
EV
O

LU
TI

O
N

Automatic generation of evolutionary hypotheses
using mixed Gaussian phylogenetic models
Venelin Mitova,b,1, Krzysztof Bartoszekc, and Tanja Stadlera,b

aComputational Evolution Group, Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland; bComputational Evolution
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Edited by Scott V. Edwards, Harvard University, Cambridge, MA, and approved July 1, 2019 (received for review August 13, 2018)

Phylogenetic comparative methods are widely used to understand
and quantify the evolution of phenotypic traits, based on phy-
logenetic trees and trait measurements of extant species. Such
analyses depend crucially on the underlying model. Gaussian phy-
logenetic models like Brownian motion and Ornstein–Uhlenbeck
processes are the workhorses of modeling continuous-trait evo-
lution. However, these models fit poorly to big trees, because
they neglect the heterogeneity of the evolutionary process in dif-
ferent lineages of the tree. Previous works have addressed this
issue by introducing shifts in the evolutionary model occurring at
inferred points in the tree. However, for computational reasons, in
all current implementations, these shifts are “intramodel,” mean-
ing that they allow jumps in 1 or 2 model parameters, keeping all
other parameters “global” for the entire tree. There is no biologi-
cal reason to restrict a shift to a single model parameter or, even,
to a single type of model. Mixed Gaussian phylogenetic models
(MGPMs) incorporate the idea of jointly inferring different types
of Gaussian models associated with different parts of the tree.
Here, we propose an approximate maximum-likelihood method
for fitting MGPMs to comparative data comprising possibly incom-
plete measurements for several traits from extant and extinct
phylogenetically linked species. We applied the method to the
largest published tree of mammal species with body- and brain-
mass measurements, showing strong statistical support for an
MGPM with 12 distinct evolutionary regimes. Based on this result,
we state a hypothesis for the evolution of the brain–body-mass
allometry over the past 160 million y.
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L ife is extremely diverse as the result of the dynamic change
in evolutionary forces driving speciation and phenotypic evo-

lution (1). Gaussian phylogenetic models, such as Brownian
motion (BM) and Ornstein–Uhlenbeck (OU) processes, have
become a standard tool in the comparative analysis of quantita-
tive traits (2, 3). Among many applications, these models have
been used for more appropriately correcting for phylogeny in
comparative regression analyses of morphological or pathogen
traits (4–12) and for testing hypotheses about the evolutionary
forces that have led to observable patterns in the traits of mod-
ern taxa (2, 3, 13). With ever-growing tree size and scope of the
phylogenetic analysis, it is unlikely that a single regime of evolu-
tion described by a single model could have driven the changes in
the traits across the entire tree. Such a model would have too low
of a resolution to accommodate the inherent heterogeneity in the
evolutionary process. Even worse, fitting a misspecified model to
a large phylogeny is prone to inferring statistically significant, but
strongly biased parameter values, due to their tendency to “com-
pensate” for the modeling error (12, 14). There is no biological
reason to constrain the change of a model regime to a single or
a few model parameters, nor is there any reason to restrict the
change to a single type of model. However, to the best of our
knowledge, all current implementations inferring phylogenetic
models with shifts impose such restrictions, motivated mainly by
computability issues (15–23).

In this work, we propose a method for overcoming the com-
putational complexity of fitting jointly a set of different model
types with independent parameter sets to phylogenetically linked
comparative data. Our approach relies on a subfamily, hereby
denoted GLInv, of the Gaussian phylogenetic models, with the
transition density exhibiting the properties that the expectation
depends linearly on the ancestral trait value and the variance
is invariant with respect to the ancestral value. In a related
work, we have shown that the likelihood of such models can
be calculated in time proportional to the number of nodes in
the tree (24). Here, we generalize this fast likelihood calcu-
lation algorithm to mixed phylogenetic models over the GLInv
family, which we denote mixed Gaussian phylogenetic mod-
els (MGPMs). We develop an algorithm for fast maximum-
likelihood search of an optimal MGPM fitted to a dataset of
possibly incomplete measurements from several traits of present-
day species and/or fossilized specimens, annotating the tips of a
time-calibrated tree.

