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Abstract

Motivation: Given multi-platform genome data with prior knowledge of functional gene sets, how

can we extract interpretable latent relationships between patients and genes? More specifically, how

can we devise a tensor factorization method which produces an interpretable gene factor matrix

based on functional gene set information while maintaining the decomposition quality and speed?

Results: We propose GIFT, a Guided and Interpretable Factorization for Tensors. GIFT provides inter-

pretable factor matrices by encoding prior knowledge as a regularization term in its objective function.

We apply GIFT to the PanCan12 dataset (TCGA multi-platform genome data) and compare the per-

formance with P-Tucker, our baseline method without prior knowledge constraint, and Silenced-TF,

our naive interpretable method. Results show that GIFT produces interpretable factorizations with

high scalability and accuracy. Furthermore, we demonstrate how results of GIFT can be used to reveal

significant relations between (cancer, gene sets, genes) and validate the findings based on literature

evidence.

Availability and implementation: The code and datasets used in the paper are available at https://

github.com/leesael/GIFT.

Contact: saellee@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasing number of multi-platform genome data of a single per-

son, e.g. a cancer patient, are being generated. These data describe

different biological aspects of a person and need to be integratively

analyzed to obtain a holistic view. However, due to the complexity

of the problem, the results of existing methods are difficult to inter-

pret and often do not scale to larger data (Thomas and Sael, 2015).

Interpretability is important for discoveries, and scalability is also

important as the size of data rapidly increase.

1.1 Integrative genomic data analysis for cancer studies
The Cancer Genome Atlas (TCGA) have reported several integrated

genome-wide studies of cancer data. In 2013, TCGA published the

PanCan12 dataset that includes multi-platform genomic informa-

tion of 12 tumor types (Weinstein et al., 2013). The dataset has

boosted many genomic cancer analyses (Anaya et al., 2016; Riaz

et al., 2017) including the original TCGA multi-platform data ana-

lysis (Hoadley et al., 2014). Hoadley et al. (2014) utilizes cluster-of-

cluster analysis (COCA) approach for stratification of the Pancan12

dataset. COCA is a two-step approach that clusters against already

clustered individual data types. Although the method is applicable

for large data, the two-step process makes it difficult to trace back

and interpret the results. Multi-kernel methods are also multi-step

approaches that first generate individual kernels from each data

type, then learn multi-kernels, and finally apply the multi-kernels to

cluster or classify (Thomas and Sael, 2017). Although kernel-based

methods are highly accurate, interpretability is lost in the generation
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of the kernels. Another integrative method widely used by TCGA is

PARADIGM (Kandoth et al., 2013; Vaske et al., 2010). The method

is based on a Bayesian network inference, which depends on the bio-

logical pathway and protein expression data used. Due to these

requirements, it is often applied to a small number of genes.

1.2 Matrix/tensor mining methods
Matrix factorization methods, such as the non-negative matrix fac-

torization (NMF), are broadly used across multiple domains to ana-

lyze data represented as matrices. NMF was used extensively by the

TCGA group (Hoadley et al., 2014; Kandoth et al., 2013; Koboldt

et al., 2012) and others (Hofree et al., 2013; Kim et al., 2015; Zhu

et al., 2017) for studying single-platform genome analyses such as

somatic mutations or gene expressions.

Natural extensions of single data type modeled as matrices to

multi-platform data are tensors, i.e. multi-dimensional arrays.

Tensors are widely applied to represent many real-world data such

as movie rating and network traffic data expressed as 3-order ten-

sors with three modes (movie—user—time) and three modes (source

IP—destination IP—time), respectively. Multi-platform genome

data can also be represented as a 3-order tensor that contains the ex-

perimental values with three modes (patient—gene—experimental

platform).

Tensor factorization (TF) methods are applied to analyze tensor

data just as matrix factorization methods are used for analyzing

matrices. TF decomposes a given tensor into factor matrices and a

core tensor. A factor matrix encodes latent patterns of each term in

the mode and core tensor encodes how patterns of different modes

are related. For example, in a 3-order tensor analysis, an input ten-

sor (e.g. PanCan12 tensor) X is decomposed to a core tensor G and

three factor matrices AðSÞ; AðGÞ and AðPÞ (Fig. 1 left). After factoriza-

tion, one or combinations of the factor matrices and core tensor are

used to extract meaningful information.

Applications of TF include anomaly detection from network

traffic data (Eliassi-Rad et al., 2006), healthcare monitoring from

sensor data (Wang et al., 2017), fraud detection from social network

data and biomedical data (Kim et al., 2017). However, tensor fac-

torization methods have not been extensively applied to multi-

platform genomic data, mainly due to scalability, missing data prob-

lem and interpretability. For example, the PanCan12 dataset, which

we test on, forms a 3-order tensor of size 4555�14 351�5. If the

size of PanCan12 dataset increases (e.g. more patients or platforms),

a regular tensor decomposition method will not run due to inter-

mediate data explosion during its calculation (Jeon et al., 2016b).

We have previously addressed the scalability and missing data

problems (Choi et al., 2017; Shin et al., 2017) and various ways to

exploit prior knowledge to obtain high-quality factorizations (Jeon

et al., 2016a). In the case of interpretability, when input data are

very sparse and human readable, such as node associations in net-

work tensors, samples of input data can be used as one of the factor

matrices resulting in a sparse output that is more interpretable (Lee

et al., 2017). However, most scientific data, including PanCan12

data, contain floating point values and are not sparse enough, which

makes human interpretation a challenge. This requires a different

approach for solving the interpretability problem in the tensor ana-

lysis for better discoveries and explanations of latent patterns while

preserving the speed and accuracy of factorizations.

