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Oral cancer is a common malignancy worldwide, with high disease-related death rates.

Oral squamous cell carcinoma (OSCC) accounts for more than 90% of oral tumors,

with surgical management remaining the treatment of choice. However, advanced and

metastatic OSCC is still incurable. Thus, emphasis has been given lately in understanding

the complex role of the oral tumor microenvironment (TME) in OSCC progression, in

order to identify novel prognostic biomarkers and therapeutic targets. Tumor associated

macrophages (TAMs) constitute a major population of the OSCC TME, with bipolar

role in disease progression depending on their activation status (M1 vs. M2). Here,

we provide an up to date review of the current literature on the role of macrophages

during oral oncogenesis, as well as their prognostic significance in OSCC survival and

response to standard treatment regimens. Finally, we discuss novel concepts regarding

the potential use of macrophages as targets for OSCC immunotherapeutics and suggest

future directions in the field.

Keywords: oral cancer, oral squamous cell carcinoma, tumor-associatedmacrophages (TAMs), M1-M2 phenotype,
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INTRODUCTION

The global incidence of oral cancer was 377,713 new cases during 2020 (1), with a tendency for
increasing occurrence even in countries where it is less common, such as Finland and Denmark
(2, 3). More than 90% of oral malignancies are oral squamous cell carcinomas (OSCCs), mostly that
of the mobile part of the tongue (4, 5). Surgical management is the treatment of choice for OSCC,
occasionally supplemented by radiotherapy or chemotherapy. Despite the advances in treatment
modalities for solid tumors, the 5-year survival rate is 50% (4, 5), establishing OSCC as the 7th and
10th cause of death for males and females, respectively, in Europe (6).

Prognosis of OSCC depends on various factors associated with patients’ profile, i.e.,
ethnicity, gender, age, socioeconomic status, and lifestyle, mainly including smoking and alcohol
consumption, as well as tumor’s characteristics, i.e., site, size, regional or distant metastases, stage,
depth of invasion and degree of differentiation (5). Most research efforts focus on the identification
of novel biomarkers in blood, saliva, or tumor tissue samples that could facilitate early diagnosis and
group patients into subpopulations with more predictable responses to certain treatment schemes
(5, 7). Such biomarkers might be directly related to tumor cells per se, or concern cellular and/or
other components of the surrounding tumor microenvironment (TME) (8). TME provides the
essential requirements for cancer survival, growth and invasion (8) and macrophages are a key
population of it (9).
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We review the literature on the role of macrophages in OSCC,
focusing on their pro-tumor and anti-tumor properties, as well as
their prognostic significance for patients’ survival and response
to standard treatment regimens. We, also, discuss novel concepts
regarding the potential use of macrophages as candidates for
OSCC immunotherapy and suggest future directions in the field.

THE TUMOR MICROENVIRONMENT OF
ORAL CANCER

The progression of OSCC depends on the interplay among the
cancer cells, the surrounding host-derived stromal cells, e.g.,
fibroblasts, endothelial cells and pericytes, and the extracellular
matrix non-cellular components composing the TME (10).
Immune cells may have opposing functions in oral oncogenesis,
i.e., a class of macrophages, myeloid-derived suppressor cells,
regulatory T cells and CD4+ T helper type 2 (Th2) cells
may share pro-tumor functions, whereas another class of
macrophages, dendritic cells, natural killer cells, CD8+ T
cells and CD4+ Th1 cells may have anti-tumor actions (11).
Historically solid tumors are immunologically classified into
“cold” and “hot,” depending on the non-inflamed or inflamed
TME milieu, respectively (12, 13). Inflamed tumors respond
favorably to immune checkpoint blockade (ICB) therapy and are
characterized by an abundance of tumor infiltrated lymphocytes
(TILs) enriched for interferon-γ (IFN-γ)-expressing CD8+ T
cells, expression of checkpoint markers including programmed
death-1 ligand 1 (PD-L1) and high mutational burden. In
contrast, non-inflamed tumors are poorly infiltrated by immune
cells and rarely express PD-L1, while characterized by an
immunosuppressive milieu, though they might also have
high genomic instability. On the very end of the tumor
immunity continuum are immunologically ignorant tumors,
characterized by genomic stability, highly proliferative tumor
cells and low infiltration of T cells, as well as low expression
of antigen-presentation machinery markers including MHCI
(14). Immunogenic tumors, characterized by the successful
recognition of cancer antigens, vary (15, 16), but the presence
of macrophages in the TME is independent of the tumor’s
immunogenicity status.

