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Abstract: Chronic obstructive pulmonary disease (COPD) is a significant disease threatening human
health. Currently, roflumilast, a phosphodiesterase (PDE)4 inhibitor, is recommended as a therapeutic
agent for COPD. In this study, we investigated the therapeutic effects of melatonin against COPD,
focusing on determining whether it is a PDE4 inhibitor via in vivo and in vitro experiment using
cigarette smoke (CS) and cigarette smoke condensate (CSC), respectively. In the in vivo experi-
ments, melatonin treatment reduced inflammatory responses, including inflammatory cell counts.
Melatonin treatment also suppressed the CS-exposure-induced upregulation of cytokine and matrix
metalloproteinase (MMP)-9, reduced the PDE4B expression, and elevated cAMP levels. In addition,
these effects were synergistic, as melatonin and roflumilast cotreatment eventually ameliorated the
CS-exposure-induced worsening of lung function. In the CSC-stimulated NCI-H292 cells, melatonin
inhibited elevation in the levels of inflammatory cytokines, MMP-9, and PDE4, and elevated cAMP
levels. Furthermore, melatonin and roflumilast cotreatment was more effective on inflammatory
responses than only melatonin or roflumilast treatment. Our results indicate that melatonin relieves
inflammatory response and loss of lung function in COPD, which is associated with decreased PDE4
expression. Therefore, we suggest that melatonin is a putative candidate for the treatment of COPD.

Keywords: melatonin; chronic obstructive pulmonary disease; cigarette smoke; phosphodiesterase 4;
MMP-9

1. Introduction

The prevalence and mortality associated with chronic obstructive pulmonary disease
(COPD) continues to increase worldwide. It is thus regarded as an important disease
threatening human health [1]. COPD is characterized by pulmonary inflammation, bron-
choconstriction, and mucus production, which eventually induce airflow restrictions due
to loss of elastic recoil of the pulmonary tract [2]. Cigarette smoke (CS) is regarded as
a crucial cause for the development of COPD, and it generates various stimuli, such as
proinflammatory mediators and oxidative stress, resulting in pulmonary inflammation [3].
Continuous smoking increases the incidence of COPD via the elevation of inflammatory
responses and oxidative damage. Therefore, inhibition of the inflammation and oxidative
damage induced by CS is considered an important strategy for the effective control of
COPD [4].

Loss of lung function caused by CS is closely associated with cyclic adenosine monophos-
phate (cAMP) and cyclic guanosine monophosphate (cGMP) [5]. Continuous smoking
increases the expression of phosphodiesterase (PDE) in inflammatory cells, including neu-
trophils and macrophages, which promotes the conversion of cAMP to AMP, resulting
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in the decline of normal lung function [6–8]. Therefore, the inhibition of PDE expression
ameliorates the CS-induced worsening of lung function via the elevation of cAMP levels.
Based on these observations, the use of PDE inhibitors as therapeutic drugs has been
recommended for COPD treatment [9]. Among PDE inhibitors, roflumilast is the first
PDE4 inhibitor to be approved as a therapeutic drug to reduce the deterioration due to
COPD [10]. However, as roflumilast has systemic side effects such as headache, weight
loss, and vomiting, it is necessary to develop a therapeutic agent that can overcome these
side effects [11].

Melatonin is a hormone secreted mainly from the pineal gland and has various
pharmacological properties including anti-inflammatory, antioxidant, anti-apoptotic, and
anti-tumor effects [12,13]. Melatonin is also generated in the peripheral organs, as well
as the pineal gland, and produces its metabolites through a specific metabolism, which
contributes to the maintenance of the proper function of the peripheral organs [14–16]. Due
to the pharmacological properties of melatonin, protective and ameliorative effects by mela-
tonin are observed in various respiratory diseases. In particular, we have demonstrated that
melatonin alleviates lung inflammation induced by CS [17,18]. Melatonin reduced cigarette
smoke condensate (CSC)-induced upregulation of mucin 5AC (MUC5AC) expression in
human lung epithelial cells through suppression of mitogen-activated protein kinase sig-
naling [17] and decreased the neutrophilic inflammatory response and mucin secretion
induced by CS and lipopolysaccharide (LPS) through Erk-Sp1 signaling [18]. In addition,
melatonin attenuated the pathophysiological condition of COPD via enhancement of SIRT1
expression and decreased the production of interleukin (IL)-8 induced by CS in pulmonary
fibrosis [19–21]. Moreover, in clinical trials, melatonin reduced lung oxidative stress in
patients with COPD [22]. However, the potential of melatonin as a PDE4 inhibitor in the
treatment of COPD has not been examined.

