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A B S T R A C T   

Context: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that emerged late in 2019 is the 
etiologic agent of coronavirus disease 2019 (Covid-19). There is an urgent need to develop curative and pre-
ventive therapeutics to limit the current pandemic and to prevent the re-emergence of Covid-19. This study 
aimed to assess the in vitro activity of copper gluconate against SARS-CoV-2. 
Methods: Vero E6 cells were cultured with or without copper gluconate 18− 24 hours before infection. Cells were 
infected with a recombinant GFP expressing SARS-CoV-2. Cells were infected with a recombinant GFP expressing 
SARS-CoV-2. Infected cells were incubated in fresh medium containing varying concentration of copper gluco-
nate (supplemented with bovine serum albumin or not) for an additional 48 -h period. The infection level was 
measured by the confocal microscopy-based high content screening method. The cell viability in presence of 
copper gluconate was assessed by XTT and propidium iodide assays. 
Results: The viability of Vero E6 cells exposed to copper gluconate up to 200 μM was found to be similar to that of 
unexposed cells, but it dropped below 70 % with 400 μM of this agent after 72 h of continuous exposure. The 
infection rate was 23.8 %, 18.9 %, 20.6 %, 6.9 %, 5.3 % and 5.2 % in cells treated prior infection with 0, 2, 10, 
25, 50 and 100 μM of copper gluconate respectively. As compared to untreated cells, the number of infected cells 
was reduced by 71 %, 77 %, and 78 % with 25, 50, and 100 μM of copper gluconate respectively (p < 0.05). In 
cells treated only post-infection, the rate of infection dropped by 73 % with 100 μM of copper gluconate (p <
0.05). However, the antiviral activity of copper gluconate was abolished by the addition of bovine serum 
albumin. 
Conclusion: Copper gluconate was found to mitigate SARS-CoV-2 infection in Vero E6 cells but this effect was 
abolished by albumin, which suggests that copper will not retain its activity in serum. Furthers studies are 
needed to investigate whether copper gluconate could be of benefit in mucosal administration such as mouth-
wash, nasal spray or aerosols.   

1. Introduction 

At the end of 2019, the emergence of a novel coronavirus designated 
as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 
led to a pandemic that threatens human health and public safety [1,2]. 

This new virus is highly transmissible and has spread very fast all over 
the world [1]. Even though the great majority of people (i.e. around 80 
%) develop mild to moderate coronavirus disease 2019 (Covid-19), a 
significant proportion of cases are severe or critical and can lead to death 
[1,3]. So far 3,166,029 people died from Covid-19 worldwide as of April 
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30th, 2021 [4]. Thus, there is an urgent need to contain SARS-CoV-2 
spread and virulence with effective curative and preventive treatments 
[2,3]. 

During the early phase of the SARS-CoV-2 outbreak, we have been 
faced with a strong need for in vitro models able to test the efficacy of 
compounds against this virus but only a few laboratories were able to do 
so. In silico studies have identified dozens of drugs potentially active 
against SARS-CoV-2 [5–10]. Drug repurposing is one of the most 
promising strategies for improving the care of Covid-19 patients but 
published data on the in vitro efficacy of molecules potentially active on 
SARS-CoV-2 remain very limited to date [11–14]. Available studies 
focused mostly on few drugs including hydroxychloroquine, remdesivir, 
lopinavir, ritonavir, interferon, umifenovir, favipiravir, camostat 
mesylate and immunomodulatory therapies [10,12–14]. 

Although some treatments have shown some benefits in patients at 
later stages of the disease (i.e. dexamethasone, anticoagulation treat-
ments), there are no acknowledged effective antiviral therapies for 
Covid-19 [1]. Recently, preliminary results of the SOLIDARITY trial 
showed that hydroxychloroquine, remdesivir, lopinavir/ritonavir, and 
interferon regimens have no significant effect on the mortality rate nor 
on the length of hospital stay in COVID-19 patients [15]. Other ongoing 
clinical trials could provide additional results shortly [16]. 

