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Background: The phase 3 NCT00793962 trial demonstrated that postmastectomy hypofractionated ra-
diation therapy (HFRT) was noninferior to conventional fractionated radiation therapy (CFRT) in patients
with high-risk breast cancer. This study assessed the cost-effectiveness of postmastectomy HFRT vs CFRT
based on the NCT00793962 trial.
Methods: A Markov model was adopted to synthesize the medical costs and health benefits of patients
with high-risk breast cancer based on data from the NCT00793962 trial. Main outcomes were discounted
lifetime costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). We
employed a time-dependent horizon from Chinese, French and USA payer perspectives. Model robust-
ness was evaluated with one-way and probabilistic sensitivity analyses.
Results: Patients receiving CFRT versus HFRT gained an incremental 0.0163 QALYs, 0.0118 QALYs and
0.0028 QALYs; meanwhile an incremental cost of $2351.92, $4978.34 and $8812.70 from Chinese, French
and USA payer perspectives, respectively. Thus CFRT versus HFRT yielded an ICER of $144,281.47,
$420,636.10 and $3,187,955.76 per QALY from Chinese, French and USA payer perspectives, respectively.
HFRT could maintain a trend of >50% probabilities of cost-effectiveness below a willingness-to-pay
(WTP) of $178,882.00 in China, while HFRT was dominant relative to CFRT, regardless of the WTP
values in France and the USA. Sensitivity analyses indicated that the ICERs were most sensitive to the
parameters of overall survival after radiotherapy.
Conclusions: Postmastectomy HFRT could be used as a cost-effective substitute for CFRT in patients with
high-risk breast cancer and should be considered in appropriately selected patients.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Breast cancer is the most common cancer and the leading cause
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of cancer death among women worldwide [1]. Due to the high
incidence, breast cancer treatment costs account for the largest
portion of cancer-related expenditures because of the frequent
need for multimodal therapy [2]. As an integral part of standard
treatment for breast cancer, radiation therapy contributes heavily
to this cost burden [3]. In addition, with the growing burden of
cancer, there is a worldwide shortfall of radiation therapy services,
with more patients lacking access to radiation therapy [4]. In the
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current circumstances, such as during the covid-19 pandemic, it is
particularly crucial to breast cancer patients that radiation therapy
resources be allocated judiciously [5]. Therefore, technologies to
reduce the cost and expand global access to radiation therapy have
become increasingly critical over the past years [6].

The intent of hypofractionated radiation therapy (HFRT) is to
create shorter courses by reducing the number of total fractions,
raising the prospect of reducing cost and increasing use of radiation
therapy [3]. Data have even confirmed that adoption of shorter
schedules in countries with limited radiation therapy resources
could actually improve breast cancer survival and other endpoints
[7]. Nowadays, HFRT has been able to replace conventional frac-
tionated radiation therapy (CFRT) as the standard of care in early-
stage breast cancer patients after breast-conserving surgery [8,9].
There is growing interest in continuing study of hypofractionation
after postmastectomy [10]. Emerging evidence has suggested that
postmastectomy HFRT may be as effective as CFRT for patients at
high risk of locoregional recurrence [11—-16].

The use of HFRT instead of CFRT may have a profound financial
consequence while diffusing into practice. An overview has sum-
med up a series of health economic evaluations that analysed the
efficiency of new fractionation schedules and techniques for post-
operative breast radiation therapy [17]. However, owing to the lack
of high-level evidence on postmastectomy HFRT in women with
high-risk breast cancer, the clinical significance of cost-
effectiveness of HFRT in such patients remains unknown, and its
economic impact on clinical decision-making has not been specif-
ically addressed. A recently published randomized controlled trial
(RCT; NCT00793962) has demonstrated that postmastectomy HFRT
is noninferior to CFRT in a large cohort of patients with high-risk
breast cancer [12]. This finding provides a critical opportunity to
compare the relative cost of these two radiation fractionated mo-
dalities. Considering the impact of medical expenses and limited
resources in clinical practice, a less expensive treatment strategy
should be preferred on health economic grounds [18]. Hence, this
accompanying study aims to provide an economic assessment of
postmastectomy HFRT compared with CFRT based on the trial from
Chinese, French and USA payer perspectives.

