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ABSTRACT
The outbreak of Coronavirus infection (COVID-19) has prompted the World Health Organisation (WHO)
to declare the outbreak, a Public Health Emergency of International concern. As part of the efforts to
discover lead compounds for clinical use, 53 molecules were screened using molecular docking and
dynamic simulations (MDS) techniques to identify potential inhibitors of SARS-CoV-2 spike protein
(COVID-19 Sgp) and main protease (COVID-19 Mpro) or both. Lopinavir (LPV), nelfinavir (NEF), hydroxy-
chloroquine (HCQ), remdesivir (RDV) and an irreversible inhibitor of SARS-CoV (N3) were used as stand-
ard drugs for COVID-19 Mpro, while zafirlukast (ZFK) and cefoperazone (CSP)) as standard drugs for
COVID-19 Sgp. After 100ns of MDS, with reference to standard drugs (N3, �52.463 Kcal/mol, NEF,
�51.618 Kcal/mol, RDV, �48.780Kcal/mol, LPV, �46.788Kcal/mol, DRV, �33.655Kcal/mol and HCQ,
�21.065 Kcal/mol), five molecules, HCR, GRN, C3G, EGCG, and K7G were predicted to be promising
inhibitors of COVID-19 Mpro with binding energies of �53.877 kcal/mol, �50.653Kcal/mol,
�48.600 kcal/mol, �47.798 kcal/mol and �46.902 kcal/mol, respectively. These lead molecules were
then docked at receptor-binding domain (RBD) of COVID-19 Sgp to examine their inhibitory effects.
C3G, GRN and K7G exhibited higher binding energies of �42.310 kcal/mol, �32.210 kcal/mol,
�26.922 kcal/mol than the recorded values for the reference drugs (CSP, �35.509 kcal/mol, ZFK,
�24.242 kcal/mol), respectively. The results of the binding energy and structural analyses from this
study revealed that C3G, GRN and K7G could serve as potential dual inhibitors of COVID-19 Sgp and
COVID-19 Mpro, while HCR and EGCG would be inhibitors of COVID-19 Mpro.
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Introduction

Coronavirus disease (COVID-19) remains one of the most
severe and current outbreak culminating into global pan-
demic. COVID-19 is caused by the infection of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (WHO,
2020). SARS-CoV-2 belongs to the same class of other coro-
naviruses (Family-Coronaviridae) such as Severe Acute
Respiratory Syndrome (SARS) and Middle East Respiratory
Syndrome (MERS) that have been implicated in respiratory
and neurological diseases (de Wit et al., 2016; Shen et al.,
2020). The first case of COVID-19 was reported in Wuhan,
Hubei province of China on December 31, 2019 and has
since spread across all continents of the world (Zhu et al.,
2020; Li et al., 2020). As of September 19, 2020, over 30.5
million confirmed cases had been reported, with more than
950,000 deaths confirmed world-wide (https://coronavirus.
jhu.edu/map.html).

SARS-CoV-2 infected patients may be asymptomatic, while
those with confirmed cases showed common symptoms

such as fever, cough, fatigue, and shortness of breath (CDC,
2020; Chen et al., 2020). The report of the WHO-China joint
mission on COVID-19 has shown that 88%, 68%, 38% and
33% of infected patients showed fever, dry cough, fatigue,
and sputum production symptoms, respectively (WHO, 2020).
The outbreak of the disease is currently the world’s main
health challenge, which has prompted WHO to declare the
outbreak a Public Health Emergency of International Concern
(WHO, 2020).

As the world is facing the scourge of COVID-19 outbreak,
it is, therefore, a matter of urgency and necessity to develop
or repurpose drugs or therapeutics to cure the disease.
Although, there is currently no specific and permanent treat-
ment for COVID-19, however, preventive, and supportive
therapies are being implemented for its management to
avert further complications and pathological damage
(Rodr�ıguez-Morales et al., 2020). Researchers are working
towards the development of effective treatments, and there
have been reports that existing drugs, such as anti-malarials
(chloroquine and hydroxychloroquine), antiretrovirals
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(Lopinavir–ritonavir) and Ebola drugs (remdesivir) could be
effective against COVID-19 (Cao et al., 2020; CDC, 2020;
Wang et al., 2020). An in silico study on four drugs (prazi-
quantel, perampanel, pitavastatin and nelfinavir) against
COVID-19 main protease enzyme (COVID-19 Mpro) showed
that nelfinavir (NEF) exhibited the most promising and best
inhibitory activity against the enzyme (Xu et al., 2020).
Studies have also reported drugs/compounds such as zafirlu-
kast, cefoperazone, Hesperidin, Curcumin and andrographo-
lide as potential inhibitors of COVID-19 Sgp (Basu et al., 2020;
Maurya et al., 2020; Senathilake et al., 2020). Several other
studies, including clinical trials on vaccines and drugs,
are ongoing.