Among the other compounds found to be directly active against 
SARS-CoV-2, essential minerals may require special attention. Antimi-
crobial and antiviral activity of copper is well established [17]. Copper 
ions have been found to elicit a broad action against viruses including 
coronaviruses [18–21]. Recently, it has been shown that SARS-CoV-2 
can be eradicated from a copper surface within 4 h while it can sur-
vive up to 72 h on stainless steel and plastic surface [22]. Copper has 
been proposed to prevent transmission of the SARS-CoV-2 in the hospital 
environment (i.e. to cover door handles) or in application to face masks 
with the aim of reducing the risk of catching or spreading SARS-CoV-2 
[21,23]. 

In eukaryotes, copper acts as an essential cofactor for more than 30 
enzymes involved in redox reactions including superoxide dismutase 
(SOD) and ceruloplasmin. As well as for other trace metal ions (e.g. iron, 
manganese, zinc, selenium, and cobalt), maintenance of an adequate 
intracellular concentration of copper is essential to avoid the negative 
metabolic effects [24,25]. In humans, the normal cupremia varies from 
9.75 to 27.75 μmol/L (650–1850 μg/L) in adults [24,26–28] and in 
tissues copper concentration range from 1 to 12 μg/g of tissues [24,28, 
29]. In human cells, copper is internalized by copper transporter 1 and is 
used for the synthesis of copper-requiring enzymes; it is stored mainly in 
the mitochondria and secreted by cells in the bloodstream; excess of 
copper is mostly eliminated by hepatocyte in bile [24]. In physiological 
conditions, copper is bound to ceruloplasmin (accounting for 40–70 % of 
total plasma copper), albumin, alpha-2 macroglobulin, and other 
copper-carrying proteins for avoiding uncontrolled redox activity [24, 
29]. 

To the best of our knowledge, no published study to date have 
evaluated the effect of copper gluconate using an in vitro cell model of 
SARS-CoV-2 infection. This study aimed to assess if pre- and post- 
exposure treatment with copper gluconate could prevent the cells to 
be infected. For this purpose, we developed an original confocal 
microscopy-based high content screening (HCS) method using a re-
combinant GFP expressing SARS-CoV-2. 

2. Methods 

2.1. Cells lines 

Vero E6 cells (ATCC CRL-1586, ATCC) are kidney epithelial cells 
extracted from an African green monkey, which are widely used to study 
SARS-CoV-2 physiopathology. BHK-21 cells (CCL-10, ATCC) are kidney 
fibroblasts isolated form baby hamster and are useful for transformation 
and transfection purposes. These two cells lines were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM, ref. D6429, Sigma- 
Aldrich, Saint Quentin Fallavier, France) supplemented with 2% foetal 
bovine serum (FBS) (ref. 10270106, Gibco, ThermoFisher, Courtaboeuf, 
France) without antibiotic. All cells were maintained at 37 ◦C and in a 
5% CO2 atmosphere. 