2. Materials and methods

The results were reported following the consolidated health
economic evaluation reporting standards statement (CHEERS).

2.1. Markov model

We developed a Markov-based state transition model to esti-
mate the costs and effectiveness of postmastectomy HFRT and CFRT
for women with high-risk breast cancer. The model assumed that
women with high-risk breast cancer who met the NCT00793962
trial inclusion criteria moved through four possible states: disease-
free, locoregional recurrence, distant metastasis, or any death from
breast cancer or other unrelated causes (Fig. 1). Transition-state
cycles were 1 month in duration, and a lifetime horizon was used
to calculate direct medical costs and health benefits. The primary
outputs of the model were used to calculate the incremental cost
for CFRT compared with HFRT in 2020 US dollars for an additional
quality-adjusted life-year (QALY) gained (ie. incremental cost-
effectiveness ratio [ICER]). We assumed a willingness-to-pay
(WTP) threshold of $30,828 (ie. three time of the gross domestic
product per capital in 2019) per QALY gained in China and $100,000
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Fig. 1. Markov-model diagrams. Schematic model is shown representing health
states of clinical and economic significance. At the beginning of the model, all women
enter in a disease-free health state. As time progresses, women transition from one
health state to another and acquire cost and utilities associated with that health state.
Women at any stage may transition to death attributed to breast cancer or other un-
related causes. Base case model is structured over the time horizon of lifetime.

per QALY gained in France and USA [19].
2.2. Survival estimations

This modelling study was based on publicly available data and
the aggregated identified results of the NCT00793962 trial. No
institutional board approval or patient consent was required. As
described previously [12], eligibility criteria in the NCT00793962
trial included female patients who were aged 18—75 years; had a
Karnofksy performance score of 60% or higher; had invasive breast
cancer; had undergone mastectomy and axillary dissection; and
had at least four pathological positive axillary lymph nodes or
primary tumor stage T3—4 disease if patients had undergone pri-
mary surgery, or clinical stage IIl disease or pathological positive
axillary lymph nodes if patients had received neoadjuvant
chemotherapy. Patients were randomly assigned to receive either
CFRT (50 Gy/25 fractions/5 weeks) or HFRT (43.5 Gy/15 fractions/3
weeks).