We investigated the potential of melatonin as a PDE4 inhibitor in the treatment
of COPD by exposing mice to CS and stimulating airway epithelial cells by cigarette
smoke condensate (CSC). In addition, we studied the synergistic effects of melatonin and
roflumilast, which is recommended as a PDE4 inhibitor in the treatment of COPD.

2. Results
2.1. Effect of Melatonin on Inflammatory Mediators in Mice Exposed to CS

Inflammatory cell count in the BALF of the CS group was higher than that in the
BALF of the NC (Figure 1). However, the mice from the ROF and MEL groups exhibited
significant reduction in inflammatory cell counts in BALF compared to those in the CS
group. In particular, the counts were markedly reduced in the RM group (roflumilast and
melatonin cotreatment) compared to those in the ROF or MEL groups.

Histological examination of the lung tissue revealed extensive inflammatory infiltra-
tion into the lung tissue of mice from the CS group (Figure 2). By contrast, ROF and MEL
treatments decreased the pulmonary inflammation induced by exposure to CS. In addition,
reduction in pulmonary inflammation was reduced to a greater extent in the RM group
than in the ROF or MEL groups.

IL-6 levels in BALF were higher in samples from the CS group than the NC group
(Figure 3a). In contrast, ROF and MEL groups showed significantly decreased levels of IL-6
in BALF, compared to the CS group. The reduction in IL-6 levels was the most noticeable
in the RM group. Similar to the IL-6 levels, the TNF-α levels in BALF were higher in the CS
group than in the NC group (Figure 3b). However, the ROF, MEL, and RM groups showed
significantly lower TNF-α levels in BALF than the CS group, with the most remarkable
decrease in the RM group.
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Figure 1. Melatonin decreased inflammatory cell counts in BALF of CS-exposed mice. Cells was 
determined by Diff-Quik® staining and counted using a light microscope. NC: non-treated and non-
exposure group; CS: PBS-treated and CS+LPS exposure group; ROF: roflumilast-treated and CS+LPS 
exposure group, MEL: melatonin-treated and CS+LPS exposure group, RM: roflumilast and mela-
tonin co-treated and CS+LPS exposure group. The data are expressed as mean ± SD (n = 5). ## Signif-
icantly different from the NC group, P < 0.01; *,** significantly different from the CS group, P < 0.05 
or < 0.01, respectively. 

Histological examination of the lung tissue revealed extensive inflammatory infiltra-
tion into the lung tissue of mice from the CS group (Figure 2). By contrast, ROF and MEL 
treatments decreased the pulmonary inflammation induced by exposure to CS. In addi-
tion, reduction in pulmonary inflammation was reduced to a greater extent in the RM 
group than in the ROF or MEL groups. 

 
Figure 2. Melatonin reduced inflammatory cell infiltration in lung tissue of CS-exposed mice. The 
inflammatory cells infiltration was determined by H&E staining (n = 5). (a) lung histology stained 
with H&E, (b) inflammatory index of alveolar region, (c) inflammatory index of peribronchial re-
gion. NC: non-treated and non-exposure group; CS: PBS-treated and CS+LPS exposure group; ROF: 
roflumilast-treated and CS+LPS exposure group, MEL: melatonin-treated and CS+LPS exposure 
group, RM: roflumilast and melatonin co-treated and CS+LPS exposure group. The data are ex-
pressed as mean ± SD (n = 5). ## Significantly different from the NC group, P < 0.01; ** significantly 
different from the CS group, P < 0.01. 