2.2. Measurement of cell toxicity 

To determine the toxicity of the chemical compound, cells were 
exposed to different concentrations of copper gluconate (Copper di-D- 
gluconate, CAS number 527-09-3, batch number 4891, 98.6 % purity, 
Isaltis, Lyon, France) ranging from 0 to 1600 μM for 24, 48 and 72 h in 
DMEM 2% FBS. Cell viability was determined in three independent ex-
periments with the CyQUANT XTT assay (ref. × 12223, Invitrogen, 
ThermoFisher) following the manufacturer’s recommendations. Optical 
densities at 450 nm (i.e. the XTT-specific absorbance) and at 660 nm (i.e 
the non-specific background signal contributed by cell and plastic- 
specific absorbance) were measured using a microplate reader (Sun-
rise, Tecan, Lyon, France). The toxicity of copper gluconate was also 
evaluated by propidium iodide assay with the same concentrations and 
incubation periods. Briefly, Vero E6 cells were labelled with 2 μg/mL of 
Hoechst 33342 (ref. H1399, Invitrogen) to count total number of cells, 
and with 2 μg/mL propidium iodide (ref. P3566, Invitrogen) to detect 
dead cells. Cells were imaged by confocal microscopy at 20-fold-magni-
fication (Ti2 CSU-W1 SoRA, Nikon, France). Three independent exper-
iments were performed and z-stack images were acquired in 12 random 
fields in duplicate wells (i.e. 6 fields per well) for each experimental 
condition. The whole process of acquisition was fully automated using in 
house pipeline developed with the JOBS module of the NIS software. 
Propidium iodide fluorescence was detected using a 561-nm laser for 
excitation and a 600/52 nm emission filter. Images were analyzed using 
NIS general analysis 3 in-house pipeline (NIS software v5.30, Nikon) to 
count the nuclei labeled in red and blue. 

2.3. Production of GFP expressing SARS-CoV-2 particles 

The bacterial artificial chromosome (BAC) containing viral cDNA of 
synSARS-CoV-2-GFP clone 6.2 was kindly provide by Volker Thiel [30]. 
Upon receipt, BAC was stored in Saccharomyces cerevisiae VL6-48 N 
strain [31], which was grown on YPD agar supplemented with 25 μg/mL 
of chloramphenicol. The yeast artificial chromosome (YAC) DNA was 
extracted using spin column-based nucleic acid purification (ZR BAC 
DNA Miniprep Kit, ref. D4049, Zymo Research, Irvine, CA). The YAC 
containing viral cDNA was transformed into E. coli TransforMax Epi300 
(Ref. EC300110, Epicentre, Madison, WI) and amplified in LB broth 
supplemented with 25 μg/mL of chloramphenicol flowing manufacturer 
recommendations. The BAC was extracted from E. coli TransforMax 
Epi300 using spin column-based nucleic acid purification (ZR BAC DNA 
Miniprep Kit) and stored at 2− 8 ◦C until used in the next days. The BAC 
containing viral cDNA was cleaved at a unique restriction site located 
downstream of the 3’-end poly(A) tail using NotI-HF (Ref. R3189S, NEB, 
Grenoble, France). In parallel, the gene coding for the nucleocapsid (N 
protein) was amplified from the BAC containing viral cDNA with a high 
fidelity polymerase (Taq Q5Hot Start High-Fidelity 2x Master Mix, 
Ref. M0494S, NEB) and primers PV012-F (5’-ACT-GTA-A-
TA-CGA-CTC-ACT-ATA-GGG-ATG-TCT-GAT-AAT-GGA-CCC-CAA-AAT- 
C-3’) and PV013-R (5’-GGC-CGC-GGC-CGC-TTT-TTT-TTT-TTT-TTT- 
TTT-TTT-TTT-TTT-TAG-GCC-TGA-GTT-GAG-TCA-GC-3’). In vitro tran-
scription of 1− 2 μg of phenol-chloroform extracted and ethanol 
precipitated DNA resolved in nuclease-free water was carried out using 
T7 RiboMAX expression large scale RNA production system (ref. P1300, 
Promega, Charbonnières-les-Bains, France) with m7G(5’)ppp(5’)G RNA 
Cap Structure Analog (ref. S1404L, Promega) as recommended by the 
manufacturer. A similar protocol was used to produce a capped mRNA 
encoding the N protein. Approximately 10 μg of in vitro transcribed viral 
genomic RNA was electroporated together with 2 μg of the N gene 
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transcript into BHK-21 cells. Briefly, 107 BHK-21 cells were resuspended 
in 350 μL of ice-cold PBS, mixed with RNA, and transferred to 0.2 cm 
electroporation cuvette. Electroporation was carried out with a Gene-
pulser apparatus (ref. 1652660, Biorad, Marnes-La-Coquette, France) 
with one pulse of 140 V and 25 msec. BHK-21 electroporated cells were 
immediately co-cultivated with 70–80 % confluent Vero E6 cells in wells 
of 9.5 cm2. After an incubation of cells for 5 days, the cell supernatant 
was collected and cellular residues were removed by centrifugation at 
3000 g for 20 min. Clarified supernatant (passage 0) was stored and used 
to produce virus stocks for further analysis. All work involving the 
culture, production, and storage of SARS-CoV-2-GFP was performed in a 
biosafety level 3 (BSL3) laboratory. 