A prominent example with a long history in evolutionary biol-
ogy is the comparative analysis of brain- and body-mass data
from mammals (25, 26). In the quest for the origin of intelligence,
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it has been shown that, in mammals, brain mass has a negative
allometric relationship with body mass, meaning that brain mass
tends to scale at lower proportions with respect to body mass
(25–28). Many studies have compared this allometry between
separate mammal clades (e.g., refs. 27 and 28 and references
therein). However, the choice of the groups to be compared in
these studies has been driven mainly by the established taxo-
nomic ranking (i.e., order, family, genus) and by the researcher’s
intuition about which groups “could” be different. Moreover,
most of the studies in the past have neglected the phylogenetic
relationship between the species within a group—a known source
of bias in comparative regression analysis (4). More recent works
did take the phylogeny into account but restricted the model to
a single BM process over the entire tree (28). How far from the
reality is such a “global” BM assumption? Can we make a data-
driven choice of the groups to compare, based on the patterns
of distinct macroevolutionary regimes? Can we infer the ances-
tral values of body and brain mass as well as their allometry from
extant species data?

To address these questions, we performed an MGPM
maximum-likelihood (ML) fit to body- and brain-mass data from
629 extant mammal species representative of 21 orders, extracted
from the previous works of refs. 28 and 29. This revealed a trend
of gradually decreasing brain–body-mass allometry, for a large
paraphyletic group of nearly 400 species. Deviations from this
trend were identified in 10 smaller groups manifesting different
and, sometimes, contrasting patterns.

This article is organized as follows. In Approaches, we formu-
late the so-called intermodel shift problem, i.e., the optimization
problem aiming at finding the optimal model shifts in a phyloge-
netic tree with multivariate trait measurements associated with
its terminal nodes (tips). Then, we briefly describe our proposed
solution based on the MGPM. In Results, we report the analy-
sis of the mammal data. In Discussion, we interpret the results
and discuss our methods in the light of existing methods and
tools. A detailed description of the methods is provided in Mate-
rials and Methods and in SI Appendix. In SI Appendix, sections
I–K, we report additional results from validation tests based on
simulated data.

Approaches
The Intermodel Shift Problem. Given the number of traits k , a
tree T representing the evolutionary relationship of N species
(tips), and a family of k -variate phylogenetic modelsM, a mixed
phylogenetic model on T is defined as a configuration of shift
points and mapped models, S = {< 0,m0>,< s1,m1>, . . . ,
< sR,mR >}, where< 0,m0> denotes the initial model m0 ∈M
starting from the root (0) and modeling the trait evolution on
the descending lineages until reaching a tip from T or another
shift from S ; each other shift < si ,mi > denotes a point si on a
branch of T and a model mi ∈M, assuming the trait values at
the point si as the initial state, and again modeling the evolution
on the subtree with root si , Tsi , until reaching a tip or a shift.
We call “shift-point configuration” the set of points where the
shifts occur, i.e., {0, s1, . . . , sR}. We denote by S(T ,M) the fam-
ily of all mixed phylogenetic models over T andM, with mixed
referring to several models on a single tree. The “intermodel
shift problem” is the problem of finding the mixed phylogenetic
model S∗ ∈S(T ,M) that fits “best” to data X consisting of trait
values at the tips of T . We call S∗ the best intermodel shift
configuration.

Defining “best fit” in the statistical sense is not straightfor-
ward, due to the notorious problem of “overfitting” coming along
with complex parametric models. In this work, we use the Akaike
information criterion (AIC) as a score function penalizing the
ML fit of a model, based on the number of free parameters.
We note, however, that there is no general agreement on a best
scoring function, in particular, for small datasets, where the com-

monly used AIC and AICc have been shown to be biased toward
more complex models (30, 31).

Dealing with the Computational Complexity. With a few exceptions
(32), maximizing the likelihood of a mixed phylogenetic model is
a multivariate nonconvex optimization task involving numerous
calculations of the model likelihood for the given tree and data.
Furthermore, searching for the best intermodel shift configura-
tion is hard, because the number of possibilities to choose the
branches for R shift points grows exponentially with respect to
the number of tips in the tree. Our approach to this complexity
is 2-fold:
The GLInv family of models. In particular, we restrict M to a
subfamily of the Gaussian phylogenetic models, denoted GLInv.