Our goal is to devise an interpretable TF method for partially

observed tensors exploiting prior knowledge while preserving the

accuracy and scalability. Our proposed methods, Silenced-TF

(naive) and GIFT (advanced), do this by extending our scalable and

accurate tensor decomposition method, P-Tucker (Oh et al., 2018),

such that the selected factor matrix preserves and extends the pre-

defined classification of the terms, e.g. gene membership informa-

tion in functional gene sets.

1.3 Contributions: Our main contributions are as follows
• Method. We propose GIFT (Guided and Interpretable

Factorization for Tensors) that outputs interpretable (gene) fac-

tor matrix by constraining the factor matrices based on prior

classification information (functional gene sets).
• Experiments. We validate that GIFT is not only interpretable but

highly scalable and accurate (Table 1).
• Discovery. We apply GIFT to large-scale multi-platform cancer

genome analysis using the PanCan12 dataset and show how the

method easily and successfully discovers significant relations be-

tween patients with gene sets and gene sets to genes.

2 Materials and methods

In this section, we overview our proposed approach, provide details

on the dataset used, describe our baseline approach, i.e. P-Tucker,

and two prior knowledge constrained methods proposed, i.e.

Silenced-TF and GIFT. Preliminaries of a tensor factorization and

detailed derivation of the algorithms are provided in the

Supplementary Methods. For the readers unfamiliar with tensor

analysis, please view the tensor preliminaries in the Supplementary

Methods first.

2.1 Overview
We describe P-Tucker (our baseline method with no mask matrices),

Silenced-TF (naive interpretable method) and GIFT (advanced inter-

pretable method) in terms of a multi-platform 3-order tensor with

(Sample—Gene—Platform) triples with prior information on func-

tional gene sets (All three methods are extendable to general n-order

tensors (Supplementary Methods).). In this setting, an input tensor,
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Fig. 1. An overview of a PanCan12 tensor factorization via GIFT. (A) shows a PanCan12 tensor factorization and (B) shows a factor matrix (FM) A
ðGÞ
t computation

at time tþ1 constrained on a mask matrix M (G)
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X, is decomposed to a core tensor G and three factor matrices

AðSÞ; AðGÞ and AðPÞ, which we define as (S)ample-, (G)ene- and

(P)latform-factor matrices (Fig. 1 left).

Each column in a factor matrix represents a certain latent pattern

or concept related to the dimension. For example, a column of AðSÞ

indicates a subclass of cancers such a type of hereditary breast cancer,

and a row specifies the sample. The values of the column indicate

weights between the subclass and the sample. Likewise, a significant

component of a column of AðGÞ, which is pre-determined for Silenced-

TF and GIFT, corresponds to a gene set and a row corresponds to a

gene. A similar explanation can apply for Platform-factor matrix AðPÞ.

For deriving Silenced-TF and GIFT, we employ prior knowledge

in a form of a mask matrix MðnÞ representing a membership of pre-

determined classification regarding a mode n and utilize the mask ma-

trix to produce an interpretable factor matrix. Produced factor matrix

AðnÞ has values concentrated on the corresponding unmasked region

of the mask matrix. This allows direct mapping of prior knowledge to

the latent patterns found in the corresponding column of the factor

matrix. Notice that P-Tucker, GIFT and Silenced-TF produce equiva-

lent results if all components of mask matrices are zeros (unmasked).

2.2 Data processing
We use the PanCan12 (Weinstein et al., 2013) and Hallmark gene

set data from MSigDB (Liberzon et al., 2015) collections for gener-

ating an input tensor and mask matrices, respectively. Table 2 sum-

marizes the data we used in this paper.

2.2.1 Mask matrix

We generate a gene mask matrix MðGÞ in a form of (gene—gene set).

Each column of mask matrix MðGÞ corresponds to a gene set. If a

gene i is contained in a gene set j then it is unmasked, i.e. M
ðGÞ
ij is set

to 0; otherwise, the gene is masked, i.e. set to 1. If no prior-

knowledge is known, the elements of mask matrices are all set to

zero. In our test, sample mask matrix MðSÞ and platform mask ma-

trix MðPÞ are filled with zeros.

For the functional gene set, we chose Hallmark collection from the

MSigDB (Liberzon et al., 2015) among the various functional gene sets

since it has low redundancy and concise mapping to important bio-

logical processes. The collection contains 50 independent, refined and

concise gene sets that were generated from combining and removing

redundancies in various well-known functional gene groups. Thus,

there are 50 columns in the generated gene mask matrix, MðGÞ.