2.4. Infection of Vero E6 cells with GFP expressing SARS-CoV-2 

Copper gluconate was dissolved in sterile water and filter-sterilized 
with a 0.22 μm PVDF filter. The stock solution at 10 mM was stored at 
2− 8 ◦C for a maximum of 10 days. Vero E6 cells were seeded in a 96-well 
plate (ref. CLS3904, Corning, Sigma Aldrich) at a density of 20,000 cells 
per well. Cells were incubated for 18− 24 h hours at 37 ◦C and in 5% 
CO2. Then cells were incubated in cell medium with or without copper 
gluconate for 18− 24 h hours. Next, the medium was removed before the 
cell being infected with GFP expressing SARS-CoV-2 at a multiplicity of 
infection (m.o.i) of 0.005 for 1 h. After the adsorption step, the medium 
was removed and cells were incubated at 37 ◦C and in 5% CO2 for 
another 48 h-period in fresh medium (DMEM supplemented with 2% of 
FBS) supplemented with copper gluconate concentrations ranging from 
0 to 100 μM with or without BSA (Ref. 1000-70, SEQENS in vitro diag-
nostic, France). Nuclei of Vero E6 cells were stained with 4 μg/mL 
Hoechst 33342 (ref. H1399, Invitrogen) for 30 min. 

2.5. Confocal microscopy-based high content screening 

Ninety-six-well plates were sealed in the BSL3 laboratory to be 
imaged by confocal microscopy at 40-fold-magnification (Ti2 CSU-W1 
SoRA, Nikon, France). Three independent experiments were per-
formed and z-stack images were acquired in 12 random fields in dupli-
cate wells (i.e. 6 fields per well) for each experimental condition. The 
whole process of acquisition was fully automated using in house pipeline 
developed with the JOBS module of the NIS software. GFP fluorescence 
was detected using a 488-nm laser for excitation and a 525/50 nm 
emission filter. Hoechst fluorescence was detected using a 405-nm laser 
for excitation and a 447/60 nm emission filter. Images were analysed 
using NIS general analysis 3 in-house pipeline (NIS software v5.30, 
Nikon) to count the total number of nuclei, the number of nuclei in the 
infected area, the volume of the infected area, and the mean fluores-
cence intensity (MFI) of infected cells. 

2.6. Statistics and software 

SnapGene software v5.2 (GSL Biotech, San Diego, CA) was used to 
determine in silico the restriction profiles of BAC/YAC containing viral 
cDNA of synSARS-CoV-2-GFP clone 6.2. Statistical analysis and graphics 
were computed with GraphPad software v9.1 (Prism, San Diego, CA). 
The improvement of the images for publishing was performed with Fiji 
software (v1.53c). 

3. Results 

3.1. Cell toxicity of copper gluconate 

Vero E6 cells were treated with gluconate copper concentrations 
ranging from 0 to 1600 μM for 24, 48 and 72 h. Cell viability was 
determined by measuring the reduction of XTT converted to orange- 
coloured formazan product using the CyQUANT XTT assay. The 
viability of Vero E6 treated with copper gluconate up to 200 μM was 

similar to that of untreated cells. However, the cell viability dropped 
below 70 % at 400 μM after 72 h and reached a value close to zero (or 
zero) for a concentration of 800 μM and 1600 μM after 48 h of treatment 
(Fig. 1a, b and c). Similar results were observed by measuring the per-
centage of dead cells with propidium iodide staining. Copper gluconate 
toxicity was found to increase over the time (Fig. 1d). At 72 h, no toxicity 
was observed up to 100 μM (Fig. 1d). 