The interplay between the innate and the acquired
immune system is responsible for the recognition of cancer
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specific antigens as foreign antigens, a process termed
immunosurveillance that eliminates cancer cells (17). Besides
its natural protective role against tumors, the identification
of a tumor promoting role of the immune system, mainly via
clonal selection (those with low immunogenicity), has led to the
refinement of the initial immunosurveillance hypothesis (18, 19)
with that of cancer immunoediting (20, 21). This process consists
of three phases, known as the 3Es of cancer immunoediting;
elimination, equilibrium and escape. The elimination phase
represents the original immunosurveillance concept and raises
as an integrated and combined response of both the innate and
adaptive immune system against developing tumors. Complete
eradication of tumor cells at this stage means that there is not
progression to the following two phases and thus homeostasis
has achieved. If that’s not the case then in the second phase,
which is most probably the longest of the three (may last for years
in humans) and the direct equivalent of a Darwinian selection
process, the tumor cell variants that had survived the first phase
enter a dynamic equilibrium with the immune system, which is
able to contain but not completely vanish the tumor variants.
The result of this sculpturing is the generation of heterogeneous
and genetically unstable tumor clones with increased resistance
to immune recognition. In the last phase, the selected tumor cell
variants from the equilibrium phase can grow and expand to
clinically detectable levels. Even though various genetic events
and epigenetic modifications, as well as different direct and
indirect mechanisms may be employed by cancer cells, the end
result is the tumor escape from host’s immune defenses (22, 23).
In the first line of immune response are professional antigen
presenting cells, e.g., dendritic cells, B cells and macrophages.
Macrophages belong to the mononuclear phagocytic system
and are the final differentiation stage of circulating monocytes
that have been attracted by chemotactic factors to the tissue
site, as a response to various microenvironmental stimuli
(24, 25). Tissue resident macrophages originate from yolk sac
during embryonic development, whereas monocyte-derived
macrophages from bone marrow progenitor cells (26). Tumor-
associated macrophages (TAMs) constitute the major leucocytic
component of the OSCC TME (27).

TAMs may have promoting or inhibitory effects on OSCC
cancer cells proliferation, invasion and migration (10). They
are directed to the tumor site by chemotactic cues produced
by cancer cells or stromal cells, including vascular endothelial
growth factor (VEGF), colony stimulating factor-1 (CSF-
1), placental growth factor, and chemokines, such as the
chemokine (C-C motif) ligand (CCL) 2/monocyte chemotactic
protein-1, CCL3/macrophage inflammatory protein-1alpha,
CCL4/macrophage inflammatory protein-1beta, and the
CCL5/regulated on activation, normal T-cell expressed and
secreted (RANTES) (28, 29). TAMs are usually more prevalent
in tumor stroma than in OSCC cell nests (30).

Initially, TAMs recruited in the hypoxic TME environment
may show an anti-tumor activity, e.g., via the tumor-antigen
presentation to T cells and the induction of the T-cell mediated
cancer cytotoxicity (31). TAMs have been shown to be effective
in inducing the cytotoxic activation of naive (CD45RO) or
memory T cell (CD45RA) against Streptococcus salivarius,
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while their depletion caused decreased levels of granzyme B
expressed by CD8+ T cells (32). On the other hand, TAMs
may be a source of proangiogenic molecules and growth factors
promoting cell proliferation, such as VEGF, epidermal growth
factor (EGF), fibroblast growth factor, platelet-derived growth
factor, transforming growth factor beta (TGF-β) and CCL2,
as well as matrix metalloproteinases (MMPs), responsible for
the degradation of the basement membrane and extracellular
matrix, thus facilitating the progression of OSCC (28, 29, 33).
The EGF-mediated pro-tumor role of TAMs in OSCC has
been highlighted in a study showing increased cell proliferation
and invasion of OSCC cells co-cultured with TAMs-derived
conditioned medium, while the proliferation and invasion
activity was hampered after cancer cell treatments with an
anti-EGF receptor antibody (34). In another study, TAMs-
induced progression of OSCC was associated with promotion
of epithelial-to-mesenchymal transition of OSCC cells, as a
fibroblast-like phenotype was observed in an OSCC and two
head and neck cell lines following co-culture with TAMs
conditioned medium (35).