The COVID-19 Sgp is vital in the entry mechanism of SARS-
CoV-2 into the host cell. SARS-CoV-2 binds to the angioten-
sin-converting enzyme 2 (ACE-2) receptor of the host cell
using the COVID-19 Sgp (Wrapp et al., 2020). The receptor-
binding domain (RBD) of COVID-19 Sgp is used in binding
with the ACE-2 receptor on the host cell to form the needed
complex of RBD-ACE-2 that facilitate the viral entry (Wrapp
et al., 2020). High-affinity binding of the RBD-ACE-2 has been
suggested to be one of the factors enhancing the quick and
widespread of the disease (Wrapp et al., 2020). Likewise,
COVID-19 Mpro is essential in viral replication and transcrip-
tion (Yang et al., 2003; Pillaiyar et al., 2016). Jin et al. (2020)
further reported that the COVID-19 Mpro through extensive
proteolytic processing is responsible for the release of func-
tional polypeptides from the virus polyproteins. The COVID-
19 Mpro and COVID-19 Sgp are, therefore, attractive, and
invaluable therapeutic targets for the development of drug
candidates for COVID-19 treatment.

Inhibition of the COVID-19 Sgp and COVID-19 Mpro will
lead to a reduction in the spread of the infection to vulner-
able hosts or cells and production of non-infectious virions.
As part of the efforts to discover novel lead compounds for
clinical use, this study employed combined structure-based
drug design and molecular dynamic simulations to identify
new leads that could target either the spike (S) glycoprotein
(COVID-19 Sgp) and COVID-19 Mpro or both. Fifty-three mole-
cules with reported antiviral activities were screened as
potential inhibitors of COVID-19 Sgp and COVID-19 Mpro or
dual inhibitors. Antiretroviral drugs (lopinavir, nelfinavir and
darunavir), anti-malaria drug (hydroxychloroquine), Ebola
drug (remdesivir) and an irreversible inhibitor, N3 (peptide-
like inhibitor) of SARS-CoV and MERS-CoV, (Liu et al., 2020;
Ren et al., 2013; Wang et al., 2016) were used as standard
drugs for COVID-19 Mpro, while for COVID-19 Sgp, the anti-
asthmatic drug (zafirlukast) and cefoperazone were used as
standard drugs (Senathilake et al., 2020).

Methods

Proteins (COVID-19 sgp and COVID-19 mpro) acquisition
and preparation

The X-ray crystal structures of the COVID-19 Mpro (PDB codes:
6LU7) and COVID-19 Sgp (PDB code: 6LZG) were obtained
from the RSCB Protein Data Bank (Burley et al. 2018; Jun et
al., 2020). The structures of the two proteins were then

prepared on the UCSF Chimera software package (Yang
et al., 2012). The structure of the proteins were prepared
removing water molecules, nonstandard naming, protein
residue connectivity. The missing atoms of sidechains and
protein backbone were added in the protein structure before
the molecular docking.

Ligand acquisition and preparation

The standard drugs nelfinavir (NEF), lopinavir (LPV), remdesi-
vir (RDV), N3, hydroxychloroquine (HCQ), zafirlukast (ZFK)
and cefoperazone (CSP) as well as the test molecules, were
accessed from PubChem (Kim et al., 2016) and the 3-D struc-
tures prepared on the Avogadro software package (Hanwell
et al., 2012).

Molecular docking

The molecular docking software utilised in this study was the
Autodock available on Chimera (Grosdidier et al., 2011), with
default docking parameters. Before docking, Gasteiger
charges were added to the molecules, and the non-polar
hydrogen atoms were merged to carbon atoms. The mole-
cules were then docked into the binding pocket of the pro-
teins; COVID-19 Mpro and COVID-19 Sgp by defining the grid
box with a spacing of 1 Å each and size (27� 20� 30) and
(17� 43� 27) pointing in x, y and z directions, respectively.
The standard drug systems, as well as the 11 molecules with
the best docking scores, were then subjected to molecular
dynamics simulations. The best five molecules with good
binding free energy were subsequently docked into the RBD
of COVID-19 Sgp (Figures 1 and 2).

Molecular dynamic (MD) simulations

The MD simulation was performed as described by Idowu
et al. (2019). The simulations were performed using the GPU
version provided with the AMBER package (AMBER 18), in
which the FF18SB variant of the AMBER force field (Nair &
Miners, 2014) was used to describe the systems.

ANTECHAMBER was used to generate atomic partial
charges for the ligand by utilising the Restrained Electrostatic
Potential (RESP) and the General Amber Force Field (GAFF)
procedures. The Leap module of AMBER 18 allowed for the
addition of hydrogen atoms, as well as Naþ and Cl- counter
ions to COVID-19 Mpro and COVID-19 Sgp, respectively to neu-
tralise all systems. The amino acids were numbered, number-
ing residues 1-303 for COVID-19 Mpro and 1-223 for COVID-
19 Sgp. The systems were then suspended implicitly within an
orthorhombic box of TIP3P water molecules such that all
atoms were within 8 Å of any box edge (Jorgensen
et al., 1983).