Clinical efficacy data including local recurrence, distant metas-
tases, and mortality after either HFRT or CFRT were derived from
the NCT00793962 trial. According to the results of goodness of fit
measured by the weighted residual sum of squares, the Weibull
survival function and log-normal survival function were employed
for fitting the Kaplan—Meier probabilities of the HFRT or CFRT
strategies respectively (Table 1). The estimated parameters were
used to measure the time-dependency transition probabilities from
the disease-free, local recurrence, and distant metastases states.
Age-specific all-cause mortality was derived from the Global
Burden of Disease Study 2017 (GBD 2017) results where the mor-
tality risk exceeded that in the NCT00793962 trial [20]. The hazard
ratio of distant metastases between patients with local-recurrence
and disease-free patients was 3.55 (95% CI: 2.63—4.78), while the
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Table 1
Parameters in the Markov model.
Parameters Values (95% CI) Distribution Source
Overall survival of HF meanlog: 5.2312 (5.1981-5.2623) Lognormal 12
sdlog: 1.0651 (1.0413—1.0868)
Overall survival of CF meanlog: 5.2260 (5.1826—5.2685) Lognormal 12
sdlog: 0.9776 (0.9482—1.0125)
Local recurrence of HF meanlog: 6.8443 (6.6488—6.9870) Lognormal 12
sdlog: 2.0615 (1.9684—2.1250)
Local recurrence of CF meanlog: 6.6910 (6.473—6.7976) Lognormal 12
sdlog: 1.8307 (1.7062—1.8739)
Disease-free survival of HF meanlog: 4.9302 (4.8304—5.0035) Lognormal 12
sdlog: 1.4139 (1.3247—1.4640)
Disease-free survival of CF meanlog: 4.7815 (4.7460—4.8235) Lognormal 12
sdlog: 1.1896 (1.1549—1.2387)
Distant metastases of HF meanlog: 4.9755 (4.8623—5.089) Lognormal 12
sdlog: 1.3923 (1.2937—1.4824)
Distant metastases of CF meanlog: 4.8869 (4.8504—4.9258) Lognormal 12
sdlog: 1.2226 (1.1985—1.2548)
China®
Cost of CF 10875 (10704—11047) Gamma Estimated
Cost of HF 8796 (8630—8964) Gamma Estimated
Cost of local recurrence treatment 8334 (7352—-9378) Gamma Estimated
Cost of distant metastases treatment 18975 (16956—21105) Gamma Estimated
France
Cost of CF 12519 (10015—15023) Gamma 26
Cost of HF 9063 (7251-10876) Gamma 26
Cost of local recurrence treatment 33575 (15714—84330) Gamma 27
Cost of distant metastases treatment 97970 (49111—-346194) Gamma 27
United States
Cost of CF 18635 (14908—22362) Gamma 28
Cost of HF 12402 (9922—-14882) Gamma 28
Cost of local recurrence treatment 33584 (27692—39475) Gamma 29
Cost of distant metastases treatment 157405 (152866—162380) Gamma 30
Utilities (quality of life)
Utilities during radiation therapy 0.680 (0.638—0.720) Beta 31
Utilities of disease-free 0.935 (0.912—0.955) Beta 31
Utilities of local recurrence (first year) 0.779 (0.742—0.814) Beta 31
Utilities of local recurrence (subsequent year) 0.850 (0.817—0.880) Beta 31
Utilities of distant metastases 0.685 (0.644—0.725) Beta 31

Discount rate of cost
Discount rate of QALY

0.03 (0-0.06)
0.03 (0—0.06)

Abbreviations: CI = confidence interval; HF = hypofractionated radiation therapy; CF = conventional fractionated radiation therapy; QALY = quality-adjusted life-year.
2 Costs of breast cancer treatment in China were estimated from the same center of the clinical trial.

hazard ratios of overall survival between the distant-metastases
and disease-free states, and between the local-recurrence and
disease-free states were 3.90 (2.78—5.45) and 1.38 (1.03—2.12),
respectively [21,22].

2.3. Cost and utility estimations

A cost-effectiveness analysis was conducted from Chinese,
French and USA payer perspectives, using a standard rate of 3%
annually to discount future costs and benefits [23]. Only direct
medical costs were considered and reported in early-2020 US
dollars (US$1 = 7.0 Chinese Yuan). The costs associated with
healthcare services were converted to 2020 values according to the
consumer price index [24]. Considering that intensity-modulated
radiation therapy offers high conformal plans, limited hotspots,
and protection of the organ at risk in patients receiving regional
nodal irradiation for breast cancer [25], the supraclavicular nodal
region was treated with intensity-modulated radiation therapy
instead of a conventional treatment technique in the RCT on which
the present study was based. Direct medical care costs were esti-
mated through data from the same institution with the
NCT00793962 trial and the literatures (Table 1) [26—30].

We derived utility values (i.e., values from O to 1 indicating the
quality of a person’s state of health, with 0 indicating death and 1
indicating perfect health) from the results on the EuroQol Group 5-
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Dimension (EQ-5D) self-report questionnaire from the published
literature (Table 1) [31]. To reflect the effect of adverse events on
patient quality of life for the period during radiation therapy, a
weighted utility value of 0.68 was applied to the period during
radiation therapy [31]. We assumed the mean duration of HFRT or
CFRT were 1 month and 1.5 months, respectively. Delayed adverse
events associated with radiation therapy were assumed to extend
an additional 1 month after the last exposure, i.e., for 2 months and
2.5 months for HFRT or CFRT, respectively.