A critical factor defining the pro-tumor or anti-tumor
properties of TAMs is their activation state.

ACTIVATION STATES OF MACROPHAGES

Besides their antigen-presentation capabilities, macrophages
possess various other properties necessary to maintain
homeostasis, e.g., phagocytosis of pathogens and cell debris,
destruction of antibody-coated cells or microbes, secretion
of growth factors, cytokines and chemokines, expression
of membranous co-stimulatory or co-inhibitory molecules,
and wound healing via matrix destruction, regeneration and
angiogenesis (36, 37). The wide and contradictory functions
of macrophages are represented by the two-edged model
of M1 or M2 macrophages, associated with Th1 or Th2
responses, respectively (25, 38). Metabolic events seem to
drive the polarization fate of macrophages (39); the differential
metabolism of L-arginine, either via inducible nitric oxide
synthase (iNOS) to NO and citruline, or via arginase to ornithine
and urea, defines the orientation toward M1 or M2 activation,
respectively (40).

The M1 macrophage phenotype arises as the consequence
of classical activation stimulated by bacterial components, e.g.,
lipopolysaccharides, or by the Th1-driven cytokine IFN-γ (10,
41). M1 macrophages possess enhanced antigen presentation
properties and lysosome activity, favoring Th1 responses (42).
Although there is evidence to the contrary (43), induction
of the M1 macrophage activation phenotype is considered
beneficial against cancer. M1 exert an anti-tumor effect via direct
cancer cytotoxicity through production of reactive oxygen and
nitrogen species and/or indirectly via the production of pro-
inflammatory cytokines, e.g. interleukin (IL)-12, IL-23 and tumor
necrosis factor-α (TNFα), and chemokines [e.g. CCL5, C-X-C
Motif Chemokine Ligand (CXCL)5, CXCL9, and CXCL10] and
activation of other effector cells (10). Of note, the macrophage-
mediated NO-cytotoxity of cancer cells is enhanced by close
proximity and cell contact of macrophages to cancer cells

via induction of apoptotic mechanisms to the latter, but is
independent of the cancer-antigen recognition (44), suggesting
the immunotherapeutic potentials of macrophages in “cold”
tumors. However, the role of classical activated macrophages
in tumor cell-specific responses via cytotoxic T cells is equally
important, as the levels of the CD8+ T cell-expressing granzyme
B were significantly higher in the presence of M1- than M2-
polarized TAMs in patients with OSCC (32).

The alternative polarization, induced by Th2-derived
cytokines (e.g., IL-4, IL-10, IL-13) that hamper the production
of pro-inflammatory cytokines such as TNF-α and IFN-γ, gives
rise to the pro-tumor M2 macrophage phenotype (10, 25, 45, 46).
M2 macrophages produce anti-inflammatory cytokines, such
as IL-1 receptor antagonist, IL-10 and TGF-β, promote the
immunosuppressive functions of Foxp3+ regulatory T cells,
and enhance the expression of proangiogenic factors (e.g.,
VEGF) and proteolytic enzymes (e.g., MMPs). Those effects
result in the inhibition of anti-tumor immunity mediated
by Th1 cells and cytotoxic T cells and, finally, to the escape
from immune surveillance (10, 41, 47). The immune escape
mechanisms of OSCC might be promoted by the infiltrating
TAMs, as a positive correlation has been observed between the
levels of CD68+ and CD163+ TAMs and the OSCC cells that
expressed the checkpoint PD-L1 protein (48). The simultaneous
secretion of IL-10 and expression of the PD-L1 by TAMs has
been suggested as a potential mechanism for CD3+ T cell
negative regulation by TAMs, identified by the expression of
the M2-related markers CD163 and CD204 in OSCC patients
(49). M2-polarized TAMs in close proximity of OSCC cells can
induce the migration and invasion of the latter, via activation of
NF-kB and favor the production of growth factors (e.g., EGF and
TGF-β) that promote tumor progression (50). In addition, the
expression of the proteins Sonic Hedgehog, Indian Hedgehog
and glioma-associated oncogene homolog 1 (GLI-1) in tumor
cells and endothelial cells in the OSCC TME, along with the
co-expression of Indian Hedgehog ligand in CD163+ TAMS,
may be indicative of the role of Hedgehog pathway in promoting
neovascularization in OSCC (51).