An initial minimization of 2000 steps were carried out
with an applied restraint potential of 500 kcal/mol for both
solutes, were performed for 1000 steps using the steepest
descent method followed by 1000 steps of conjugate gra-
dients. An additional full minimization of 1000 steps were
further carried out using the conjugate gradient algorithm
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without restraint. A gradual heating MD simulation from 0K
to 300 K was executed for 50 ps, such that the systems main-
tained a fixed number of atoms and fixed volume. The sol-
utes within the systems were imposed with a potential

harmonic restraint of 10 kcal/mol and collision frequency of
1.0 ps. Following heating, an equilibration estimating 500 ps
of each system was conducted; the operating temperature
was kept constant at 300 K. Additional features such as

Figure 1. Amino acid residues at the catalytic site of the COVID-19 Mpro (A) and Receptor binding domain of COVID-19 Sgp (B).

Figure 2. Superpositions of the crystalized structures of (A) inhibitor (N3) of COVID-19 Mpro (in red) with other ligands, and (B) ligands at the Receptor binding
domain of COVID-19 Sgp with their respective RMSD values.
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several atoms and pressure were also kept constant mimick-
ing an isobaric-isothermal ensemble. The system’s pressure
was maintained at 1 bar using the Berendsen barostat
(Basconi & Shirts, 2013; Gonnet, 2007).

The total time for the MD simulations conducted were
100 ns. In each simulation, the SHAKE algorithm was
employed to constrict the bonds of hydrogen atoms
(Ryckaert et al., 1977). The step size of each simulation was
2fs, and an SPFP precision model was used. The simulations
coincided with the isobaric-isothermal ensemble (NPT), with
randomized seeding, the constant pressure of 1 bar main-
tained by the Berendsen barostat (Basconi & Shirts, 2013), a
pressure-coupling constant of 2 ps, a temperature of 300 K
and Langevin thermostat (Izaguirre et al., 2001) with a colli-
sion frequency of 1.0 ps.

Post-dynamic analysis

Analysis of root mean square deviation (RMSD), root means
square fluctuation (RMSF), solvent accessible surface area
(SASA) and radius of gyration (RoG) was done using the
CPPTRAJ module employed in the AMBER 18 suit. All raw
data plots were generated using the Origin data analysis
software (Seifert, 2014).

Binding free energy calculations

To estimate and compare the binding affinity of the systems,
the free binding energy was calculated using the Molecular
Mechanics/GB Surface Area method (MM/GBSA) (Ylilauri &
Pentik€ainen, 2013). Binding free energy was averaged over
100000 snapshots extracted from the 100 ns trajectory. The
free binding energy (DG) computed by this method for each
molecular species (complex, ligand, and receptor) can be
represented as:

DGbind ¼ Gcomplex � Greceptor � Gligand (1)

DGbind ¼ Egas þ Gsol � TS (2)

Egas ¼ Eint þ Evdw þ Eele (3)

Gsol ¼ GGB þ GSA (4)

GSA ¼ cSASA (5)

The term Egas denotes the gas-phase energy, which con-
sists of the internal energy Eint; Coulomb energy Eele and the
van der Waals energies Evdw. The Egas was directly estimated
from the FF14SB force field terms. Solvation free energy, Gsol,
was estimated from the energy contribution from the polar
states, GGB, and non-polar states, G. The non-polar solvation
energy, SA. GSA, was determined from the solvent-accessible
surface area (SASA), using a water probe radius of 1.4 Å. In
contrast, the polar solvation, GGB, the contribution was esti-
mated by solving the GB equation. S and T denote the total
entropy of the solute and temperature, respectively.

Pharmacokinetic properties analysis

For the calculation/prediction of the pharmacokinetic proper-
ties of the lead compounds and the standard drugs,

SwissADME server was employed (Daina et al., 2017). The ser-
ver predicts the target of small molecules.

Results and discussion

Molecular docking scores for COVID-19 mpro

Fifty-three molecules and five FDA-approved drugs were
docked into the active site of COVID-19 Mpro to calculate the
affinity of the molecules for the enzyme. The results of the
molecular docking analysis for all the molecules are pre-
sented in Table S1 (Supplementary materials). Docking score
is a measure of the fitness of the molecule into the catalytic
active site pocket of an enzyme, and the more negative the
value, the better the fitness of the molecule (Idowu
et al., 2020).

The scoring functions permitted the calculation and pre-
diction of the binding affinities of individual molecules, from
which the best binding molecules were identified and
selected (Abdullahi et al., 2018). Eleven molecules out of the
53 compounds showed better docking scores for COVID-19
Mpro that fall within or higher than the docking scores of the
standard drugs except for hydroxychloroquine (HCQ) with
the lowest docking score of �5.8 kcal/mol. Kumi et al. (2020),
suggested that selected molecules might generally display
favourable binding mode within the active catalytic site of
the enzyme relative to standard drugs and as well might
enhance their interactions and stability within the active site.
Tables 1 and 2 showed the results of the respective molecu-
lar docking analysis of the standard drugs and the five lead
inhibitory molecules against COVID-19 Mpro. The antiretroviral
drugs, LPV (-7.1 kcal/mol) and NEF (-7.6 kcal/mol) (HIV prote-
ase inhibitors (PIs)) had higher docking scores than the
recorded score for HCQ. Remdesivir, an anti-Ebola drug and
N3, which had previously been reported to be an inhibitor of
COVID-19 Mpro, (Jin et al., 2020) showed docking score values
of �7.4 kcal/mol and �6.7 kcal/mol, respectively (Table 1).
Nine molecules (BA, CA, EGCG, GRN, HCR, K7G, OAA, P3G,
UAA) showed better docking scores ranging from �7.7 kcal/
mol to �8.8 kcal/mol, which were higher than the highest
binding score for the standard drugs (-7.6 kcal/mol) (Table S1
supplementary materials). Additional two compounds (C3G
and MA) exhibited docking scores that fall within the range
of the docking scores for the standard drugs. As molecular
docking only measures the geometric fitness of molecules at
the active site of a protein, molecular dynamics simulations
study was carried out on the standard drugs and the ten
molecules (molecules with better docking scores) to investi-
gate their binding affinities/energy and structural evaluation.