Definition. We say that a phylogenetic trait model belongs to the
GLInv family if it satisfies the following:

1) After branching the traits evolve independently in the 2
descending lineages.

2) The distribution of the trait ~X , at time t conditional on the
value at time s < t , is Gaussian with the mean and variance
satisfying

a) the expectation of ~X (t) conditional on ~X (s) is a linear
function of ~X (s), i.e.,

E
[
~X (t)|~X (s)

]
= ~ωs,t +Φs,t

~X (s);

b) the variance of ~X (t) conditional on ~X (s) is invariant with
respect to (does not depend on) ~X (s), i.e.,

Var
[
~X (t)|~X (s)

]
= Vs,t ,

for some vector ~ωs,t and matrices Φs,t , Vs,t , which may depend
on s and t , but do not depend on ~X (·).

The GLInv family includes the multivariate BM and OU pro-
cesses, as well as many of their variants widely used in phyloge-
netic comparative methods (24). In ref. 24, we have proved that
for any tree and any phylogenetic model satisfying the Definition,
it is possible to calculate the likelihood of the model, given multi-
trait data for the tips with some tips possibly missing some trait
values, through a pruning algorithm, based on analytical integra-
tion over the unobserved trait values at the internal nodes of the
tree. Here, we have extended this algorithm to support mixed
phylogenetic models over the GLInv family, meaning the type of
model may change at intermodel shift points.
Fast model selection. As a next step, we implemented a parallel
recursive clade partition (RCP) algorithm solving the intermodel
shift problem by returning an (approximate) optimal intermodel
shift configuration for a given tree and multivariate trait data at
the tips. This algorithm relies on several “heuristics” aiming to
reduce 1) the number of candidate shift-point configurations and
2) the number of possible model type mappings to a given shift-
point configuration. For the following sections, it is important to
mention 2 of these heuristics:

1) We assume that a shift point can only occur at the beginning
of a branch and we call the end node of such a branch a “shift
node.”

2) We introduce a threshold, q , on the minimal number of tips
“visible” from an ancestor shift node, with visibility meaning
that there are no other shifts on the paths from this shift node
to any of the visible tips. This heuristic has a 2-fold benefit:
First, it accelerates the search by dramatically reducing the
number of candidate shift-point configurations. More impor-
tantly, as we show in simulations, this heuristic effectively

16922 | www.pnas.org/cgi/doi/10.1073/pnas.1813823116 Mitov et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813823116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813823116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1813823116


EV
O

LU
TI

O
N

reduces the risk of model overfitting (SI Appendix, section I).
The drawback of this heuristic is that shifts in clades and
paraphyletic groups smaller than q tips will not be detected.

A detailed description of the RCP algorithm is provided in SI
Appendix, section A and Algorithm S1.

Results
An MGPM Analysis of the Brain–Body Allometry in Mammals. We
performed an MGPM fit to the biggest publicly available phy-
logenetic tree of mammal species with available body- and
brain-mass measurements (Fig. 1). This is a subtree of 629
extant species with ancestral nodes spanning 166 Ma, which were
extracted from the time-calibrated mammal tree published in ref.
29. Body- and brain-mass data were available in the form of mean
estimates from finite samples, provided from previous works (ref.
28 and references therein). We used the available sample sizes
and sample SDs for 144 body-mass and 87 brain-mass measure-
ments to estimate SEs. For the species and traits, where no
sample size and SD were available, we imputed the SE using lin-
ear regression on the corresponding body- and brain-mass mean
estimates (SI Appendix, section H).
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Fig. 1. An MGPM model of phylogenetically linked body- and brain-mass
data from mammal species. (A) A tree of 629 extant species representative
of 21 mammal orders (subsampled from ref. 29). (B) Body and brain masses
measured as log-10–transformed mean values from finite samples of indi-
vidual organisms from each species (curated measurements available from
ref. 28). In A, a colored number followed by an uppercase letter denotes the
regime number and model type selected for each of the 12 model regimes
found in MGPM*. (C) “Standard” estimates for the 95% contours and lin-
ear regression line of brain mass on body mass for 3 regimes—1, 3, and
10. These estimates ignore the phylogenetic relationship, assuming inde-
pendence of the data points in each group. (D) Expected 95% contours
and regression lines for regimes 1, 3, and 10, according to MGPM*. Under
the hypothesis that the inferred MGPM is the true model, the distributions
in D represent the expectation at the present time for samples of species
that have evolved independently from the root to an arbitrary tip in the
corresponding regime following the regime shifts on that path. Thus, the
MGPM* expectations correct for possible biases due to phylogenetic rela-
tionship. We observed an agreement between the standard estimates and
the MGPM* expectations for most of the 12 groups (SI Appendix, Fig. S2 and
Discussion).