TAMs are characterized by striking plasticity and except for
the M1 and M2 end-stage polarization they may acquire various
intermediate activation states, by simultaneously expressing
markers related to both M1 (e.g., elevated levels of TNF-
α, MMP9, CCL2, CCL5, CXCL9, CXCL10, and CXCL16),
and M2 (e.g., increased levels of IL-10, arginase-1, and
peroxisome proliferator-activated receptor γ) phenotype (10). As
within most solid tumors, the macrophage balance in OSCC
tends toward the M2 phenotype (41, 47, 52–54). Co-culture
of a monocyte/macrophage like cell line (RAW264.7) with
conditionedmediumderived fromOSCC cell lines stimulated the
expression of pro-tumor cytokines and chemokines associated
with the M2 phenotype, e.g., IL-10, CCL22, and VEGF-A
(54). The receptor for activated C kinase 1 (RACK1) has
also been shown to induce OSCC progression, by favoring
the polarization toward the M2 phenotype and reducing the
levels of M1-phenotype related molecules, such as IL-6, CCL5,
and CSF, in an NF-kB axis-dependent manner (55). TAMs-
induced VEGF expression in OSCC has also been associated
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with activation of the TGF-β1/TβRII/Smad3 signaling pathway
(56). Okubo et al. (57) developed a xenograft mouse model
using a human tongue squamous cell carcinoma (SCC) cell line
and reported that the irradiation-induced tumor infiltration by
CD11b+ bone marrow-derived cells that acquired an M2-like
phenotype, promoted tumor re-vascularization, progression and
recurrence after radiotherapy. The potential mechanisms of M2-
polarization of TAMs in OSCC also include the OSCC-derived
exosomes enclosing micro-RNAs (miR-29a-3p) regulating the
activity of SOCS1/STAT6 signals (58), as well as activation of the
Axl/PI3K/Akt/NF-kB signaling pathway (52).

The predominance of M1 or M2 phenotype in different
subpopulations of OSCC patients has been significantly
correlated with the disease outcome (31).

PROGNOSTIC SIGNIFICANCE OF
MACROPHAGES IN DISEASE OUTCOME

The prognostic significance of TAMs in OSCC has
predominantly been evaluated by immunohistochemistry,
where the presence of TAMs was correlated with survival
parameters, either directly with overall survival and
progression/disease/recurrence free survival, or indirectly
with clinicopathological factors associated with disease
outcome (31, 59). Several TAMs markers have been used,
such as the pan-macrophage marker CD68 (both M1 and M2)
(30, 35, 47, 54, 56, 60–66), CD204, expressed by dendritic
cells and macrophages (54), and markers highly expressed
-but not restricted to- M1 (CD11c) (55) or M2 [CD163
(7, 35, 41, 42, 54, 60, 61, 67), CD206 (34, 55)] phenotype.

A growing body of evidence supports the adverse prognostic
role of CD68+ TAMs for OSCC patients overall survival (30, 35,
56, 62, 64) or disease-free survival (30, 64, 66). Moreover, elevated
numbers of CD68+ TAMs have significantly been associated
with high grade (54, 56), increased size (63, 64) and advanced
stage (30, 56, 60, 63, 64), lymph node (30, 35, 54, 61, 63, 64) or
distant metastasis (47), or high recurrence rate of OSCC (64). In
contrast, Wei et al. (65) found that lower mean CD68+ TAMs
density was significantly associated with lower differentiation
grade and higher clinical stages of OSCC, as well as shorter
5-year survival rate. The latter contrasting findings might be
attributed to CD68 staining of both M1 and M2 TAMs, and
emphasized the need to identify more specific markers for M1
and M2 subpopulations (65).

Increased levels of CD163+ TAMs, currently considered
as an M2-preferable marker, have been correlated with worst
overall survival (7, 35, 42, 60, 61, 67) or disease-free survival
(7, 67), as well as more frequent recurrence (35) of OSCC. A
higher number of CD163+ TAMs has, also, been associated
with OSCC poor differentiation (41) and positive lymph nodes
(7, 42, 54, 61). A mechanistic explanation for the latter finding
was suggested by Yagamata et al. (54), who reported a significant
correlation between the number of CD163+ M2 TAMs and the
lymphatic vessel density in the TME of OSCC tissue samples,
while immunofluorescence analysis revealed the co-expression
of VEGF-C in CD163+ TAMs. These results indicated that M2

polarized TAMs may induce lymphangiogenesis through VEGF-
C, eventually promoting lymph node metastasis in OSCC (54).
Low expression of CD163+ TAMs has also been reported as
a negative prognostic factor in OSCC cases presenting high
IL-10 and low IFN-γ expression (42). High levels of CD206+
(M2-associated) TAMs have also been correlated with advanced
stage, increased tumor size, lymph node metastasis, as well as
short disease-free survival (34). Finally, the high M2/M1 ratio,
represented by CD206+/CD11c TAMs, showed a significant
association with poor disease outcome (55).