Binding energies of the hit molecules and standard
drugs for COVID-19 mpro and COVID-19 sgp

In this study, molecular mechanics/generalised born surface
area (MMGBSA) computational technique was employed to
estimate the binding free energies (DGbind) of the standard
drugs and the eleven hit molecules towards COVID-19 Mpro,
and five lead molecules (molecules with the best binding
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Table 1. 2D structure and docking scores of the standard drugs against COVID-19 Mpro.

Molecules 2D Structure Docking Score

Nelfinavir (NEF)

Remdesivir (RDV)

Lopinavir (LPV)

N3

Hydroxychloroquine (HCQ)
(continued)
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free energy from COVID-19 Mpro) toward COVID-19 Sgp. Table
S2 (Supplementary materials) showed the binding free ener-
gies of all the ten molecules. Table 3 showed the results of
the binding free energy of the best five molecules toward
COVID-19 Mpro, with N3 and NEF molecules exhibiting the
highest binding energies of �52.463 kcal/mol and
�51.618 kcal/mol among the standard drugs. This agrees
with previous studies that reported the inhibitory activities
of the two drugs against COVID-19 Mpro. Xu et al., in an in
silico study reported NEF to the most promising and potent
inhibitor of COVID-19 Mpro among the four tested drugs
(praziquantel, perampanel, pitavastatin, and nelfinavir) after it
exhibited the best binding energy against the enzyme (Xu
et al., 2020). Both in silico and in vitro studies have reported
the inhibitory activities of N3 not only against COVID-19 Mpro

but also against SARS-CoV and MERS-CoV (Yang et al., 2005;
Wang et al., 2016). RDV and LPV showed a relatively similar
DGbind, but lower than DGbind recorded for NEF and N3. HCQ
had the lowest DGbind of �21.065 kcal/mol, which might sug-
gest that HCQ could not be a protease inhibitor as it exhibits
distinct mechanism of action from the mechanism of actions
of known FDA-approved protease inhibitors. Although HCQ
was listed by Centre for Disease Control (CDC) among drugs
use in treating COVID-19, and drugs under clinical trial (CDC,
2020), its mechanism of actions has been reported to include
alteration of protein degradation by acidic hydrolases in the
lysosome, assembly of macromolecules in the endosomes,
and increase intracellular pH (Robert, 1993). This study
assumes HCQ is not an inhibitor of COVID-19 Mpro but sug-
gests it inhibits SARS-CoV-2 through any of the mechanisms
reported by Robert, 1993. As shown in Table 3, HCR exhib-
ited the highest binding free energies relative to the stand-
ard drugs, while GRN had the second-highest value of
�50.653 kcal/mol among the tested molecules but lesser
than the values recorded for N3 and NEF. EGCG, C3G and
K7G exhibited relatively similar binding free energy values
comparable to those for RDV and LPV, while P3G exhibited
the lowest value of �32.049 kcal/mol.

From the binding free energy results, HCR, GRN, EGCG,
C3G and K7G seemed to be promising and potential inhibi-
tors of COVID-19 Mpro. These five lead molecules were then

docked into the RBD of COVID-19 Sgp. Table S3 (supplemen-
tary materials) showed the result of the molecular docking
analysis against COVID-19 Sgp. C3G had the highest binding
free energy of �42.310 kcal/mol higher than the binding
energy values of the reference inhibitors (CSP, �35.509 kcal/
mol and ZFK, �24.242 kcal/mol) of COVID-19 Sgp. In addition
to C3G molecule, K7G and GRN (-32.210 kcal/mol and
�26.922 kcal/mol, respectively) had binding energies higher
than ZFK but lower than CSP. Consequent upon these data,
it could be logically inferred that, C3G, K7G and GRN might
possess dual inhibitory activities against COVID-19 Mpro and
COVID-19 Sgp. A further probe to examine and establish the
mechanistic inhibitory characteristics of the molecules
through the interaction between the molecules and the
active site amino residues (enzyme-ligand interaction plots)
of the proteins (COVID-19 Mpro and COVID-19 Sgp) was per-
formed (Table 4).