Figure 1. Melatonin decreased inflammatory cell counts in BALF of CS-exposed mice. Cells was
determined by Diff-Quik®staining and counted using a light microscope. NC: non-treated and
non-exposure group; CS: PBS-treated and CS+LPS exposure group; ROF: roflumilast-treated and
CS+LPS exposure group, MEL: melatonin-treated and CS+LPS exposure group, RM: roflumilast and
melatonin co-treated and CS+LPS exposure group. The data are expressed as mean ± SD (n = 5).
## Significantly different from the NC group, p < 0.01; *,** significantly different from the CS group,
p < 0.05 or < 0.01, respectively.
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Figure 2. Melatonin reduced inflammatory cell infiltration in lung tissue of CS-exposed mice. The
inflammatory cells infiltration was determined by H&E staining (n = 5). (a) lung histology stained
with H&E, (b) inflammatory index of alveolar region, (c) inflammatory index of peribronchial region.
NC: non-treated and non-exposure group; CS: PBS-treated and CS+LPS exposure group; ROF:
roflumilast-treated and CS+LPS exposure group, MEL: melatonin-treated and CS+LPS exposure
group, RM: roflumilast and melatonin co-treated and CS+LPS exposure group. The data are expressed
as mean ± SD (n = 5). ## Significantly different from the NC group, p < 0.01; ** significantly different
from the CS group, p < 0.01.
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Figure 3. Melatonin decreased inflammatory cytokines in BALF of CS-exposed mice. The level of
inflammatory cytokines was determined by ELISA assay. (a) Level of IL-6 and (b) level of TNF-
α. NC: non-treated and non-exposure group; CS: PBS-treated and CS+LPS exposure group; ROF:
roflumilast-treated and CS+LPS exposure group, MEL: melatonin-treated and CS+LPS exposure
group, RM: roflumilast and melatonin co-treated and CS+LPS exposure group. The data are expressed
as mean± SD (n = 5). ## Significantly different from the NC group, p < 0.01; *, ** significantly different
from the CS group, p < 0.05 and p < 0.01, respectively.

2.2. Effects of Melatonin on MMP-9, PDE4, and cAMP Levels in Mice Exposed to CS

Mice in the CS group showed marked elevation in MMP-9 expression in lung tissues
compared to mice from the NC group (Figure 4a). In contrast, the ROF, MEL, and RM
groups showed a significant decrease in MMP-9 expression, with the RM group showing
the most noticeable reduction. Further, the MMP-9 level was markedly increased in BALF
in the CS group compared to the NC group (Figure 4b). However, ROF and MEL groups
showed significantly lower MMP-9 level than the CS group. This reduction was more
remarkable in the RM group. Consistently, PDE4B expression was markedly increased
in the CS group compared to the NC group; however, the ROF and MEL groups showed
significantly decreased PDE4B expression, compared to the CS group (Figure 4c). PDE4B
expression was reduced to a much greater extent in the RM group than in the ROF or MEL
groups. The cAMP level in BALF was markedly decreased in the CS group, compared to the
NC group; however, it was significantly increased in ROF, MEL, and RM groups compared
to the CS group (Figure 4d), with the RM group showing the greatest degree of elevation.
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Figure 4. Melatonin reduced the elevation of MMP-9, PDE4B and cAMP in CS-exposed mice. (a)
MMP-9 expression, (b) MMP-9 level in BALF, (c) PDE4B expression, (d) cAMP level in BALF. NC:
non-treated and non-exposure group; CS: PBS-treated and CS+LPS exposure group; ROF: roflumilast-
treated and CS+LPS exposure group, MEL: melatonin-treated and CS+LPS exposure group, RM:
roflumilast and melatonin co-treated and CS+LPS exposure group. The data are expressed as
mean ± SD (n = 5). ## Significantly different from the NC group, p < 0.01; *, ** significantly different
from the CS group, p < 0.05 and < 0.01, respectively.
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2.3. Effects of Melatonin on Lung Function in Mice Exposed to CS

The CS group showed markedly increased lung compliance than the NC group
(Figure 5a). However, compared to the CS group, the ROF and MEL groups exhibited
significant reduction in lung compliance. In particular, lung compliance was reduced to a
greater extent in the RM group than in the ROF or MEL group. The CS group showed a
significant reduction in elastance compared to the NC group (Figure 5b). In contrast, the
ROF, MEL, and RM groups exhibited a marked elevation of elastance compared to the CS
group, with the RM group showing the greatest degree of elevation.
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Figure 5. Melatonin restored worsened lung function in CS-exposed mice. (a) Compliance,
(b) elastance. NC: non-treated and non-exposure group; CS: PBS-treated and CS+LPS exposure
group; ROF: roflumilast-treated and CS+LPS exposure group, MEL: melatonin-treated and CS+LPS
exposure group, RM: roflumilast and melatonin co-treated and CS+LPS exposure group. The
data are expressed as mean ± SD (n = 5). ## Significantly different from the NC group, p < 0.01;
*, ** significantly different from the CS group, p < 0.05 and < 0.01, respectively.