The cell viability was measured by XTT assay after an incubation- 
period of 24 h (a), 48 h (b) and 72 h (c) in culture medium supple-
mented with copper gluconate. The ratio of viable cells was calculated 
by dividing the signal of treated cells by the signal of untreated cells 
multiplied by 100. Dots represent the value of each independent 
experiment, which correspond to the mean value of duplicate wells. Bars 
represent the mean value of three independent experiments. Error bars 
represent the standard deviation of the mean. The cell toxicity was 
measured by detecting cells that incorporate propidium iodide assay (d). 
The percentage of dead Vero E6 cells was calculated by dividing the 
number of dead cells (nuclei labelled with propidium iodide) by the total 
number of cells (nuclei labelled with Hoechst). Dots represent the mean 
value of 36 microscopy fields at 20-fold-magnification (three indepen-
dent experiments with duplicate wells, 6 fields per well). Colored areas 
around the connecting line represent the standard deviation of the 
mean. 

3.2. Antiviral activity of copper gluconate treatment before viral infection 

Vero E6 cells were treated with concentrations of copper gluconate 
ranging from 0 to 100 μM at 18− 24 hours before SARS-CoV-2-GFP 
infection. The treatment was removed during the 1 h of the adsorption 
of recombinant SARS-CoV-2-GFP viruses. After adsorption, the medium 
was replaced by fresh culture media supplemented with the same con-
centrations of copper gluconate and cells were incubated for another 48 
h-period to let viruses infect and replicate in cells. Then, the level of 
infection was measured by confocal microscopy. Results of three inde-
pendent experiments are depicted in Fig. 2. The cumulative number of 
cells analysed in three independent experiments represents roughly 
5000 cells per condition tested in each independent experiment. The 
rate of infection was significantly lower in cells treated with a concen-
tration of copper gluconate of 25 μM and higher as compared to un-
treated cells (Fig. 2a). The rate of infection was 23.8 %, 18.9 %, 20.6 %, 
6.9 %, 5.3 %,5.2 % in cells supplemented with 0, 2, 10, 25, 50 and 100 
μM of copper gluconate respectively. Thus, the number of infected cells 
was reduced by 71, 77, and 78 % with 25, 50, and 100 μM of copper 
gluconate respectively (p < 0.05). The volume filled by infected cells 
was determined by measuring the volume filled by GFP-positive voxels. 
Again, the concentration of copper gluconate of 25 μM was the lowest 
dose tested that significantly reduced the viral infection as compared to 
untreated cells (Fig. 2b). Together, these results suggest that copper 
gluconate mitigate the infection of Vero E6 cells. Additionally, linear 
regression analysis showed that the MFI of infected cells decreased with 
the concentration of copper gluconate used to treat the cells (p < 0.01, 
linear regression) (Fig. 2c). These latter results suggest that copper 
gluconate might also limit the viral replication inside Vero E6 cells. 

3.3. Antiviral activity of copper gluconate treatment after viral infection 

To assess the effect of copper gluconate after the cells were infected, 
the same protocol was used except that Vero E6 cells were maintained in 
medium without copper gluconate until the infection step was per-
formed. After adsorption, the medium was replaced by a fresh medium 
supplemented with concentrations of copper gluconate ranging from 
0 to 100 μM and cells were incubated for an another 48 h-period. Results 
of three independent experiments are depicted in Fig. 2. The rate of 
infection was 28.1 %, 29.3 %, 25.6 %, 19.6 %, 15.2 %, 7.5 % in cells 
supplemented with 0, 2, 10, 25, 50 and 100 μM of copper gluconate 
respectively. The rate of infection decreased by 73 % in cells treated 