Comparative ligand-receptor interaction profiles of hit
molecules and standard drugs

Receptor-ligand interaction examined the molecular interac-
tions between the bound molecules and the amino acid resi-
dues at the active sites of the enzyme (Chetty et al., 2016;
Idowu et al., 2019). Figures 3–5 showed the 2D visualisation
of the interactions between the molecules and active site
residues of COVID-19 Mpro, COVID-19 Sgp and the types of
interactions (such as hydrogen bond, p-sigma, p-cation,
p-Sulfur, p-alkyl, p-p stacked interaction, donor-donor interac-
tions and Van der Waals (vdW) overlaps) observed in the
interaction plots. For COVID-19 Mpro, although, N3 and RDV
had the same and the highest number of interactions (20
bonds) (Figure 1), but the binding free energy of N3 is
higher than that of RDV. This might be attributed to higher
number of der Waals force (12), Hydrogen bond (7) and
p-Sulfur bond (1) in N3 than RDV with 10 van der Waals
force, 1 Hydrogen bond and no p-Sulphur bond (Figure 3).
LPV exhibited the second highest number of interactions
among the standard drugs but lower binding free energy
than NEF with a total number of 16 bonds. This might be
associated with the presence of attractive charge and donor-

Table 1. Continued.

Molecules 2D Structure Docking Score
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Table 2. 2D structure and docking scores for the top five hit molecules towards COVID-19 Mpro.

Molecules 2D Structure Docking Score

Geraniin (GRN)

6-Hydroxylcyanidin-3-
rutinoside (HCR)

Epigallocatechin gallate
(EGCG)

Kaempferol-7-glucoside
(K7G)

Cyanindin-3-glucoside
(C3G)
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Table 3. Thermodynamic Binding Free Energy Profiles for the hit molecules and standard drugs towards COVID-19 Mpro.

Energy Components (kcal/mol)

Complex D EvdW DEelec DGgas DGsolv DGbind
N3 �61.685 ± 5.383 �139.335 ± 17.103 �201.020 ± 19.795 148.556 ± 12.436 �52.463 ± 4.937
NEF �55.881 ± 4.046 �151.517 ± 11.509 �207.399 ± 11.671 155.780 ± 9.653 �51.618 ± 4.906
RDV �57.869 ± 3.670 �21.668 ± 5.969 �79.537 ± 6.245 30.757 ± 4.669 �48.780 ± 3.804
LPV �62.806 ± 8.979 �19.616 ± 3.098 �82.422 ± 13.158 5.634 ± 6.298 �46.788 ± 7.840
DRV �46.018 ± 3.040 �16.176 ± 4.849 �62.195 ± 5.640 28.539 ± 4.232 �33.655 ± 3.374
HCQ �18.548 ± 0.381 �48.905 ± 1.240 �53.453 ± 1.596 45.388 ± 1.328 �21.065 ± 0.293

Lead Molecules

HCR �56.0056 ± 5.126 �146.740 ± 16.786 �202.748 ± 15.220 152.870 ± 11.894 �53.877 ± 4.886
GRN �54.3287 ± 4.186 �30.887 ± 6.205 �85.2167 ± 7.681 38.563 ± 4.326 �50.653 ± 3.140
EGCG �36.4632 ± 4.615 �72.369 ± 10.499 �108.832 ± 9.460 62.232 ± 5.336 �48.600 ± 5.217
C3G �48.8334 ± 5.099 �140.163 ± 20.932 �189.001 ± 20.053 143.202 ± 15.368 �47.798 ± 4.231
K7G �45.9164 ± 4.053 �35.158 ± 12.099 �81.075 ± 10.496 37.172 ± 8.693 �46.902 ± 5.288
P3G �37.5272 ± 3.485 �128.148 ± 14.775 �165.678 ± 15.444 133.629 ± 12.379 �32.049 ± 4.760

DEele electrostatic energy, DEvdW van der Waals energy, DGbind total binding free energy, DGsol solvation free energy, DEgas gas-phase free energy.

Table 4. Thermodynamic Binding Free Energy Profiles for the molecules and standard drugs towards COVID-19 Sgp.

Energy Components (kcal/mol)

Complex D EvdW DEelec DGgas DGsolv DGbind
CSP �46.272 ± 3.763 �27.793 ± 0.3550 �74.065 ± 8.3195 38.556 ± 6.734 �35.509 ± 3.368
ZFK �34.010 ± 4.284 �13.058 ± 3.432 �47.0716 ± 8.102 22.829 ± 4.564 �24.242 ± 4.372

Lead Molecules

C3G �45.927 ± 5.534 �16.494 ± 2.686 �62.423 ± 4.644 20.112 ± 1.459 �42.310 ± 6.436
K7G �35.013 ± 3.533 �33.445 ± 4.295 �68.459 ± 5.168 36.249 ± 3.855 �32.210 ± 3.218
GRN �36.302 ± 2.984 �17.337 ± 4.67 �53.642 ± 6.4552 26.719 ± 4.500 �26.922 ± 2.926
EGCG �25.606 ± 2.581 �16.849 ± 2.878 �42.455 ± 5.547 22.623 ± 3.860 �19.832 ± 3.385
HCR �31.520 ± 3.943 54.832 ± 6.743 23.309 ± 0.648 �40.648 ± 3.463 �17.338 ± 3.831

DEele electrostatic energy, DEvdW van der Waals energy, DGbind total binding free energy, DGsol solvation free energy, DEgas gas-phase free energy.