Table 1. Competing model fits to the mammal data

Model q R p `` AIC ∆AIC

Global BMA n.a. 1 4 −540.79 1,089.58 1,321.28
Global BMB n.a. 1 5 30.60 −51.19 180.51
Global OUC n.a. 1 8 −540.79 1,097.58 1,329.28
Global OUD n.a. 1 9 30.60 −43.19 188.51
Global OUE n.a. 1 10 47.62 −75.24 156.46
Global OUF n.a. 1 11 62.89 −103.77 127.93
SURFACE OU 20 1 8 −540.83 1,097.66 1,329.37
SCALAR OU 20 6 38 98.37 −120.74 110.97
RATEMATRIX BM 20 9 37 116.15 −158.30 73.40
MGPM* (A–F) 20 12 115 230.85 −231.70 0.00

q, minimal number of tips visible from a shift node; R, number of inferred
regimes; p, number of parameters; ``, log-likelihood (higher values are bet-
ter); AIC, Akaike information criterion (higher values are worse); ∆AIC,
difference with respect to the best AIC score (higher values are worse); n.a.,
not applicable. The optimal parameter values of the models are described in
SI Appendix, section M and Tables S1–S10. We note that, up to small error of
the numerical optimization, the models BMA, OUC , and SURFACE OU con-
verged to the same BMA model (SI Appendix, Tables S1, S3, and S7). The
SCALAR OU model was the third best fit to the data. This fit converged to
a BMB model with shifts (SI Appendix, Table S8). The fit of the RATEMATRIX
BM model (which is also a BMB model with shifts; Materials and Methods)
resulted in the second-best AIC score.

Inference was done using the log-10–transformed trait val-
ues. For the MGPM, we searched for shifts over 6 candidate
model types ranging from a model of neutrally and indepen-
dently evolving traits to a complex model of evolution under
selection and causal relationship between the traits. All of these
model types were defined as specifications of the BM and the
OU models (Materials and Methods). We denote these model
types by BMA, BMB , OUC , OUD , OUE , and OUF or by the
letters A–F.

The best MGPM fit found by the RCP algorithm had AIC ∗=
−231.7, log-likelihood ``∗= 230.85, and a total of p = 115
parameters specifying 11 shift points and 12 regimes. Further, we
use the notation MGPM∗ to denote this model. We compared
MGPM∗ to fits of competing models including global BMA, . . . ,
OUF (no shifts), a SURFACE OU model (18), a SCALAR OU
model (23), and a RATEMATRIX BM model (22). Since the
SURFACE OU, the SCALAR OU, and the RATEMATRIX
BM are in GLInv, we implemented these fits using the RCP algo-
rithm, specifying the same setting for the threshold q as for
MGPM∗ (Materials and Methods). This confirmed a significant
advantage for MGPM∗ (∆AIC > 73.40 for all tested competing
methods; Table 1).

To assess the confidence of MGPM∗, we performed a model
parametric bootstrap. In particular, we generated 50 bootstrap
datasets, by simulating MGPM∗ on the mammal tree with the
inferred shift points (Fig. 1A and SI Appendix, section H). Then,
we reran the RCP algorithm over the models BMA, . . . , OUF

and the tree (without providing the shift-point configuration), for
each simulated dataset (SI Appendix, Figs. S5–S9).