The prognostic effects of TAMs in OSCC have, also,
been assessed indirectly, through the expression levels of
molecules usually secreted by or associated with macrophages.
A higher number of CCL2+ cells in the TME, which were
found co-expressed in CD163+ TAMs, has been associated
with lower 5-year overall survival rates (68). The levels of
macrophage migration inhibitor factor (MIF) in OSCC tissues
have been adversely correlated with overall and recurrence-free
survival, while increased MIF serum concentration is considered
indicative for early recurrence (69, 70).

Other immunohistochemical studies have reported a
significantly higher expression of CD68+ TAMs (62, 64)
or CD163+ M2-polarized macrophages (42, 71) in OSCC
compared to oral potentially malignant lesions, e.g., epithelial
dysplasia/hyperplasia. TAM markers’ expression showed a
progressive increase from hyperplasia to low and high degree of
dysplasia (64, 72), indicating a possible role of macrophages in
promoting the evolution of oral premalignant lesions to invasive
OSCC. Finally, significantly increased levels of CD68+ TAMs
have been reported in OSCC compared to verrucous carcinoma
(73), which is considered less aggressive (74).

In conclusion, an increased immunohistochemical expression
of TAMs, predominantly those of M2 polarization, has been
associated with adverse OSCC prognosis.

TARGETING MACROPHAGES IN ORAL
CANCER IMMUNOTHERAPEUTICS;
LESSONS LEARNED FROM OTHER SOLID
TUMOR MODELS

Given the bipolar role of macrophages in tumor development
and their tendency to acquire an immunosuppressive M2-like
phenotype during disease progression, current macrophage-
based immunotherapeutic approaches aim to alter the M1 to
M2 balance in the TME, in favor of the M1. For this purpose
several strategies have been developed, including; hampering
the monocyte infiltration and macrophage differentiation in
the tumor sites (e.g., CCL2 or CSF-1 blocking antibodies),
deletion of M2 macrophages in the TME (e.g., antibodies against
CD206, scavenger receptors or other M2-associated molecules),
or repolarization toward the M1 phenotype and enhancement
of their anti-tumor properties (e.g., delivery of activating stimuli
and/or antibodies inducing macrophage’ phagocytosis, or ex vivo
macrophage manipulation) (75–77) (Figure 1).

Even though numerous studies point to the strong potentials
of macrophage-based immunotherapeutics in various solid
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FIGURE 1 | Potential strategies targeting macrophages in oral cancer immunotherapeutics. TAMs in squamous carcinoma microenvironment are abundant and

represent an immunosuppressive M2-like phenotype, in favor of tumor progression. Current TAMs-targeting approaches include; (1) blocking antibodies hampering

macrophages’ infiltration (CCL2) or coating TAMs for destruction using M2-associated markers (CD206, MACRO), (2) delivery of activating stimuli for M2 to M1

repolarization (two signals- IFNs plus TLR ligands), and (3) ex vivo generation and infusion of CAR macrophages specifically activated upon cancer antigen recognition.

Ultimately, the goal of macrophage-based immunotherapeutics is to reverse the M2 to M1 balance, leading to direct NO-mediated tumor cytotoxicity, and altering of

the TME, via secretion of pro-inflammatory molecules by tumoricidal macrophages (M1), and potential activation of other effector cells (e.g., T cells). MARCO,

macrophage receptor with collagenous structure.

tumors, via regulation of the tumor immunity in different levels
[reviewed in DeNardo and Ruffell (39)], the direct evidence in
OSCC models is yet very limited. In a study using THP-1 human
cell line as monocyte-derived macrophage model, pre-activated
toward the M1 (IFN-γ+ lipopolysaccharide) or the M2 (IL-
4+IL-13) phenotype, it was found thatM2 induced themigration
and invasion of human tongue SCC cell line HSC-3, when co-
cultured with the latter (50). In contrast, using various in vitro
migration assays, co-cultures with M1 macrophages reduced the
invasion of HSC-3 cells, alluding to the anti-tumor properties of
this phenotype (50).