Figure 3. Interaction types and receptor (COVID-19 Mpro)-ligand interactions plots of a) LPV, b) RDV, c) N3, and d) NEF with COVID-19 Mpro, respectively.
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donor interactions observed between NEF and the active site
amino acid residues, which are absent in LPV inter-
action plot.

From the interaction plots for the lead molecules (Figure
4), K7G, EGCG, GRN, and HCR had total number of interac-
tions of 23, 22, 18 and 17 bonds, respectively. Although, HCR
with the lowest number of bonds, had the highest binding
energy due to the presence of noncovalent and p-p stacked
interactions between the aromatic ring of HCR and amino
acid residue ARG188. This interaction (p-p stacked) had been
previously reported to be important in drug development
(Babine & Bender, 1997) and has been used in the develop-
ment of acetylcholinesterase (AChE) inhibitor for treatment
against Alzheimer’s disease (da Silva et al., 2006). This nonco-
valent and p-p stacked interaction was also observed in two
of the standard drugs; between the aromatic ring of NEF and
amino acid residue HIS 41, and aromatic ring of RDV and
amino acid residue HIS 163.

Novel coronavirus’ main protease enzyme (COVID-19
Mpro), like other coronaviruses’ main protease enzyme, has a
Cys–His catalytic dyad (Jin et al., 2020; St. John et al., 2015).
Residues HIS 41 and CYS 148 at the active site of MERS pro-
tease enzyme have been implicated to be essential in inhibit-
ing the specific activity of the enzyme (St. John et al., 2015).
Although, the features of the catalytic binding pocket of

main protease enzymes of coronaviruses are conserved
(Yang et al., 2005), sequence alignment has shown that the
CYS 148 has been replaced with CYS 145 in COVID-19 Mpro

(Jin et al., 2020). Furthermore, a study has reported that the
HIS 41 and CYS 145 play a vital role and are essential with
regards to the inhibitory activity of any potential and promis-
ing inhibitors of COVID-19 Mpro (Jin et al., 2020). In this
study, the interaction of all the five lead molecules and the
standard drugs (except LPV, that interacted with only HIS 41)
with both HIS 41 and CYS 145 residues of the enzyme, is a
further indication that they might be potent inhibitors of
COVID-19 Mpro.

For the COVID-19 Sgp bound systems, C3G has the highest
number of interactions (21), which justified its high binding
free energy in this study. The two standard drugs had the
same number of interactions (12 interactions each), but CSP
had a higher binding energy which could be attributed to
five carbon-hydrogen bonds in its interaction plot, which
was absent in ZFK. GRN and K7G had a total of 9 and 11
interactions, respectively. Three carbon-hydrogen bonds
interactions were also observed in C3G. A study on the ana-
lysis of the interaction surface of RBD-ACE2 revealed that
strong H bonding was involved in the binding of RBD of
COVID-19 Sgp to ACE-2 (Xu et al., 2020). This might suggest
that H bonding between RBD and a potential inhibitor is

Figure 4. Interaction types and receptor (COVID-19 Mpro)-ligand interactions plots of a) C3G, b) GRN c) EGCG d) K7G e) HCR.
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crucial for the development of COVID-19 Sgp inhibitor. This
could also justify the high binding free energy for C3G, (with
a total of 18H bonds), K7G (10) and CSP (9).

Structural dynamics of bound COVID-19 mpro and
COVID-19 sgp systems

Binding of an inhibitor to a specific biological target is usu-
ally associated with structural and conformational changes,
which could influence the biological activity of the target
(Sindhu & Srinivasan, 2015). To establish the stability and
proper equilibration of the investigated systems, RMSD, RoG
and RMSF of alpha carbon (Ca) atoms were monitored and
analysed along with the entire duration of 100 ns of the MD
simulation for the apo-enzyme (unbound) and the bound
systems. RMSD is a measurement of the systems conver-
gence and stability (Hess, 2002). The deviation produced by
a protein during simulation is a factor determining the
protein’s stability. For the COVID-19 Mpro, all the systems
(including the apo-enzyme) achieved convergence between
10-12 ns MD simulation, signifying all the systems reached
structural stability and maintained stable conformations after
the convergence till the end of the simulation (Figure 6).
C3G, EGCG, HCR, K7G and GRN had average RMSD values of
1.249Å, 1.387Å, 1.501 Å, 1.511Å, 1.511 Å and 2.211Å, while

the standard drugs, LPV, NEF, N3 and RDV had average val-
ues of 1.861Å, 1.901 Å, 3.367Å, and 4.031 Å, respectively
(Figure 6). The confirmation of the apo-enzyme (COVID-19
Mpro) that served as control exhibited an average RMSD
value of 2.471 Å. The result, therefore, showed that the bind-
ing of the five lead molecules, NEF and LPV induced more
structural stability on COVID-19 Mpro and this is indicative of
promising prospect for the identified lead compounds as
COVID-19 Mpro inhibitors. The RMSD for the COVID-19 Sgp
systems revealed that all the systems, including the standard
drugs, achieved convergence at 20 ns and maintained struc-
tural stability and stable conformation (Figure 7a). C3G, K7G
and GRN had average RMSD values of 4.217 Å, 4.131Å, and
4.89 Å, while the standard drugs, CSP and ZFK had average
values of 4.414Å and 3.949, respectively. The binding of the
ligands brought more stability to the enzyme, as the average
RMSD values of the ligand are lower than the average RMSD
of the apo-enzyme (4.821 Å)