2.4. Effect of Melatonin on Inflammatory Mediators in CSC Stimulated NCI-H292 Cells

Expression levels of IL-6 and TNF-α were significantly increased in CSC-stimulated
cells compared to non-treated cells (Figure 6a,b, respectively). However, melatonin treat-
ment significantly decreased the IL-6 and TNF-α expression levels in CSC-stimulated
cells. Roflumilast treatment also yielded similar results. Furthermore, roflumilast and
melatonin cotreatment decreased the IL-6 and TNF-α expression levels to a greater extent
than roflumilast or melatonin treatment alone. Consistently, MMP-9 expression was higher
in CSC-stimulated cells than in the non-treated cells (Figure 6c). By contrast, melatonin
treatment significantly reduced MMP-9 expression, compared with CSC-stimulated cells.
Similar results were obtained with roflumilast treatment. Moreover, this reduction was
more enhanced in roflumilast and melatonin cotreated cells.
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2.5. Effect of Melatonin on PDE4B Expression and cAMP Activity in CSC-Stimulated NCI-
H292 Cells

Compared to non-treated cells, CSC-stimulated cells exhibited a significant increase in
the PDE4B protein and mRNA expression levels (Figure 7a,b, respectively). However, mela-
tonin treatment significantly suppressed the elevation of the PDE4B protein and mRNA



Molecules 2021, 26, 6588 6 of 10

expression in CSC-stimulated cells. Furthermore, roflumilast and melatonin cotreatment
decreases the PDE4B protein and mRNA expression levels to a greater extent than roflu-
milast or melatonin treatment alone. Compared to the non-treated cells, the cAMP level
was markedly reduced in CSC-stimulated cells (Figure 7c). However, melatonin treatment
resulted in a significant increase in cAMP level, compared to CSC-stimulated cells. Similar
results were obtained with roflumilast treatment. In addition, roflumilast and melatonin
cotreatment resulted in the increase in cAMP levels; this increase was more than that
obtained with roflumilast or melatonin treatment alone.
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Figure 7. Melatonin decreased PDE4B and cAMP in CSC-stimulated cells. The protein and mRNA
expression of PDE4B was determined in by immunoblotting and real-time PCR, respectively. cAMP
level was determined in supernatant by ELISA. (a) PDE4B expression, (b) mRNA expression of
PDE4B, (c) level of cAMP. This experiment was repeatedly performed three times. ## Significantly
different from the non-treated cells, p < 0.01; *,** significantly different from the CSC-stimulated cells,
p < 0.05 and p < 0.01.

3. Discussion

Melatonin is used for the treatment of various diseases due to its pharmacological
properties [17,18]. Although our previous study has shown that melatonin is effective in
treating COPD, the exact mechanism of action of melatonin in the treatment of COPD is
still very poorly understood [18]. In this study, we investigated the potential of melatonin
to serve as a PDE4 inhibitor in the treatment of COPD using mice exposed to CS and
CSC-stimulated cells. Melatonin effectively suppressed inflammatory cell infiltration,
production of proinflammatory cytokines and expression of MMP-9 in mice exposed to CS
and CSC-stimulated cells, which was accompanied with a reduction in PDE4 expression
and elevation of cAMP levels. Due to these responses, melatonin ameliorated the CS-
exposure-induced worsening of lung function. In addition, these responses were further
enhanced upon cotreatment with melatonin and roflumilast.

CS is considered a crucial contributor in the development of COPD [23–26]. Expo-
sure to CS stimulated the recruitment of many inflammatory cells such as neutrophils
and macrophages into lung tissues; these cells produce various inflammatory mediators
including cytokines, reactive oxygen species, chemokines, and MMPs [25–28]. Because of
these responses, the normal structure of the lung tissue is destroyed, resulting in declined
lung function [26–28]. In our study, melatonin treatment inhibited the elevation of inflam-
matory cell count, cytokine levels, and MMP-9 expression in mice exposed to CS, with a
reduction in the levels of inflammatory mediators in CSC-stimulated cells. Consistently,
administration of melatonin effectively suppressed the recruitment of inflammatory cells
into the lung tissues in mice exposed to CS. In particular, these responses were found to
be pronounced upon cotreatment with melatonin and roflumilast. These results indicate
that melatonin can effectively inhibit the development of COPD, and that cotreatment with
roflumilast has a better therapeutic effect than the administration of either agent alone.