2.2.2 PanCan12 tensor

We transform PanCan12 to a 3-order tensor of size 4555 (sample) �
14 351 (gene) � 5 (platform), where the value of an observed entry

indicates the preprocessed experimental value, as follows. Initially,

the 4.7 version of the PanCan12 was downloaded from the Sage

Bionetworks repository, Synapse (Omberg et al., 2013). The

PanCan12 contains multi-platform data with mapped clinical infor-

mation of patients group into cohorts of twelve cancer type: bladder

urothelial carcinoma (BLCA), breast adenocarcinoma (BRCA),

colon and rectal carcinoma (COAD, READ), glioblastoma multi-

forme (GBM), head and neck squamous cell carcinoma (HNSC),

kidney renal clear cell carcinoma (KIRC), acute myeloid leukemia

(LAML), lung adenocarcinoma (LUAD), lung squamous cell carcin-

oma (LUSC), ovarian serous carcinoma (OV) and uterine corpus

endometrial carcinoma (UCEC). The five platforms types used are

miRNA-seq (MIR), methylation (MET), somatic mutation (MUT),

gene expression (GEX) and copy number variation (CNV). After

download, probes of each platform were mapped to corresponding

gene symbols. Then, samples that have less than two evidence were

removed from the dataset. The resulting data for each platform was

min-max normalized and was further normalized such that the

Frobenius norm became one, i.e. jjAjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j jaijj2
q

¼ 1.

2.3 Proposed methods
We first describe our baseline method, P-Tucker, a fast and scalable

tensor factorization that does not utilize prior knowledge (gene

mask matrix). Then we describe how we have extended P-Tucker

method to derive two interpretable factor generation methods:

Silenced-TF and GIFT.

2.3.1 Baseline approach: P-Tucker

Our baseline approach, P-Tucker, is a time/memory-optimized ten-

sor factorization algorithm for partially observable tensors (Oh

et al., 2018). We have shown in our previous work that P-Tucker

outperforms other factorization methods of similar kind (Filipovi�c

and Juki�c, 2015; Oh et al., 2017; Smith and Karypis, 2017) in terms

of scalability and accuracy.

The high scalability and accuracy of P-Tucker come from a novel

row-wise update rule of factor matrices derived by computing a gra-

dient of loss function (Supplementary Equation S1) with respect to a

given row and setting it to zero for minimizing the loss function.

The row-wise update rule is applied to the alternating least squares

(ALS) technique that updates a set of parameters, e.g. a factor ma-

trix, while fixing all the others and iterates for all parameter sets.

The ALS-based row-wise update allows P-Tucker to process all rows

of a factor matrix in parallel, which makes the algorithm highly

scalable.

Please refer to Supplementary Methods for full derivations of

update rule and proofs of the algorithm described for a general

N-order tensor.

2.3.2 Silenced-TF

Although our previous method P-Tucker presents high scalability

and accuracy, it produces a dense gene factor matrix with too many

genes in each column (latent pattern) having significant factor val-

ues. This property makes it difficult to map a single function to each

latent pattern found. Our first approach to generate an interpretable

factor matrix is a method Silenced-TF that naively silences factor

values associated with the non-member of pre-defined gene groups.

Table 2. Summary of dataset

Dataset Order Size Observable entries

PanCan12 tensor 3 (4555� 14 351� 5) 180M

Sampled-PanCan12 3 (4555� 14 351� 5) 36–144M

Mask matrix MðGÞ 2 (14 351� 50) 7K

M, million; K, thousand.

Table 1. Characteristic comparisons of GIFT with P-Tucker and

Silenced-TF

Method P-Tuckera Silenced-TF GIFT

Interpretability Low High High

Accuracy High Low High

Scalability High High High

aOh et al. (2018).
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In other words, it forces factor values of masked regions to be zeros

and updates the rests using the row-wise update rule used for P-

Tucker.

Specifically, given a PanCan12 tensor X 2 RIS�IG�IP with ob-

servable entries X, Silenced-TF of rank (JS, JG, JP) finds a core tensor

G 2 RJS�JG�JP and factor matrices AðSÞ 2 RIS�JS ;AðGÞ 2 RIG�JG ;AðPÞ

2 RIP�JP which minimize the loss function subjected to mask matri-

ces MðnÞ 2 RIn�Jn , where n 2 {S, G, P} as specified Equation (1).

minimize
G;AðSÞ ;AðGÞ ;AðPÞ

LðG;AðSÞ;AðGÞ;AðPÞ;MðSÞ;MðGÞ;MðPÞÞ

¼
X

8a¼ðiS ;iG ;iPÞ2X

 
Xa �

X
8b¼ðjS ;jG ;jPÞ2G

Gb

Y
n2fS;G;Pg

a
ðnÞ
injn

!2

þk

 X
n2fS;G;Pg

jjAðnÞjj2F

!

subject to a
ðnÞ
injn
¼ 0 when m

ðnÞ
injn
¼ 1:

(1)

More specifically, given 3-order multi-platform data X with observ-

able entries X, we apply the P-Tucker update rule for a single row

a
ðnÞ
in : in a factor matrix AðnÞ by calculating three intermediate data d,

B
ðnÞ
in

and c
ðnÞ
in : , where n 2 {S, G, P} specifies one of the three modes, i.e.

(S)ample, (G)ene, or (P)latform (For easiness of identifying each mode

of the tensor, we use first letters of each mode, i.e. n 2 {S, G, P} for

(S)ample, (G)ene and (P)latform. The conventional notation for speci-

fying these modes is ordered indices, i.e. n ¼ 1, 2, 3.).

dðGÞðiS ;iG ;iPÞ is a length Jn vector whose jth entry, dðGÞðiS ;iG ;iPÞðjÞ, isX
8ðjS ;j;jPÞ2G

GðjS ;j;jPÞa
ðSÞ
iSjS

a
ðPÞ
iPjP
: (2)

dðSÞðiS ;iG ;iPÞ and dðPÞðiS ;iG ;iPÞ are defined in the same way.