To evaluate the overall structural compactness of the
enzymes upon binding of ligands, the RoG was also calcu-
lated. The alteration of structural compactness of a protein
induced by the binding of the ligand could influence the
biological activity of the protein (Sindhu & Srinivasan, 2015),
and the lower the RoG value, the more stable the system. In
the COVID-19 Mpro systems, the apo-enzyme exhibited an

Figure 5. Interaction types and receptor(COVID-19 Sgp)-ligand interactions plots of a) C3G, b) CSP, c) GRN, d) ZFK, e) K7G.
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average RoG value of 21.841Å. The lead molecules had mar-
ginally lower average RoG values (C3G 21.412Å, K7G
21.616Å, HCR 21.873 Å, GRN 21.904Å and EGCG 22.207Å)

than the standard drugs (NEF; 22.223Å, LPV; 22.354Å, RDV;
22.267 Å, and N3; 22.531Å), which correlated with the RMSD
results where all the five lead molecules induced more

Figure 6. Comparative RMSD plots of alpha C atoms of the COVID-19 Mpro, N3, NFE, RDV and LPV with molecules, a) HCR, b) C3G, c) EGCG, d) K7G and e) GRN sys-
tems calculated throughout 100 ns MD simulations.

Figure 7. Comparative plots of alpha C atoms of the COVID-19 Sgp, N3, NFE, RDV and LPV with molecules, a) RMSD plots b) RoG plots systems calculated through-
out 100 ns MD simulations.
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Figure 8. Comparative RoG plots of alpha C atoms of the COVID-19 Mpro, N3, NEF, RDV and LPV with molecules, a) HCR, b) C3G, c) EGCG, d) K7G and e) GRN sys-
tems calculated throughout 100 ns MD simulations.

Figure 9. RMSF plots of Residue-based average alpha Carbon fluctuations of COVID-19 Mpro, N3, NFE, RDV and LPV with molecules, a) HCR, b) C3G, c) EGCG, d)
K7G and e) GRN systems calculated throughout 100 ns MD simulations.
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structural stability and compactness on the enzyme than the
standard drugs (Figure 8). The highest RoG value in the
COVID-19 Sgp systems was observed with ZFK (22.427 Å), with
the lowest RoG value exhibited by K7G (20.523 Å). The three
lead molecules (C3G, K7G and GRN) exhibited more struc-
tural stability and compactness than the two standard drugs
(Figure 7b).

RMSF is a measure of the effect of the binding of the lig-
and on the behaviour of the active site residues of a protein.
Higher and lower fluctuation values indicate more and less
flexible movements, respectively. For the COVID-19 Mpro, the
highest average RMSF values were observed in N3 (2.215 Å)
and NEF (2.096 Å), followed by LPV (2.002 Å), HCR (1.932 Å),
RDV (1.865), GRN (1.821 Å), C3G (1.785 Å) and EGCG
(1.801 Å). The lowest value was recorded in K7G systems
with an average value of (1.791 Å) (Figure 9). As shown in
Figure 10, similar pattern of fluctuations was observed in
residues: 41-55, 155-165, 185-195 and 275-290 in all the sys-
tems, indicating more flexible movement and unrestricted
fluctuations at the residues. The unbound system of COVID-
19 Sgp (Apo-enzyme) and K7G exhibited the highest and the
lowest residual flexibility with average RMSF values of
4.301 Å, and 2.411 Å, respectively. ZFK, CSP, GRN and C3G
had average values of 4.033 Å, 3.874 Å, 3.272 Å and 3.121 Å,

respectively. The binding of the ligands (both in the lead
molecules and the standard drugs) decreased the enzyme
residues flexibility. At residues 165-171 and 217-220 (except
for K7G at 165-171), the similarity in the pattern of fluctua-
tions was observed for the unbound system and the mole-
cules (Figure 10).

Assessing the drug-likeness of the hit molecules and the
standard drugs

By employing the SwissADME server, the pharmacokinetic
properties of the standard drugs and the lead molecules were
assessed (Daina et al., 2017). Yamashita and Hashida (2004),
reported that the in-silico absorption, distribution, metabolism,
and excretion (ADME) evaluation gives an in vivo overview of
the drug interaction, and eventually decrease the risk of disap-
proval of drug development. The Lipinski’s rule of five (Ro5) is
a set of rules used to evaluate the drug-likeness of compounds
with pharmacological activity. The Ro5 examines both the
physical and chemical properties of a compound to ascertain
its safety as an orally active drug (Lipinski et al., 2012). The rule
stated that the molecular weight of a potential compound
should be less than 500 daltons and the lipophilicity of the

Figure 10. RMSF plots of Residue-based average alpha Carbon fluctuations of COVID-19 Sgp bound with ZFK, CSP, GRN, K7G and C3G systems calculated through-
out 100 ns MD simulation.