PDE4 inhibitors are clinically recommended drugs for the treatment of COPD [29].
PDE4 inhibitors inhibit the conversion of cAMP to AMP, thereby reducing inflammatory
responses in the lung tissue and normalizing lung function [30,31]. During the development
of COPD, exposure to CS increases the expression of PDE4 in the lung tissue, thereby
reducing the levels of cAMP. This eventually worsens inflammatory responses in the
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lung tissue and causes a decrease in lung function [32,33]. Thus, PDE4 inhibitors are
recognized as very important drugs in the treatment of COPD, and many researchers are
currently focused on discovering COPD drugs, with an emphasis on PDE4 inhibition of
candidate drugs [34–37]. In previous studies, PDE4 inhibitors reduced lung inflammation
and restored lung function by increasing cAMP through inhibition of the PDE4 expression
in CS-induced COPD animal models. In this study, administration of melatonin effectively
reduced the expression of PDE4 caused upon CS exposure, increased the levels of cAMP,
and led to the recovery of lung function following CS-exposure-induced decline in lung
function. These responses were more noticeably detected upon cotreatment with melatonin
and roflumilast. In addition, the same was observed in CSC-stimulated cells. Treatment
with melatonin suppressed PDE4 expression in CSC-stimulated cells, with an elevation in
the cAMP levels. This result indicated that the therapeutic effect of melatonin in COPD is
associated with the suppression of PDE4, and when combined with the PDE4 inhibitor, its
therapeutic effect in COPD is greatly elevated.

The synergistic effects of melatonin and roflumilast against COPD is considered to
be related with its PDE4B inhibitory effect and other pharmacological properties, such as
anti-inflammatory and antioxidative effects. There have been various experiments related
to the anti-COPD effect of melatonin [18–22,38,39]. In previous studies, the anti-COPD
effect of melatonin was associated with the anti-inflammatory and antioxidant effects
of melatonin in in vivo and in vitro experiments using CS or CSC [18–21,38,39]. In this
study, it is suggested that the anti-COPD effect of melatonin may be related not only to its
anti-inflammatory and antioxidant properties, but also to the ability of inhibiting PDE4B
expression. Therefore, it is considered to exhibit a synergistic effect when administered in
combination with roflumilast due to the inhibitory effect of PDE4B expression and other
pharmacological properties of melatonin.

In summary, treatment of melatonin attenuates inflammatory responses in CS-exposed
mice and CSC-stimulated cells, which is correlated with elevation of cAMP via inhibition
of PDE4 expression. Our results suggest that melatonin has potential as a PDE4 inhibitor
in the treatment of COPD.

4. Materials and Methods
4.1. Cell Culture and Viability Assay

The NCI-H292 cell line was obtained from the ATCC (Manassas, VA, USA). Cells were
cultured in RPMI 1640 (WELGENE, Gyeongsangbuk-do, Republic of Korea) supplemented
with 10% heat-inactivated fetal bovine serum and antibiotics (WELGENE). The viability
assay was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT, Sigma-Aldrich, Saint Louis, MO, USA). Cells were maintained in 96-well plates
at a density of 3 × 104 cells/well. Roflumilast (ROF, Sigma-Aldrich) and melatonin
(MEL, Sigma-Aldrich) were added to each well as follows: ROF: 2.5, 5, 10, and 20 µM;
MEL: 100, 200, 400, and 800 µM. This was followed by incubation for 24 h. MTT solution
(10 µL) was added to each well, and the cells were incubated for 4 h at 37 ◦C; then, 100 µL
of dimethyl sulfoxide (DMSO, Sigma-Aldrich) was added to each well to solubilize the
formazan produced. The optical density of the culture was measured at 570 nm.

4.2. RNA Isolation and Real-Time PCR

NCI-H292 cells were seeded on 60 mm dishes at a density of 1 × 106 cells/well and
were treated with ROF (10 µM) and MEL (200 µM), for 1 hour. After incubation, cells were
stimulated with CSC. CSC was prepared as previously described [18]. Total RNA was
isolated using RNA isolation kit (Invitrogen, Carlsbad, CA, USA). cDNA was synthesized
using Oligo DTs and the cDNA synthesis kit (Qiagen, Hilden, Germany). Polymerase chain
reactions were performed using specific forward and reverse primers (TNF-α, forward,
5′-CAAAGTAGACCTGCCCAGAC-3′, reverse, 5′- GACCTCTCTCTAATCAGCCC-3′; IL-6,
forward, 5′-ATGCAATAACCACCCCTGAC-3‘ and reverse, 5′- ATCTGAGGTGCCCATG
CTAC-3′; MMP-9, forward, 5′-AAGGGCGTCGTGGTTCCAACTC-3′ and reverse, 5′-AGCA
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TTGCCGTCCTGGGTGTAG-3′; PDE4B, forward, 5′-ATTGTAGCAATGGACAGAC-3′ and
reverse, 5′-GTATCGAGATCCTGAGCATC-3′; GAPDH, forward, 5′- CAAAAG GGTCATCT
CTG-3′, reverse, 5′- CCTGCTTCACCACCTTCTTG-3′). The mRNA expression levels of the
target genes were normalized to that of housekeeping gene GAPDH.