K. Rodriguez et al.                                                                                                                                                                                                                              



Journal of Trace Elements in Medicine and Biology 68 (2021) 126818

4

with a concentration of copper gluconate of 100 μM as compared to 
untreated cells (p < 0.05) (Fig. 2d). In cells already infected, the 100 μM 
concentration of copper gluconate was the lowest dose tested that 
significantly reduced the viral infection as compared to untreated cells 
(Fig. 2e and f). In addition, we performed the same experiments with 
medium supplemented with 10–40 mg/l of BSA. Upon the addition of 10 
mg/l of BSA to the medium, the antiviral effect of copper gluconate was 
abolished. With 10 mg/l of BSA, the infection rate was 29.9 %, 26.8 %, 
34.0 % and 23.4 % in cells supplemented with 0, 25, 50 and 100 μM of 
copper gluconate respectively. Similar results were obtained with 20 
mg/l and 40 mg/l of BSA (i.e. the absence of antiviral effect of copper 
gluconate). These results showed that albumin is able to completely 
inhibit the antiviral effect of the gluconate suggesting that the antiviral 
activity of copper gluconate observed in vitro will not be retained in 
serum where the albumin concentration is high. 

4. Discussion 

For this study, we developed an original confocal microscopy-based 
HCS using an in vitro model with Vero E6 cells challenged with a re-
combinant GFP expressing SARS-CoV-2 that was reconstructed using a 
yeast-based reverse genetics platform [30]. This method has the 
advantage of being able to analyse each cell individually and to count 
thousands of cells per well at the same time to increase the reliability of 
the observations. By using both a motorized stage and a fully automated 
pipeline for image recording, we virtually eliminated any possible bias 
that could be linked to the person in charge of image acquisition. The 
quantitative analysis of images was also fully automated by using an 
in-house pipeline developed with a plugin of the NIS software to avoid 
technical bias. A similar experimental setup with Vero E6 cells and the 
same GFP expressing SARS-CoV-2 clone was found to be suitable for 
drug screening applications by using the antiviral remdesivir as a 
reference [30]. Thus, we decided to combine this in vitro model of GFP 
expressing SARS-CoV-2 infection with confocal microscopy-based HCS 

to assess the antiviral activity of copper gluconate. Furthers improve-
ments of this technology (e.g. using cell lines with fluorescence re-
porters) could help to study more easily whether and how drugs or 
chemical compounds could counteract SARS-CoV-2 infection in 
mammalian cells. 

In the present study, we observed that the combination of pre- and 
post-exposure treatment of Vero E6 cells with copper gluconate at a 
concentration as low as 25 μM led to a 71 % reduction of the cell 
infection rate. When the cells were treated after the infection step, the 
concentration of copper gluconate needed for reducing by 70 % the 
infection rate was 100 μM. In any case, we could not observe a complete 
inhibition of the viral infection in this in vitro model. It must be 
acknowledged that the effect we observed with 25 μM of copper glu-
conate is not as powerful as that described with antiviral drugs [32]. In 
humans, the concentration of copper in whole blood is approximately 15 
μM (1000 μg/L) [24,26–29]. Depending on the tissue, the copper con-
centration range from 1 to 12 μg/g, which is 1000-fold lower than the 
serum concentration [28,29]. It is important to note that almost all of 
the copper in the blood is tightly bound to components and not free to 
interact with cells, except to enter through specific transporters. In our in 
vitro model, the addition of albumin at physiological concentration (40 
mg/L) and lower (20 mg/L and 10 mg/L) abolished the antiviral effect of 
copper gluconate suggesting that complexed copper no longer had an 
effect on the virus. Because of its high affinity for copper, albumin is 
known to be one of the main copper-binding components in mammalian 
blood plasma [29]. We observed that the addition of BSA inhibits anti-
viral activity of copper gluconate probably because free copper ions are 
bound by albumin and cannot be effective against SARS-CoV-2 viruses. 
In vivo, copper can also encounter various other proteins that can bind 
copper, and making it unavailable as an antimicrobial [29,44,45]. 