Using MGPM∗ and the MGPMs from the parametric boot-
strap, we reconstructed the evolution of body mass, brain mass,
and their allometric relationship since the root of the tree dated
166.2 Ma ago (Fig. 2). To that end, we first discretized the time
interval into epochs at each 2 Ma from the root to the present
time. Then, for each epoch, we inserted singleton nodes on all
branches of the tree intersecting with this epoch. In doing this,
we preserved the regime assignment (coloring) of the trees, both
for MGPM∗ (Fig. 1A) and for the colored trees resulting from
the parametric bootstrap inferences (SI Appendix, Figs. S5–S7).
Finally, based on the inferred model parameters, for MGPM∗

and for each bootstrap MGPM, we calculated the expected
body mass, brain mass, their expected variance–covariance
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Fig. 2. An MGPM reconstruction of the evolution of body mass and brain mass and their allometric relationship in mammals. (Left and Center) Inferred
evolution of body mass and brain mass and brain–body-mass regression slope for each lineage in the mammal tree starting from the root (166.2 Ma ago) and
ending at a random tip (extant species) in each of the 12 regimes in MGPM*. The allometry between brain mass and body mass is quantified as the deviation
from 1 of the regression slope—increasing regression slope corresponds to decreasing allometry. The thicker lines represent the expected evolution for the
mean trait value and the regression slope in each of the 12 regimes assuming the hypothesis that the model MGPM* is the true model; each thinner line
represents the corresponding expectation from an MGPM fit to 1 of 50 “parametric bootstraps” datasets—these datasets were generated by simulating
MGPM* on the mammal tree (Fig. 1A and SI Appendix, section H). The background colors correspond to the 12 inferred regimes in the tree according to
MGPM* (Fig. 1A). The error bars on white background on the right side of each plot denote the standard estimates with 95% confidence intervals from
the extant species in each regime, ignoring the phylogenetic relationship; for each of the 12 regimes, the selected model type in MGPM* and the number
of extant species are written in the top right corner of each plot. (Right) Silhouette images courtesy of Phylopic/T. Michael Keesey, Joseph Wolf, Natasha
Vitek, Daniel Jaron, Catherine Yasuda, Allis Markham, Gareth Monger, Jan A. Venter, Herbert H. T. Prins, David A. Balfour, Rob Slotow, C. De Muizon, Scott
Hartman, Michael Scroggie, Yan Wong, and Becky Barnes (see also SI Appendix, section G for full credit details).

matrix, and the regression slope (SI Appendix, sections D, E,
and H).

Method Validation. We conducted an extensive simulation study
analyzing the MGPM on 1,152 simulated datasets. These simu-
lations confirmed that the MGPM inference correctly identifies
clusters in the tree associated with different evolutionary regimes
and accurately discriminates between OU and BM regimes. A
comparison against previously published models with shifts (18,
23) revealed a crucial advantage for the MGPM with respect to 9
performance criteria (SI Appendix, section I and Figs. S11–S61).
Following the general requirements for phylogenetic compara-
tive methods (PCMs) (31), we estimated the type I error rate
against single-regime BM simulations to ∼15% (SI Appendix,
section J and Fig. S62). Finally, we evaluated the invariance of
the MGPM inference to rigid transformations of the data, with
“invariance” meaning that the optimal MGPM fits before and
after the transformation have equal scores, as well as matching
shift-point configurations and model type assignments (31). Our
analysis revealed that the invariance does not hold in general for

MGPMs over GLInv, due to including candidate model types that
restrict the between-trait variance–covariance matrix (e.g., BMA

and OUC ; Materials and Methods and SI Appendix, sections H.5
and K, Fig. S10, and Tables S11–S21).