B
ðnÞ
in

is a Jn � Jn matrix whose (j1, j2)th entry isX
8ðiS ;iG ;iPÞ2XðnÞin

dðnÞðiS ;iG ;iPÞðj1Þd
ðnÞ
ðiS ;iP ;iGÞðj2Þ (3)

and c
ðnÞ
in : is a length Jn vector whose jth entry isX

8ðiS ;iG ;iPÞ2XðnÞin

XðiS ;iG ;iPÞd
ðnÞ
ðiS ;iG ;iPÞðjÞ; (4)

where XðnÞin
indicates the subset of X whose nth mode’s index is in.

With the above intermediate data, Silenced-TF, like P-Tucker,

updates a row a
ðnÞ
in : by an update rule c

ðnÞ
in : � ½B

ðnÞ
in
þ kIJn

��1, where IJn

is a Jn � Jn identity matrix. The difference in Silenced-TF compared

to P-Tucker is an additional step of setting a
ðnÞ
injn
¼ 0 when m

ðnÞ
injn
¼ 1

after each row-wise update of a
ðnÞ
in : . That is, Silenced-TF only updates

an entry in the gene factor matrix when the corresponding masking

element is zero; otherwise, Silenced-TF sets the entry to 0.

After updating factor matrices, Silenced-TF (or P-Tucker) calcu-

lates reconstruction error by the following rule.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
8a¼ðiS ;iG ;iPÞ2X

 
Xa �

X
8b¼ðjS ;jG ;jPÞ2G

Gb

Y
n2fS;G;Pg

a
ðnÞ
injn

!2

vuuut (5)

When the error converges or the maximum iteration is reached,

Silenced-TF (and P-Tucker) terminates the update process.

2.3.3 GIFT

Silenced-TF is based on a simple idea that can be applied to any

tensor decomposition methods without modifying the original

algorithm a lot. However, it has two weaknesses: low accuracy and

inability to discover undefined class components. The reconstruction

error of Silenced-TF is much higher than that of P-Tucker due to

many zero-value entries in its factor matrices. Regarding the latter

weakness, Silenced-TF is able to identify the significance of genes that

are included in gene sets but is not capable of finding new genes that

show association with the latent function. Hence, to overcome these

weaknesses, we propose a more advanced method GIFT which tackles

the problem employing selective regularization of factor matrices. The

main difference between GIFT and other methods is an existence of

mask matrices in the regularization term of the loss function, which

allows a soft regularization. The specific loss function of GIFT for a

3-order multi-platform tensor is given by the following Equation (6).

LðG;AðSÞ;AðGÞ;AðPÞ;MðSÞ;MðGÞ;MðPÞÞ

¼
X

8a¼ðiS ;iG ;iPÞ2X

 
Xa �

X
8b¼ðjS ;jG ;jPÞ2G

Gb

Y3

n¼1

a
ðnÞ
injn

!2

þk

 X
n2fS;G;Pg

jjMðnÞ � AðnÞjj2
! (6)

GIFT uses MðnÞ � AðnÞ instead of just AðnÞ, where * denotes an

element-wise multiplication. Specifically for gene factor matrix,

the loss function allows GIFT to focus on learning values of

genes in pre-defined functional groups but still allows for

non-members of the group to gain factor values if original tensor

values are highly associated with the non-member gene. This

property increases the accuracy GIFT as well as allowing it to dis-

cover new genes that show significant relation to the functional

group.

Similar to P-Tucker, the algorithm of GIFT is derived by finding

a gradient of the loss function with respect to the given row in a fac-

tor matrix and setting it to zero (Supplementary Methods S1.3). The

gradient is used to update each row of factor matrices in an ALS

fashion, i.e. updating each factor row while fixing all others and

iterating over all row in all factors matrices (Fig. 2). Algorithm 1

describes how GIFT updates given factor matrices in detail for the

3-order multi-platform tensor. When GIFT updates a row a
ðnÞ
in : (line

7), it requires a diagonal matrix D
ðnÞ
in

where its (jn, jn) entry is m
ðnÞ
injn

(line 6), while P-Tucker uses an identity matrix IJn
.

Algorithm 1 3-order GIFT

Input: A tensor X 2 RIS�IG�IP with observable entries X,

mask matrices MðSÞ; MðGÞ; MðPÞ, rank ðJS; JG; JPÞ, and a

regularization parameter k.

Output: A core tensor G and factor matrices AðSÞ;AðGÞ;AðPÞ.

1: initialize G and AðSÞ;AðGÞ;AðPÞ randomly

2: repeat

3: for n 2 S;G;P do

4: for in ¼ 1; . . . ; In do

5: calculate intermediate data d, B
ðnÞ
in

, and c
ðnÞ
in : by Eq.

(2) – (4)

6: calculate Din , where its (jn, jn)th entry is M
ðnÞ
injn

7: update a row a
ðnÞ
in : by c

ðnÞ
in : � ½B

ðnÞ
in
þ kDin �

�1

8: end for

9: end for

10: compute reconstruction error by Eq. (5)

11: until error converges or exceeds maximum iteration
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3 Results

In this section, we describe experimental results of GIFT compared to

Silenced-TF and P-Tucker. We aim to answer the following questions.

[Q1] Interpretability: How interpretable are factor matrices pro-

duced by GIFT and the other methods? (Section 3.2)

[Q2] Accuracy: How accurately do GIFT and the other methods

factorize a given tensor and predict missing entries of the tensor?