4.3. CS Induced Airway Inflammation

Male C57BL/6 mice (6–8 weeks old, 20–25g) were purchased from Semtaco Co (Osan,
Korea). Mice were housed in standard conditions. All procedures were approved by
the Institutional Animal Care and Use Committee of the Chonnam National University
(CNU IACUC-YB-R-2016-18). CS-induced airway inflammation model was established as
explained in a previous study [40]. Briefly, mice were exposed to 3R4F research cigarettes
(Kentucky reference cigarette, University of Kentucky, USA) for 14 days using a CS genera-
tor (Daehan Biolink, Inchun, Korea) and LPS (5 µg/mouse, Sigma-Aldrich) was adminis-
tered intranasally on day 5. ROF (10 mg/kg) and MEL (30 mg/kg) were intraperitoneally
administered 1 hour before exposure to CS for 14 days. Mice were randomly divided into
five groups as follows (n = 5): NC (normal control; no treatment + fresh air and PBS expo-
sure), CS (PBS treatment + CS and LPS exposure), ROF (roflumilast treatment + CS and LPS
exposure), MEL (melatonin treatment + CS and LPS exposure), and RM (roflumilast and
melatonin treatment + CS and LPS exposure). Lung function was evaluated using Flexivent
(SCIREQ Inc., Montreal, QC, Canada) 24 h after the last CS exposure. The animals were
subjected to tracheostomy, and detection probe was inserted into trachea. The compliance
and elastance of each animal were evaluated according to the programmed protocols of
the instrument.

4.4. Bronchoalveolar Lavage Fluid (BALF) Collection and Analysis

BALF collection was performed as described previously [12]. Animals were subjected
to tracheostomy, and cold PBS (0.7 mL) was infused into the lung tissue and withdrawn
via tracheal cannulation twice (total, 1.4 mL). The BALF thus obtained was centrifuged at a
speed of 1500 rpm for 5 min, and then the supernatant was used to evaluate cytokine and
cAMP activity. Cell pellets were used to determine inflammatory cell counts in the BALF.
To evaluate differential cell count, cells were attached on slides and stained with Diff-Quik
reagent (IMEB, Deerfield, IL, USA). Total cell count was determined using an automatic
cell count analyzer (Thermo Fisher Scientific, San Diego, CA, USA). Levels of cytokines
(R&D System, Minneapolis, MN, USA) and activity of cAMP (Abcam, Cambridge, UK)
were evaluated using an ELISA kit according to the manufacturer’s instructions.

4.5. Immunoblotting

The lung tissue was homogenized (1/10 w/v) using a homogenizer in tissue ly-
sis/extraction reagent (Sigma-Aldrich) supplemented with protease inhibitors (Sigma-
Aldrich). Immunoblotting was performed as described previously [12]. The following
primary antibodies were used: anti-PDE4B (1:1000 dilution; Abcam), anti-MMP-9 (1:1000
dilution; Abcam), and anti-β-actin (1:1000 dilution; Cell signaling, Denver, MA, USA).
Expression of PDE4B, MMP-9, and β-actin were evaluated using ChemiDoc (Bio-Rad,
Hercules, CA, USA).

4.6. Histological Analysis

The right lungs of mice from each group were fixed in 10% buffered formalin (Sigma-
Aldrich) for 3 days at room temperature. Fixed lung tissue was embedded in paraffin
blocks, cut into 4 µm thick sections, deparaffinized using xylene, and dehydrated using
ethanol. Following a 5 min wash with distilled water, the tissue sections were stained
using hematoxylin and eosin stain to evaluate inflammatory cell infiltration. Quantification
of inflammatory responses was conducted using an image analyzer (IMT i-Solution Ins.,
Vancouver, BC, Canada).
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4.7. Statistical Analysis

Data are presented as the means ± standard deviation (SD). Statistical significance
of results was determined using ANOVA followed by the multiple comparison test with
Dunnet’s adjustment and were considered significant at p < 0.05.
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