2.4. Sensitivity analysis

We performed a series of sensitivity analyses to evaluate the
robustness of our conclusions. We varied the value of model pa-
rameters one at a time during one-way sensitivity analysis to
examine the individual effects on the ICER. During probabilistic
sensitivity analysis, we performed 10,000 Monte Carlo simulations,
each time randomly sampling from the distributions of model in-
puts. Bivariate normal distributions were assigned to all Weibull or
log-normal parameters; health utilities were represented by beta
distributions, whereas costs were represented by gamma
distributions.
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Fig. 2. Patient counts by model state. The model begins with 1000 patients in the disease-free state. Their progression through the other model states by model iteration is
indicated for the conventional fractionated radiation therapy and hypofractionated radiation therapy groups.

3. Results
3.1. Status transition and survival

The Markov model began with 1000 patients in the disease-free
state. Their progression through the other model states by model
iteration was indicated for the HFRT and CFRT groups in Fig. 2.
Assigned Markov transition probabilities yielded survival outcomes
closely approximating those reported for the NCT00793962 trial.
Detailed information about survival probabilities and hazard ratios
of every state dependent on survival time was listed in
Supplementary Figure S1. There were subtle differences between
patients receiving CFRT and HFRT in each health state. Transition
probabilities for patients who received CFRT and HFRT were shown
in detail in Supplementary Figure S2.

3.2. Lifetime ICER of HFRT vs CFRT

The lifetime costs and QALYs for each month were presented in
Supplementary Figure S3a and the cost for each month within one
year were presented in Supplementary Figure S3b. The costs were
equivalent in the first month for patients receiving CFRT or HFRT. In
the second month, CFRT had a much higher expenditure because of

a longer radiation therapy course. From the third month onwards,
the differences of costs between the two groups were driven by
disparities in treatments of locoregional recurrence and distant
metastasis. Lower QALYs in CFRT were observed at the third month,
because of the longer duration of side effects for patients in the
CFRT cohort. Afterwards, the incremental QALYs were dependent
on the different probabilities from locoregional recurrence and
distant metastasis.

The results of base case analysis were presented in Table 2. From
a Chinese payer perspective, it cost $21,018.23 and $18,666.32 per
patient for the CFRT and HFRT groups, with 13.1254 and 13.1091
QALY gained, respectively. Thus, patients receiving CFRT encoun-
tered an incremental cost of $2351.92 and an incremental 0.0163
QALYs. This yielded an ICER of $144,281.47 per QALY. Using a French
payer perspective, the cost of CFRT compared with HFRT
($64,010.31 vs $59,031.97, respectively) and the QALY (13.4244 vs
13.4125, respectively) resulted in an incremental cost of $4978.34
and an incremental 0.0118 QALYs, which led to an ICER of
$420,636.10 per QALY. From a USA payer perspective, the cost of
CFRT compared with HFRT ($99,111.58 vs $90,298.88, respectively)
and the QALY (13.8036 vs 13.8009, respectively) resulted in an in-
cremental cost of $8812.70 and an incremental 0.0028 QALYs,
which led to an ICER of $3,187,955.76 per QALY. This finding

Table 2

Lifetime costs, effectiveness, and incremental cost-effectiveness for conventional fractionated radiation therapy vs. hypofractionated radiation therapy.
Strategy Costs (US$) Effectiveness (QALY) ICER (US$/QALY)
China
Conventional fractionated radiation therapy 21018.23 13.1254 144281.47
Hypofractionated radiation therapy 18666.32 13.1091
France
Conventional fractionated radiation therapy 64010.31 13.4244 420636.10
Hypofractionated radiation therapy 59031.97 13.4125
United States
Conventional fractionated radiation therapy 99111.58 13.8036 3187955.76
Hypofractionated radiation therapy 90298.88 13.8009

Abbreviations: QALY = quality-adjusted life-year; ICER = incremental cost-effectiveness ratio.
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indicated that the small predicted QALY gains from CFRT probably
contributed to the large variability in the cost-effectiveness pre-
dictions, given that the QALY gains represent the denominator of
the ICERs.