(Section 3.3)

[Q3] Scalability: How well do GIFT and the other methods scale

up with respect to the number of observed entries of a tensor?

(Section 3.4)

3.1 Experimental settings
GIFT, Silenced-TF and P-Tucker are implemented in C with

OpenMP and Eigen libraries. We run our experiments on a single

machine with 20 cores, equipped with an Intel Xeon E5-2630 v4

2.2 GHz CPU and 512GB RAM. We set the default parameters as

follows: regularization coefficient k¼10 and rank¼(30�50�2).

Justifications of our parameter selections are summarized in

Supplementary Results S2.3. Notice that our convergence criteria in-

clude i) when the maximum iteration (20) is reached or ii) when re-

construction error converges (below the threshold; 1%), and we use

absolute values of factor matrices for all experiments.

3.2 Interpretability
We regard a gene factor matrix as interpretable if the set of significant

genes that composes each column directly maps to a singular biologic-

al function. That is, a gene factor matrix is interpretable if a subset of

the genes composing a gene set (unmasked) have significant factor val-

ues and a majority of genes that are not in the gene set (masked) have

insignificant factor values such that functional information, pre-

mapped to each column (gene set), can be used directly in explaining

the results. Please view Supplementary Results S2.4 for significant fac-

tor threshold selections. Figure 3 shows the distribution of factor val-

ues produced by GIFT for unmasked and masked entries.

In this perspective, both Silenced-TF and GIFT had high inter-

pretability (Fig. 4). Compared to a factor matrix produced by

P-Tucker, where there was no prior information mapped to a set of

significant components in each column, it became easier to interpret

factor matrices of Silenced-TF and GIFT where the factor values are

concentrated on a predefined gene sets (column components) that al-

ready has information mapped to each column. The difference be-

tween Silenced-TF and GIFT comes from their ability to explore

outside of the pre-determined classification. Our naive model,

Silenced-TF, achieved the interpretability by imposing a strict re-

striction on its factor matrices. Silenced-TF, however, was not able

to discover new components outside of pre-defined classification.

Our advanced model, GIFT was able to discover outside pre-defined

classification by employing a relatively soft restriction on its factors.

Additionally, we define top-K ratios to measure the interpretabil-

ity of a factor matrix given a mask matrix. A top-K ratio is defined

as follows.

Top–Kratio R 0 � R � 1ð Þ ¼ number of unmasked entries in top-K

K
(7)

Figure 5 illustrates top-K ratios on varying Ks. P-Tucker showed

the worst top-K ratios for all K since it did not distinguish unmasked

and masked entries in the calculation. Although Silenced-TF exhibited

the highest top-K ratios for all K, Silenced-TF was not able to discover

important masked entries which are closely related to unmasked

entries. Meanwhile, the top-K ratio of GIFT was the highest until

K�102 and decreased rapidly after K�102 when the factor values of

member genes (unmasked) began saturating and top values began dis-

covering the relevant non-member genes (masked). Overall, Silenced-

TF and GIFT provided interpretable factorizations with respect to dis-

tributions of values in a factor matrix and top-K ratios.

3.3 Accuracy
We use two evaluation metrics—reconstruction error and test root mean

square error (RMSE)—to measure the accuracy. Reconstruction error

indicates an accuracy of a factorization as given in Equation (5). Test

RMSE implies how accurately a method predicts missing entries of a ten-

sor. To measure test RMSE, we split the PanCan12 tensor into training/

test data with a ratio of 9 to 1. As illustrated in Figure 6A and B,

10
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10

10

10

10

10

10

Unmasked Entries Masked Entries

significant significant

-8  8 -8  8

A B

Fig. 3. Distributions of values in a gene factor matrix derived by GIFT (k¼ 10)

for unmasked (A) and masked (B) entries

Fig. 4. Mask matrix and gene factor matrices (FM) of GIFT, P-Tucker and

Silenced-TF. Subset of genes are shown for better visualization

Fig. 2. Row-wise update rule of GIFT
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Silenced-TF exhibits the worst accuracy due to too many zeros in a

silenced factor matrix. The reconstruction error and test RMSE of

Silenced-TF are 15.1� and 6.4�higher than that of P-Tucker when

k¼10 and k¼0.01, respectively. While P-Tucker shows the best accur-

acy in most cases, GIFT presents relatively small accuracy loss compared

to that of Silenced-TF and converges faster than P-Tucker (Fig. 7B).

Furthermore, test RMSE of GIFT is slightly higher or even better than

that of P-Tucker. Also, GIFT shows stable accuracy (Supplementary

Results S2.2).

3.4 Scalability
Scalability test is performed by varying the number of observable

entries by randomly sampling 20, 40, 60, 80 and 100% from the

PanCan12 tensor. As shown in Figure 7A, GIFT scales near linearly

in terms of the number of observable entries. GIFT also runs with

small time and memory overhead for a scaled-up dataset (up to 2

TB; Supplementary Table S6). P-Tucker and Silenced-TF since they

present similar scalability to that of GIFT (Supplementary Fig. S5B).

3.5 Empirical validation
We empirically validated GIFT (k¼10) by determining whether la-

tent relations found in the patient and gene factor matrices can be

mapped to the evidence available in the literature. The latent rela-

tions are (cancer—gene sets), (gene sets—genes) and (cancer—genes)

found on the PanCan12 dataset.