Even if copper seems to act against the virus by decreasing the 
number of infected cells, the mechanism of action is still far from being 
understood. The antiviral effect observed in Vero E6 cells with copper 
gluconate is probably multifactorial and certainly much more complex 

Fig. 1. Viability of Vero E6 incubated with copper gluconate.  
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in vivo. Warnes et al. showed that copper ions can damage virus mem-
branes and destroy the viral genome of human coronavirus 229E [33]. In 
our study, a direct effect of copper cannot be excluded because copper 
gluconate was maintained in the culture medium as long as the infection 
lasted. We also observed that the increase of copper gluconate concen-
tration up to 100 μM is associated with a statistically significant decrease 
of MFI. Because GFP expressed by the recombinant SARS-CoV-2 is fused 
to the non-structural protein 7, we can speculate that copper might limit 
the synthesis of viral proteins. This hypothesis is supported by in silico 
studies predicting that metal ions such as cobalt(III) or copper(II) could 
inhibit the SARS-CoV-2 main protease [34,35]. However, we found only 
two in vitro studies corroborating that copper ions could inhibit the 
synthesis of viral proteins or the replication cycle [36,37]. Thus, 
whether copper ions may limit the synthesis of viral proteins in 
mammalian cells is still far from being understood. In vitro studies 
showed that an increase of SOD1 expression is associated with a 
decrease in viral replication [38,39]. Further studies are needed to 
investigate whether the copper gluconate supplementation in culture 
media increases the internalization of copper and if intracellular copper 
is required to struggle against viral infection. Last, it was well estab-
lished that the coronavirus replication complex requires 
autophagy-associated cellular components [40]. Because copper is 
known to be able to modulate autophagy, copper induced-autophagy 
could limit the availability of autophagy associated cellular compo-
nents that are required for viral replication [19]. Whether one of these 
mechanisms more than another could be involved in the antiviral effect 
observed in our study remains unclear. 

In vitro, we found that copper gluconate is well tolerate by Vero E6 
cells even at strong concentration. It could be interesting to confirm 
these results with others cell lines but also with primary cells and human 
reconstructed epithelium. In our hand, we observed that very high 
concentrations over a limited period of 2 h could be used with no evi-
dence of cytotoxicity after 24 h (Rigaill J, personal data). If the safety of 
local administration could be confirmed using in vivo models, it could be 
considered that copper gluconate delivered locally by mouthwashes or 
sprays could help to tackle the viruses produced by infected cells. By 
contrast, it is unlikely that copper keep an antiviral activity if adminis-
tered by intravenous injection because copper is bound by albumin, 
ceruloplasmin and many other proteins [29,44,45]. The animal models 
of SARS-CoV-2 infection that have been developed worldwide [43] 
seems to be the most appropriate approach to assess the effect of copper 
administration during SARS-CoV-2 infection in vivo. 

In humans, a retrospective observational study showed that zinc and 
selenium transporter selenoprotein P and zinc deficiency was associated 
with the worst outcomes in elderly Covid-19 patients [41]. A 
meta-analysis in Chinese children reported that copper deficiency is 
associated with recurrent respiratory tract infection [42]. Thus, it could 
be interesting to study copper concentrations in serum but also tissues 
such as nails and hairs in asymptomatic, mild, and severe Covid-19 
patients. 

In conclusion, our findings showed that copper gluconate is able to 
mitigate SARS-CoV-2 infection in Vero E6 cells but this effect was 
abolished by albumin, which suggests that copper will not retain its 
activity in serum. In the current context of active virus transmission, it is 
undoubtedly interesting to pursue the development of new therapeutic 

strategies in addition to vaccination efforts Furthers studies are still 
needed to investigate whether copper gluconate could be of benefit in 
mucosal administration such as mouthwash, nasal spray or aerosols 
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