3.3. ICER as a function of time horizon

The ICER was exquisitely sensitive to the time horizon of anal-
ysis (Fig. 3). Through each time horizon across the periods in which
the radiation therapy might have an effect on either clinical or
economic outcomes (i.e., range from 5 to 51 years after the treat-
ment), none of the ICERs in China could be considered very cost-
effective. Nevertheless, within a range of time horizons from 8 to
18 years for China and 7—15 years for the USA, the ICER of CFRT
compared with HFRT could be considered cost-effective. In France,
the ICER of CFRT compared with HFRT could be considered cost-
effective until 25 years after the treatment. This finding indicated
that the ICER of CFRT vs HFRT was time horizon-dependent, and
that HFRT could yield a greater health gain when the model was
structured over longer time horizons.
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Fig. 3. ICER as a function of time horizon. Time horizon ranged from 5 years to lifetime
(i.e., 51 years). The vertical lines indicate the ICER thresholds of $10,276 (per capita
GDP of China in 2019) and $30,838 (three times per capita GDP) in China (A), and the
ICER threshold of $50,000 and $100,000 in France and the USA (B and C). ICER, in-
cremental cost-effectiveness ratio; GDP, gross domestic product; QALY, quality-
adjusted life-year.
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3.4. Willingness-to-pay

The cost-effectiveness acceptability curves suggested that HFRT
maintained a >50% probability of cost-effectiveness before the WTP
threshold of $178,882/QALY in China (Fig. 4). However, in France
and the USA, HFRT always had a >50% probability of being cost-
effective regardless of the WTP thresholds, i.e., CFRT was domi-
nated by HFRT. This finding indicated that the cost-effectiveness of
HFRT vs CFRT in a given WTP threshold varied under different as-
sumptions about payment systems and background all-cause
mortality, though HFRT would be cost-effective in China, France
and the USA.

3.5. Sensitivity analysis

Probabilistic sensitivity analysis showed that in China CFRT
gained a slightly effective benefit compared with HFRT, while the
incremental cost was almost 100% positive, while the gap in health
effect was even smaller in France and the US (Supplementary
Figure S4). The influence of upper and lower limits of different
parameters on the incremental cost and effect was shown in
Supplementary Figure S5. One-way sensitivity analyses suggested
that the results were most sensitive to the parameters of overall
survival in each group. Additional parameters with significant
contributions to model results were the distant metastases of HFRT
and CFRT, discount rate of QALY, local recurrence of HFRT and CFRT.
Variations in other values had small to moderate effects on cost-
effectiveness (Supplementary Figure S6).

4. Discussion

This study is the first to demonstrate that postmastectomy HFRT
tends to be cost-effective than CFRT for women with high-risk
breast cancer in China, France and the USA. In China, HFRT could
maintain >50% probabilities of cost-effectiveness due to its trends
toward gaining net health benefits before the WTP of $178,882. In
France and the USA, HFRT was dominant relative to CFRT regardless
of the WTP threshold. The ICERs of CFRT vs HFRT varied in a time-
dependent manner and increased with time horizon. One-way
sensitivity analysis demonstrated that the parameters of overall
survival were the most influential model inputs, particularly in the
setting of CFRT. These findings provide additional evidence sup-
porting the clinical utilization of postmastectomy HFRT in patients
with high-risk breast cancer.