3.5.1 Patient to gene sets

Given specific patient or group of patients with a cancer type, which

gene set is the most relevant? The relevant gene set provides a

coarse-grained but holistic view of a patient or a group of patients.

We first explain our discovery procedure and validate (patient—

gene sets) relations found by GIFT.

We first computed an influence of each gene set on a patient and

then calculated the overall influence of each gene set on cancer by

aggregating results by the type of cancer. In detail, we consider a

row vector a
ð1Þ
i: of sample-factor matrix as a latent feature or profile

of ith patient, and G ¼ ð
PI3

i¼1 G::iÞ=I3 as a relation between gene

sets and columns of the sample-factor matrix. Then, we can regard

~a
ð1Þ
i: ¼ a

ð1Þ
i: G as an influence of each gene set on the ith patient where

the jth element of ~a
ð1Þ
i: indicates the influence of jth gene set on the

ith patient. We extracted top-5 most important gene sets for each

patient by selecting top-5 highest values in ~a
ð1Þ
i: . Finally, we counted

the frequency of gene sets that appeared in the top-5 gene sets of all

patients with a given cancer. We regarded the most frequent gene set

as the most relevant one to the given cancer type. The choice topk

¼ 5 was chosen based on trial-and-error.

Through the experiment, we found the following latent relation-

ships between gene set mapped functions and cancer types. For

breast cancer (BRCA), GIFT considers ‘Estrogen response late’ and

‘Bile acid metabolism’ gene sets as related. It is well known that the

estrogen plays a key role in the occurrence of breast cancer. The re-

lation to ‘Bile acid metabolism’ was backed up by Murray et al.

(1980) where they have shown that patients with breast cancer

have significantly low fecal bile acid concentration than that of

controlled patients. For ovarian cancer (OV), a relation to the

‘Interferon-gamma response’ gene set was supported by Wall et al.

(2003). They showed that interferon-gamma causes apoptosis in

human epithelial ovarian cancer. The ‘TGF beta signaling’ gene set

was frequent among many types of cancer including Head and

Neck Squamous Cell Carcinoma (HNSC), Lung adenocarcinoma

(LUAD), Lung Squamous, Cell Carcinoma (LUSC) and Bladder car-

cinoma (BLCA). The reason is that the Transforming growth fac-

tor-b (TGF-b) gene set is a tumor suppressor which affects many

types of human cancers (Kretzschmar, 2000). Additional (cancer—

gene sets) relations found are shown in the first and second columns

of the Table 3.

3.5.2 Gene sets to genes

Given a gene set, which genes are relevant or irrelevant to provided

data? Are there genes not included but related to the gene set accord-

ing to the data? A significant value in the gene factor matrix indi-

cates that the corresponding gene is highly related to the

corresponding gene set. We sorted the genes in each column of the

gene factor matrix in descending order by their value and inspected

genes with high-absolute factor values for each gene set.

Some of the identified (gene sets—genes) with literature evidence

are described in the following and listed in second and third columns

of Table 3. GIFT on PanCan12 data identified SKIL gene, known to

encodes a protein which antagonizes TGF-b signaling (Tecalco-Cruz

et al., 2012), in the ‘TGF beta signaling’ gene set column to be sig-

nificant. Likewise, PF4 gene, known as an inhibitor of cell prolifer-

ation and angiogenesis (Bikfalvi, 2004), in the ‘Angiogenesis’ gene

set column also had significant factor value; and IRF7 gene, that

encodes interferon regulatory factor 7, in the ‘Interferon-gamma re-

sponse’ gene set is also identified to be significant.

A B

Fig. 6. Performance comparisons of GIFT, Silenced-TF and P-Tucker. (A) is a

reconstruction error plot. (B) is a test RMSE plot

A B

Fig. 7. Convergence and scalability of GIFT. (A) Total running time of GIFT

with respect to the number of non-zeros. (B) GIFT shows faster convergence

than P-Tucker and has higher accuracy than Silenced-TF
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Fig. 5. Top-K ratios based on descending order of absolute factor values

4156 J.Lee et al.

Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty490#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty490#supplementary-data
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;
Deleted Text: &hx0025;,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty490#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty490#supplementary-data
Deleted Text: V
Deleted Text: ,
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text:  - 
Deleted Text:  - 


GIFT was also able to identify non-member genes to be related

to the gene set. For example, factor value of CASP8AP2 gene was

significant in the ‘Apoptosis’ gene set column and we were able to

find literature evidence mapping The CASP8AP2 gene to apoptosis

of leukemic lymphoblasts (Flotho et al., 2006).

3.5.3 Cancer to genes findings

Given specific cancer type, which genes affect the cancer type most?

We suggest (cancer—genes) relations by combining two relations

(cancer—gene sets) and (gene sets—genes) discovered by GIFT.

The first and third columns of Table 3 show (cancer—genes)

relations found by GIFT. We regard gene sets in the second column

of the table as bridges for (cancer—genes) relations. We deduced

the IL17RB and TFF3 genes are significant to breast cancer since

the genes are both important for the ‘Estrogen response late’ gene

set and the gene set is the most relevant one to breast cancer.

Alinejad et al. (2017) showed that IL17RB was crucial in develop-

ment and progression of breast cancer in effect. Moreover, May

and Westley (2015) reveal that the TFF3 gene promoted invasion

and migration of breast cancer. GIFT also found that the APOA1

gene in the ‘Bile acid metabolism’ gene set was highly related to

breast cancer. High levels of APOA1 are known to be related to

increased breast cancer risk (Martin et al., 2015). In the case of

ovarian cancer, GIFT asserts a strong relation to the BST2 gene.