Discussion
The Mammal Data Have a Strong Statistical Support for an MGPM
(A–F ) Model. Based on a significant AIC difference (∆AIC> 73),
we confirm that the mammal data have a strong statistical sup-
port for a complex MGPM with, predominantly, OUE and OUF

regimes, relative to models assuming trait independence, single-
regime models, and simpler BM or scalar OU models with shifts
(Table 1 and SI Appendix, section H). These results undermine
the use of methods assuming global correlation or selection
patterns. In fact, a phylogenetic model neglecting the possi-
bility for differing correlation and selection patterns between
different taxons can be just as misleading as any standard sta-
tistical method that is completely ignorant of the phylogeny.
For example, consider the original work providing the mammal
data for this study (28). Boddy et al. (28) reported an estimate
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of the encephalization quotient (EQ) in Homo sapiens of 5.72,
on the basis of “the standard log brain mass vs. log body mass
regression line” (ref. 28, p. 984); compared with 1.16, on the basis
of the phylogenetic independent contrasts (PIC); and 12.6, on
the basis of the phylogenetic generalized least-squares (PGLS)
methods (28). To “retain the same biological context as other
encephalization studies” (ref. 28, p. 984) in the main text, Boddy
et al. (28) reported the standard EQ estimates. However, they
used the PIC- and PGLS-derived estimates for all statistical
tests (28). The MGPM analysis clarifies this confusion. In par-
ticular, it shows that the regression line differs significantly
between different taxons (Figs. 1 C and D and 2 and SI Appendix,
Fig. S2). Therefore, any phylogenetic model assuming a global
regression line for all species provides a “consensus” regres-
sion line, with weights of the different taxons depending on the
assumed stochastic process. Remarkably, if we free the phyloge-
netic model from the assumption of a single process (of a specific
type) covering the entire tree, we observe a general agreement
between the standard and the “phylogenetically correct” regres-
sion lines in most of the 12 regimes (Fig. 1 C and D and SI
Appendix, Fig. S2).

The MGPM Enables a Data-Driven Choice of Groups for Analysis.
A most interesting example is the clade of Haplorrhini (dry-
nose primates) and its subclade of the Cercopithecidae (Old
World monkeys) showing significantly different regression slopes
(regimes 3 and 10; Figs. 1 C and D and 2). Excluding
Cercopithecidae from its parent clade of Haplorrhini reveals
parallel regression lines for Haplorrhini and the major mam-
mal group (regimes 3 and 1; Fig. 1 C and D). Hence, these 2
regimes differ solely by the intercept. This confirms the pre-
vious observation that Haplorrhini exhibit significantly higher
encephalization compared with other primates (28). Boddy
et al. (28) compared the mean EQ in several sister clades
within Haplorrhini (including Anthropoidea vs. Tarsiiformes and
Catarrhini vs. Platyrrhini) but did not identify any significant dif-
ference. In contrast, our analysis revealed a shift at the root of the
Cercopithecidae clade. This was present in the 2 models with best
AIC, MGPM∗, and RATEMATRIX BM and was detected in 36
of the 50 parametric bootstrap datasets (SI Appendix, Figs. S5–
S7 and S10). Occupying a narrow niche in the phenotype space
and exhibiting far more pronounced allometry, Cercopithecidae
might be subject to stronger selective pressures relative to other
primates. Future studies exploring larger samples of species in
this clade should test this hypothesis.

The Ancestral Levels of Brain–Body-Mass Allometry Can Be Inferred
with High Confidence. Looking back in time, the inferred model
suggests the hypothesis that, with slope = 0.4, the brain–body-
mass allometry has been far more pronounced in the mammal
ancestors 160 Ma ago (Fig. 2). This slope has increased gradu-
ally through time until reaching nowadays levels of ≈0.75 for all
species in regimes 1, 2, and 3 (Fig. 2). We observe a remarkable
bootstrap support for this trend, contrasting with considerably
lower support for the estimates of ancestral trait values (com-
pare thin transparent lines in Fig. 2, Left and Center). The poor
bootstrap support for the ancestral values of brain mass and body
mass manifests a well-known issue of identifiability for OU mod-
els (20, 23, 30). For example, ref. 30 showed analytically that in
an OU model on an ultrametric tree, it is not possible to infer
both the root value ~X0 and the long-term optimum ~θ. Conversely,
the apparent strong signal for the ancestral allometry has, in our
view, not been appreciated and represents an appealing subject
for future theoretical and empirical studies.