Several RCTs have demonstrated equivalent treatment out-
comes and toxicities between HFRT and CFRT after breast-
conserving surgery in favorable-prognosis patients with early-
stage breast cancer [32—36]. The first large RCT offered high-level
evidence supporting the noninferior efficacy of postmastectomy
HFRT vs CFRT in women with high-risk breast cancer [12]. Gener-
ally, if there is no difference in efficacy and toxicities between
different fractionated modalities, the reduced fractionation by
HFRT in a large cohort of patients can result in substantial savings
and increased radiation therapy access [37]. Previous studies have
reported that the clinical use of HFRT instead of CFRT after breast-
conserving surgery can significantly reduce direct medical costs
based on the Medicare paying system in the USA [28,38]. For
instance, HFRT instead of CFRT after breast-conserving surgery
saved $2467 and $4462 per patient in MarketScan and SEER-
Medicare respectively for patients with early-stage breast cancer
[38]. Furthermore, considering both efficiency and medical cost,
Deshmukh and colleagues had demonstrated that the cost-
effectiveness of HFRT after breast-conserving surgery was domi-
nant relative to CFRT in early-stage breast cancer patients from a
lifetime horizon [39]; the ICER was most sensitive to the probability
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Fig. 4. Cost-effectiveness acceptability curves. Results of the probabilistic sensitivity analysis based on 10,000 iterations of the Markov model in China, France and the USA. QALY,
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of metastasis and treatment cost.

Consistent with previous findings, the present study has
demonstrated that the use of postmastectomy HFRT could reduce
health costs by $2351.92, $4978.34 and $8812.70 per patient from
Chinese, French and USA perspectives, respectively. Similarly, an
Australian study has estimated that the simple replacement of
postmastectomy CFRT by HFRT could reduce health costs by over
$2000 per patient from an Australian perspective [40]. For the first
time, we also found that the cost-effectiveness of postmastectomy
HFRT was dominant relative to CFRT in France and the USA, while
HFRT could maintain >50% probabilities of cost-effectiveness
before a high WTP threshold in China. The ICER in the present
study was most sensitive to the hazard ratios of overall survival in
each group, probably due to the low frequency of distant metas-
tasis. Furthermore, the ICERs of postmastectomy HFRT vs CFRT
varied with time horizon and were pronounced for patients who
survived more than 15 years in the USA, 18 years in China, or 25
years in France. In contrast to the previous study on the cost-
effectiveness analysis of HFRT after breast-conserving surgery
[39], which considered only a lifetime horizon, our study offered
more informed insights into changes of ICER with different time
horizons.

The strengths of this study are the inclusion of solid individual
data from a large-scale RCT, use of current-era economic modelling
methods, and evaluation of cost-effectiveness from different
countries. First, to our knowledge, this is the first analysis to
compare the economic outcomes of postmastectomy HFRT with
those of CFRT for patients with high-risk breast cancer through an
economic modelling approach. Our generation and validation of
economic models for describing the cost-effectiveness association
between HFRT and CFRT is unique for such patients. Second, the
incorporation of cost and efficiency parameters from both trial- and
model-based methodologies in this study has allowed more precise
analysis of cost-effectiveness in a time horizon—dependent
manner. It has estimated a prominent health gain from HFRT in
the context of long-term time horizon. Third, the cost-effectiveness
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analyses from three countries provide more precise insights into
variations between countries and hence improve the generaliz-
ability of our study. Given the high incidence of breast cancer in the
world, the wide use of postmastectomy HFRT based on high-level
evidence of cost-effectiveness is clinically very relevant and sug-
gests value for current practice, particularly in countries where
medical resources might be limited. These findings would be
helpful for decision-making by physicians and patients.

There are several limitations. Firstly, this model represented
patient outcomes from only one randomized trial, and because
sensitivity analyses identified transition probability assumptions as
critically important to the ICER, small differences in rates of pro-
gression or survival in patients receiving two therapies will greatly
influence the cost-effectiveness. Future studies should investigate
these outcomes. Secondly, due to the lack of data, health benefits
beyond the observation time of the NCT00793962 trial were esti-
mated through the fitting of parametric survival functions to the
reported data, which might have resulted in uncertainty in the
model outputs. The current analysis needs to be updated as evi-
dence becomes available. Finally, the cost data adopted in the
present study were derived from one hospital and published
literature, which may limit the generalizability of our findings to
patients with different payment settings.

5. Conclusion

This study provides valuable new data on the cost-effectiveness
of postmastectomy HFRT among women with high-risk breast
cancer undergoing radiation therapy. HFRT could be used as a cost-
effective substitute for CFRT without compromising clinical out-
comes. This finding supports the clinical use of HFRT and enhances
the range of its applications.
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