High levels of BST2 have been identified in ovarian cancer

(Shigematsu et al., 2017).

4 Discussions and conclusion

In this paper, we proposed two scalable and interpretable tensor fac-

torization methods: Silenced-TF and GIFT. The scalability of the

two methods come from a parallel computation of factor rows

derived from a row-wise update rule. The interpretability of the

gene factor matrix is achieved by guiding the factorization to gain

values in accordance with the mask matrix that encodes functional

gene sets and gene set member information. Our naive model,

Silenced-TF, achieves the interpretability by imposing a strict

restriction on its factor matrices. Silenced-TF, however, has low ac-

curacy and cannot discover new components outside of pre-defined

classification. Our advanced model, GIFT, achieves high accuracy

and is able to discover outside of pre-defined classification by

employing a relatively soft restriction on its factors.

We applied GIFT to human cancer analytic using the

PanCan12 dataset. GIFT was able to find relations between (can-

cer—gene sets), (gene set—gene) and (cancer—gene) relations, and

we were able to find literature evidence to validate their correct-

ness. In finding latent (gene set—gene) relations, GIFT is able to

extract out-of-the-box relations, which are not given in prior

information.

A notable characteristic of the Silenced-TF and GIFT are their

dependencies on the gene sets used in constructing the results.

The dependencies of the methods on the gene sets require careful

selection of gene sets appropriated for the problem at hand.

However, how careful the gene sets were selected, the function of

all genes are not yet known, making gene sets incomplete. GIFT

is able to learn factor values for nonmembers of the gene sets, due

to the penalization scheme adapted for the nonmembers, the fac-

tor values learned for the nonmembers tends to have small norms

even if the signals from the data are strong. A possible approach

to alleviating the inherent incompleteness of gene sets is running

GIFT repeatedly and adding nonmembers with relatively high

norm values to the new gene set members in the next run of

GIFT.

Although GIFT was only applied on a 3-order PanCan12 tensor, it

is easily generalized to higher-order tensors as well as larger datasets

and various platform data. We believe that GIFT will provide a power-

ful and extendable tool for large-scale multi-platform genome analysis.
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Table 3. Significant relations found on the PanCan12 dataset via GIFT

Cancer Gene set Genes Evidence

HNSC, LUAD,

LUSC, BLCA

TGF beta signaling SKIL* Encodes the SNON, negative regulators of TGF-beta signaling

(Tecalco-Cruz et al., 2012)

FKBP1A* Interacts with a type I TGF-beta receptor.

LEFTY2* Encodes a secreted ligand of the TGF-beta family of proteins.

GBM Angiogenesis PF4* Inhibits cell proliferation and angiogenesis in vitro and in vivo (Bikfalvi, 2004).

VCAN* Encodes a protein involving in celladhesion, and angiogenesis (Wight, 2002).

BRCA Estrogen response late IL17RB* Involved in development and progression of breast cancer (Alinejad et al., 2017).

TFF3* Promotes invasion and migration of breast cancer (May and Westley, 2015).

Bile acid metabolism APOA1* Breast cancer risk factor (Martin et al., 2015).

OV, UCEC Interferon-gamma

response

IRF7* Encodes interferon regulatory factor 7.

BST2* High levels of BST2 have been identified in ovarian cancer

(Shigematsu et al., 2017).

Apoptosis CASP8AP2þ Associated with apoptosis of leukemic lymphoblasts (Flotho et al., 2006).

Encoded protein plays a regulatory role in Fas-mediated apoptosis

(Imai et al., 1999).

READ, COAD Protein secretion STX7* Controls vesicle trafficking events involved in cytokine secretion

(Achuthan et al., 2008).

KIRC, LAML Mitotic spindle LATS1* Binds phosphorylated zyxin and moves it to the mitotic spindle

Note: GIFT extracts significant gene sets and notable relations between cancer, gene sets and genes. Evidence column lists supporting evidence for either gene

to gene set or gene to cancer relations (*: important gene, þ: not included in a gene set, but related).

GIFT: Guided and Interpretable Factorization for Tensors 4157

Deleted Text:  - 
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: C
Deleted Text: ,
Deleted Text:  - 
Deleted Text:  - 


References

Achuthan,A. et al. (2008) Regulation of the endosomal snare protein syntaxin

7 by colony-stimulating factor 1 in macrophages. Mol. Cell Biol., 28,

6149–6159.

Alinejad,V. et al. (2017) The role of il17b-il17rb signaling pathway in breast

cancer. Biomed. Pharmacother., 88, 795–803.

Anaya,J. et al. (2015) A pan-cancer analysis of prognostic genes. PeerJ, 3, e1499.

Bikfalvi,A. (2004) Platelet factor 4: an inhibitor of angiogenesis. Semin.

Thromb. Hemost., 30, 379–385.

Choi,D. et al. (2017) Fast, accurate, and scalable method for sparse coupled

matrix-tensor factorization. arXiv Preprint arXiv: 1708.08640.

Eliassi-Rad,T. et al. (eds.) (2006) In: SIGKDD 2016, Philadelphia, PA, USA,

August 20–23, 2006. ACM.