Our previous work using primary mouse bone marrow
derived macrophages showed that macrophages pre-activated
with two simultaneous signals [IFNs plus toll-like receptors
(TLRs) ligands] completely blocked the proliferation of Lewis
lung carcinoma cell line (LLC), when co-cultured with the

latter. Similar results were shown using a macrophage-like cell
line (J774.A1) and the mineral-oil induced plasmacytoma cell
line (MOPC315), showing the immunotherapeutic potentials
of macrophages in different tumor models (78, 79). This
macrophage-mediated growth inhibition was shown to be
dependent onNOproduction, since blocking of the latter rescued
cancer cell proliferation. Of note, these anti-tumor macrophages
secreted significant amounts of pro-inflammatory factors
including IL-12p70, TNF-α and the T cell chemoattractant
CXCL9 (78, 79), further enhancing the notion for altering the
TME and promoting the activation of other effector cells. In
this context, recent elegant studies stratifying cutting edge
technologies, point to the tumoricidal potentials of macrophages.
The CD47-Signal regulatory protein α (SIRPα) axis has gained
great interest in immunotherapeutic approaches lately. The
interaction of CD47 (also known as “don’t eat me” signal)
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expressed by all cells in the body, with its receptor SIRPα

found mainly on macrophages and other phagocytes, hampers
the engulfment of the ligand expressing cells (CD47+) by
the phagocytes. The upregulation of CD47 is now considered
an evoke mechanism (innate immune checkpoint) adopted
by cancer cells (80, 81). Alvey et al. (82) showed that ex vivo
manipulated, SIRPα-inhibited macrophages when systemically
injected to mice were able to accumulate into the tumor
sites (human lung cancer model), leading to tumor cells
engorgement and cancer regression. However, this anti-tumor
effect lasted for 1-2 weeks, followed by differentiation of the
donor macrophages toward non-phagocytic, high SIRPα TAMs,
alluding to the high plasticity of macrophages in response to
microenvironmental factors and the need for more permanent
approaches. A very recent study, stratifying the chimeric antigen
receptor (CAR) technology from T cells, showed that human
monocyte-derived CAR engineered macrophages (CAR-M),
demonstrated antigen-specific phagocytosis in vitro, while a
single systemic injection of CAR-M in mice models, significantly
reduced tumor burden and improved the overall survival (83).
Furthermore, CAR-M demonstrated tumor specific localization
in various tumors models and longevity in mice. Intriguingly,
they also showed outstanding indirect anti-tumor properties
including; secretion of pro-inflammatory molecules, resistance
to immunosuppressive cytokines (M1 phenotype persistence),
conversion of M2 macrophages to M1, as well as recruitment of-
and presentation of antigens to- T cells (83).

Thus, as shown with various other solid tumor models,
macrophage-based approaches may hold strong therapeutic
potentials. Whether this is also true for OSCC remains to
be elucidated.

FUTURE PERSPECTIVES AND
CONCLUSIONS

Advanced OSCC remains practically incurable, as this is reflected
on the poor 5-year survival and increased death rates. Although

surgical treatment might lead to complete disease management
in most of the cases of stage I and II OSCC, cancer recurrence is
not rare, while adjuvant chemo-radiotherapy is usually required
in advanced stages (4, 5). Given the recent advances in cancer
research, the need for implementation of novel diagnostic and
treatment tools in its management, has emerged.

TAMs are abundant in the OSCC TME, displaying a bipolar
role in disease progression depending on their activation
status. A growing body of literature suggests that macrophages
may serve as a valid prognostic and therapeutic tool in
the arsenal of OSCC treatment modalities. Even though
macrophage-based immunotherapeutic research in OSCC is yet
inaugural, evidence from various other solid tumor models
points to the strong therapeutic potentials of macrophages via
inducing direct tumor cytotoxicity and indirectly via altering
the immunosuppressive TME and induction of a systemic
anti-tumor immunity and activation of other effector cells.
Identification of novel M1- and M2- specific markers and further
experimentation implying macrophages’ tumoricidal activation
in OSCC models, might close the gap from bed-to-bedside,
leading to the clinical implementation of novel macrophage-
based strategies, in prognosis and immuno-treatment of this
cancer type.
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