emulated a social survey in which students were asked to nominate five other

students with whom the respondent spends time. Each student randomly selected up to five of
their contacts, and we then applied our proposed approach on the resulting network to assign
individuals to pools.

• Partial recall. We emulated a social survey in which students were asked to list those with
whom the respondent spends time. Each respondent listed each of their contacts with proba-
bility 0.6; that is, on average only 60% of contacts were listed. Our approach was then used on
the resulting network to assign individuals to pools.

• Nomination + re-wiring. To add additional noise, we implemented the Nomination approach
and subsequently rewired each edge between two random individuals with probability 0.05.

• Partial recall + re-wiring. To add additional noise, we implemented the Partial recall approach
and subsequently re-wired each edge between two random individuals with probability 0.05.

We ran 250 simulations for each setting, recording the total number of tests and total number of
correct classifications from each.

3.4 Results

Using the high school network of 355 students, we compared pool sizes K ranging from 2 to 25
individuals using both our proposed method and the method of Malinovsky et al. (2016) ignoring
the underlying contact network. Figure 2 shows how the correct number of classifications per
test varies over K. The objective function from the method ignoring the network is dominated by
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F I G U R E 2 Expected number of correct classifications per test as a function of the number of individuals
per test, K, for our proposed method (blue, filled circles) and for the approach ignoring the contact network (red,
hollow circles) (colour online) [Colour figure can be viewed at wileyonlinelibrary.com]
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our proposed approach. From this we obtain an optimal pool size of K = 13. It should be noted
that while this will not be true in general, in this case the changes in the objective function are
driven almost entirely by the changing number of tests required; the expected number of correct
classifications for either approaches only ranged between 0.987 and 0.989 for all K we tried.

Figure 3 shows the value of the objective function over 100,000 iterations (500 temperatures,
200 iterations per temperature) of the proposed optimisation algorithm for K = 13, illustrating
how the SA allows the solution to leave the initial local mode before achieving higher values.
Figure 4 illustrates how our proposed approach can find pools of individuals who tend to either
be densely intra-connected or all have low degree.
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F I G U R E 3 Objective function value over 100,000 iterations (horizontal axis) of the simulated annealing
algorithm corresponding to the high school friendship network of 355 students and pool size equal to 13

F I G U R E 4 Adjacency matrix for the high school friendship network of 355 students. Boxes are drawn
around edges connecting individuals in the same pool of size K = 13 students for randomly assigned pools (left)
or pools assigned using our proposed approach (right).
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F I G U R E 5 Simulation results showing the estimated objective function. 95% confidence intervals display
the Monte Carlo error associated with the simulation results.

Figure 5 shows the estimated objective function for each of the six settings from our simu-
lation study run on the ABM, with 95% confidence intervals expressing the Monte Carlo error.
Two things are striking. First, by leveraging the network, the ratio of the expected number of
correct classifications to the expected number of tests markedly increases compared to random
assignments (21% increase). Second, there was not a meaningful difference between the oracle
assignments and those network-based assignments relying on incomplete or noisy network data.
This is highly reassuring, as practitioners can be fairly certain that the true transmission network
will be only partially or noisily observed.

4 DISCUSSION

For an institution such as a workplace or school facing an infectious disease outbreak, compre-
hensive screening can be a powerful tool for infection control, particularly when a non-ignorable
fraction of transmission is due to pre-symptomatic or asymptomatic infectives. The cost of such
screening, however, is very often prohibitive, and pooled testing can alleviate this burden. We
have proposed a method of assigning pools when implementing a pooled testing strategy which
leverages the underlying transmission network to further reduce the resource burden. We have
provided R code implementing our proposed approach in Appendix S12.

The results from our ABM suggest that our approach is robust to incomplete and noisy mea-
surements of the true underlying transmission network. This is an important point, as the true
transmission network is not often observed in practice. It should be noted that advancing technol-
ogy such as sensor mote deployments (e.g., Jang et al., 2019) or contact tracing mobile phone apps
(see Ahmed et al., 2020, for a survey) can more feasibly measure the contact network. Still, since
this technology may be out of reach for many settings, we emulated common survey methods

2This script will automatically install from the web and load the R package networkPooledTesting, available
through the author’s website at https://myweb.uiowa.edu/dksewell/software/networkPooledTesting_1.0.tar.gz

https://myweb.uiowa.edu/dksewell/software/networkPooledTesting_1.0.tar.gz
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for measuring social networks which are relatively inexpensive to administer and found negli-
gible differences in performance when compared to using perfect knowledge of the underlying
transmission network.

This work serves to introduce a network perspective into the rich group testing literature. It is,
however, but a first step, and there are several important directions for future research. First, while
we have focused on a two-stage Dorfman procedure, higher efficiencies may be achieved through
deeper hierarchical procedures (Johnson et al., 1991) or Sterrett procedures (Malinovsky, 2019).
Second, an important area of research is how best to optimise pooling assignations when there
exists information on both network connections and differential prevalences (Black et al., 2015;
Malinovsky et al., 2020). Third, our algorithms are still fairly computationally intensive. Scalabil-
ity remains a future goal in order to ensure large organisations can reasonably apply our methods.
Fourth, the constraint that all pools are the same size are typically imposed for logistical reasons
or for simplicity. Consider Figure 4. While clearly a large part of the network structure is captured
in the pooling, there still exists remaining block structure that is not accounted for in the pools.
As an anonymous reviewer pointed out, optimal pooling assignments are in general unlikely to be
formed from equally sized pools, and a better solution may be reached if pool size could fluctuate
within the bounds of what is technically or logistically feasible.
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