Filipovi�c,M. and Juki�c,A. (2015) Tucker factorization with missing data with

application to low-n-rank tensor completion. Multidimensional Syst. Signal

Process., 26, 677–692.

Flotho,C. et al. (2006) Genes contributing to minimal residual disease in child-

hood acute lymphoblastic leukemia: prognostic significance of casp8ap2.

Blood, 108, 1050–1057.

Hoadley,K.A. et al. (2014) Multiplatform analysis of 12 cancer types reveals mo-

lecular classification within and across tissues of origin. Cell, 158, 929–944.

Hofree,M. et al. (2013) Network-based stratification of tumor mutations.

Nat. Methods, 10, 1108–1115.

Imai,Y. et al. (1999) The CED-4-homologous protein FLASH is involved in

Fas-mediated activation of caspase-8 during apoptosis. Nature, 398, 777–785.

Jeon,B. et al. (2016a) Scout: scalable coupled matrix-tensor factorization-al-

gorithm and discoveries. In: ICDE 2016. IEEE, pp. 811–822

Jeon,I. et al. (2016b) Mining billion-scale tensors: algorithms and discoveries.

VLDB J., 25, 519–544.

Kandoth,C. et al. (2013) Integrated genomic characterization of endometrial

carcinoma. Nature, 497, 67–73.

Kim,S. et al. (2015) A mutation profile for top-k patient search exploiting

gene-ontology and orthogonal non-negative matrix factorization.

Bioinformatics, 31, 3653–3659.

Kim,Y. et al. (2017) Discriminative and distinct phenotyping by constrained

tensor factorization. Sci. Rep., 7, 1–12.

Koboldt,D.C. et al. (2012) Comprehensive molecular portraits of human

breast tumours. Nature, 490, 61–70.

Kretzschmar,M. (2000) Transforming growth factor-b and breast cancer:

transforming growth factor-b/smad signaling defects and cancer. Breast

Cancer Res., 2, 107.

Lee,J. et al. (2017) CTD: fast, accurate, and interpretable method for static

and dynamic tensor decompositions. arXiv, Preprint arXiv: 1710.03608.

Liberzon,A. et al. (2015) The molecular signatures database hallmark gene set

collection. Cell Syst., 1, 417–425.

Martin,L.J. et al. (2015) Serum lipids, lipoproteins, and risk of breast cancer: a

nested case–control study using multiple time points. J. Natl. Cancer Inst.,

107, djv032.

May,F.E. and Westley,B.R. (2015) Tff3 is a valuable predictive biomarker of

endocrine response in metastatic breast cancer. Endocr. Relat. Cancer, 22,

465–479.

Murray,W. et al. (1980) Faecal bile acids and clostridia in patients with breast

cancer. Br. J. Cancer, 42, 856–860.

Oh,J. et al. (2017) S-hot: scalable high-order tucker decomposition. In:

WSDM.

Oh,S. et al. (2018) Scalable tucker factorization for sparse tensors – algorithms

and discoveries. In: ICDE 2018, Paris, France.

Omberg,L. et al. (2013) Enabling transparent and collaborative computation-

al analysis of 12 tumor types within The Cancer Genome Atlas. Nat.

Genet., 45, 1121–1126.

Riaz,N. et al. (2017) Pan-cancer analysis of bi-allelic alterations in homolo-

gous recombination DNA repair genes. Nat. Commun., 8, 857.

Shigematsu,Y. et al. (2017) Overexpression of the transmembrane protein

bst-2 induces akt and erk phosphorylation in bladder cancer. Oncol. Lett.,

14, 999–1004.

Shin,K. et al. (2017) Fully scalable methods for distributed tensor factoriza-

tion. IEEE TKDE, 29, 100–113.

Smith,S. and Karypis,G. (2017) Accelerating the Tucker decomposition with

compressed sparse tensors. In: Europar.

Tecalco-Cruz,A.C. et al. (2012) Transforming growth factor-b/smad target

gene skil is negatively regulated by the transcriptional cofactor complex

snon-smad4. J. Biol. Chem., 287, 26764–26776.

Thomas,J. and Sael,L. (2015). Overview of integrative analysis methods for

heterogeneous data. In: IEEE BigComp 2015. pp. 266–270

Thomas,J. and Sael,L. (2017) Multi-Kernel LS-SVM based integration

bio-clinical data analysis and application to ovarian cancer. IJDMB, 19,

150–167.

Vaske,C.J. et al. (2010) Inference of patient-specific pathway activities

from multi-dimensional cancer genomics data using PARADIGM.

Bioinformatics, 26, i237–i245.

Wall,L. et al. (2003) Ifn-c induces apoptosis in ovarian cancer cells in vivo and

in vitro. Clin. Cancer Res., 9, 2487–2496.

Wang,X. et al. (2017) Tensorbeat: tensor decomposition for monitoring

multi-person breathing beats with commodity wifi. ACM TIST, 9.

Weinstein,J.N. et al. (2013) The cancer genome atlas pan-cancer analysis pro-

ject. Nat. Genet., 45, 1113–1120.

Wight,T.N. (2002) Versican: a versatile extracellular matrix proteoglycan in

cell biology. Curr. Opin. Cell Biol., 14, 617–623.

Zhu,R. et al. (2017) A robust manifold graph regularized nonnegative

matrix factorization algorithm for cancer gene clustering. Molecules,

22, 2131.

4158 J.Lee et al.


	bty490-TF2
	bty490-TF1
	bty490-TF3