Table 5. Pharmacokinetic and physicochemical properties of the standard drugs and the lead molecules.

Molecule M. Formula M. Weight (g/mol)
Lipophilicity
(iLOGP)

Water
Solubility

GIT
Absorption

BBB
Permeability

Bioavailability
Score

Drug likeness
(Lipinski)

NEF C32H45N3O4S 567.78 4.33 Poor Low No 0.55 Yes
RDV C27H35N6O8P 602.58 1.50 Moderate Low No 0.17 No (2)
LPV C37H48N4O10 628.8 3.44 Poor High No 0.55 Yes
HCQ C18H26ClN3O 335.87 3.37 Moderate High Yes 0.55 Yes
ZFK C31H33N3O6S 575.68 4.66 Poor Low No 0.55 Yes
CSP C15H21N3O7S 387.41 �1.17 High Low No 0.11 Yes
EGCG C22H18O11 458.37 1.83 High Low No 0.17 No (2)
K7G C21H20O11 448.38 1.55 High Low No 0.17 No (2)
GER C30H24O10 544.51 2.14 Moderate Low No 0.17 No (2)
C3G C21H21O11 449.38 �1.16 High Low No 0.17 No (2)
HCR C27H31O16 611.53 �2.72 High Low No 0.17 No (3)
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compound (partition coefficient (logP)) should not be greater
than 5. The higher value of logP usually means the probability
of a compound to permeate the lipid membrane is low
(Remko et al., 2011). As shown in Table 5, the hit molecules
and the standard drugs had logP values lesser than 5, indicat-
ing they could permeate the lipid bilayers. However, the
results of this study further showed that all the standard drugs
(except RDV) passed the Ro5, and none of the hit molecules
passed the Ro5.

The maintenance of optimal concentrations of a drug in
the systemic circulation is a dependant factor of the absorp-
tion of such drug in the Gastrointestinal tract (GIT). This is
therefore important for such a drug to get to its site of
action with enough concentration to exert its maximum
therapeutic effects (Kremers, 2002). LPV and HCQ are highly
absorbed in the GIT, while the other molecules had low
absorption rate. The blood-brain barrier (BBB) is a protective
gate that prevents the passage of toxic compounds into the
brain or the central nervous system (Begley & Brightman,
2011). Compounds with larger molecular weight (higher than
400 Dalton) or not lipid-soluble cannot pass through the
BBB, but smaller and lipid-soluble molecules can pass
through the BBB (Begley & Brightman, 2011).

Of all the lead molecules and the standard drugs, only
HCQ (lower molecular weight of 335.87 g/mol) was predicted
to permeate through the BBB. The bioavailability score of a
drug is the measurement of the degree or rate of absorption
and quantity of a given amount of unchanged drug that
goes to the systemic circulation (Heaney, 2001).
Intravenously administered drugs have a higher bioavailabil-
ity score than an orally administered drug. In the calculation
of drug dosage, it is an essential pharmacokinetic property
that needs to be carefully considered. Higher bioavailability
score correlates with a higher optimal concentration of drug
in the systemic circulation and enhanced maximum thera-
peutic effects. NEF, LPV, HCQ and ZFK had the highest bio-
availability scores of 0.55, and CSP exhibited the lowest score
of 0.11.

Conclusion

Considering the vital roles of COVID-19 Sgp and COVID-19
Mpro in the entry mechanism and replication of SARS-CoV-2,
inhibition, and the discovery of potent inhibitors of these
proteins are important in the treatment of COVID-19.
Therefore, this study employed molecular docking and
molecular dynamic simulation techniques to identify poten-
tial inhibitors of these proteins. The results of the binding
free energy revealed that five molecules (HCR, GRN, K7G,
EGCG and C3G) and three molecules (GRN, K7G and C3G) are
high affinity binders of COVID-19 Mpro and COVID-19 Sgp,
respectively. Structural dynamics analyses of the two proteins
upon inhibitor binding, evaluated by the calculation of
RMSD, RoG and RMSF of C-a atoms, revealed that binding of
five molecules (HCR, GRN, K7G, EGCG and C3G) and three
molecules (GRN, K7G and C3G) conferred stability and com-
pactness on the structural architecture of COVID-19 Mpro and
COVID-19 Sgp, respectively. GRN, K7G and C3G might possess

dual inhibitory activities against COVID-19 Sgp and COVID-19
Mpro. The study further revealed that the lead molecules pos-
sess similar pharmacokinetic and physicochemical properties
with the FDA-approved standard drugs. These lead molecules
will serve as prerequisite towards the development of inhibi-
tors of COVID-19 Sgp and COVID-19 Mpro upon additional
in vitro and in vivo evaluations.
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