Related Previous Approaches. The idea of jointly fitting differ-
ent types of Gaussian models dates back at least to the work

of Slater (33), where he measured the statistical support for a
shift from an OU to a BM process in the evolution of mam-
mal body size occurring at the end of the Mesozoic (but see ref.
34). Later, Clavel et al. (35) implemented a nonpruning algo-
rithm for multivariate likelihood calculation for shifts between
BM, OU, and the early burst (EB) model of adaptive radia-
tion in their R-package mvMorph. These works assume a known
point in time where a global shift occurs on all lineages of the
tree. Moreover, in its current version mvMorph is restricted to
trees of moderate size, because it uses a slow likelihood calcula-
tion algorithm. Many authors have proposed methods for finding
local intramodel shifts in some of the parameters of the OU
model and under various simplifying assumptions including tree
ultrametricity (i.e., all species have been sampled at the present
time), a single trait or independently evolving multiple traits,
and shared or fixed parameter values between model regimes
(e.g., a scalar OU model with a global [scalar diagonal] selection
strength matrix and drift matrix for all regimes) (2, 15–21, 23,
36). In SI Appendix, section I, we discuss several of these tools
and implement a simulation-based comparison of the MGPM
method to existing implementations of phylogenetic comparative
models with shifts.

The ambitious task of finding “local” intermodel shifts occur-
ring on individual branches has, to our knowledge, not been
addressed. Our main goal here is to propose a solution for this
lack of generality in the existing methods and tools. The MGPM
provides a unified computationally efficient and extensible
framework for a large family of models and for any type of tree.

Materials and Methods
The OU Process. The k-variate OU process is defined by the stochastic
differential equation

d~X(t) = H
(
~θ− ~X(t)

)
dt +ΣudW(t), [1]

where ~X(t) is a k-dimensional real vector, H is a k× k-dimensional eigen-
decomposable real matrix, ~θ is a k-dimensional real vector, Σu is a
k× k-dimensional real positive definite matrix, and W(t) denotes the k-
dimensional standard Wiener process. The branching process, where each
branching event gives rise to 2 independent instances of the process (Eq.
1), starting from the value of ~X at the branching point, is a GLInv process (SI
Appendix, section C).

Biologically, ~X(t) denotes the mean values of k traits in a species at a
time t from the root, the parameter Σ=ΣuΣ

T
u defines the magnitude and

shape of the momentary fluctuations in the mean vector due to genetic
drift, and the matrix H and the vector ~θ specify the trajectory of the popu-
lation mean through time. When H is the 0 matrix, the process is equivalent
to BM and the parameter ~θ is irrelevant. When H has strictly positive eigen-
values, the population mean converges in the long term to ~θ, although
the trajectory of this convergence can be complex. In all candidate model
types, we restrict H to have nonnegative eigenvalues—a negative eigen-
value of H transforms the process into repulsion with respect to ~θ, which,
while biologically plausible, is not identifiable in an ultrametric tree.

MGPM (A–F ). The 6 candidate model types BMA, . . . , OUF were defined as
specifications of the OU process as follows:
• BMA (H = 0, diagonal Σ): BM, uncorrelated traits.
• BMB (H = 0, symmetric Σ): BM, correlated traits.
• OUC (diagonal H, diagonal Σ): OU, uncorrelated traits.
• OUD (diagonal H, symmetric Σ): OU, correlated traits, but simple

(diagonal) selection strength matrix.
• OUE (symmetric H, symmetric Σ): An OU with nondiagonal symmetric H

and nondiagonal symmetric Σ.
• OUF (asymmetric H, symmetric Σ): An OU with nondiagonal asymmetric H

and nondiagonal symmetric Σ.

Other Models. For comparison, we implemented 3 previously published
models with shifts (all of which belong to GLInv ):

• SURFACE OU (18): This model assumes traits following univariate OU pro-
cesses with shared shift points for the long-term optima. Formally, it is
equivalent to a k-variate OU process with global diagonal H and Σ and
regime-specific ~θ.
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• SCALAR OU (23): This is an OU model with shifts in both ~θ and Σ. While
this model accounts for coevolution of the traits (symmetric Σ), its main
restriction is the assumption that the matrix H is scalar diagonal and is
shared by all regimes (23).

• RATEMATRIX BM (22): This is equivalent to a BMB model with shifts.

Implementation. The likelihood calculation was implemented in the R-
package PCMBase (https://github.com/venelin/PCMBase), using internal
calls to its Rcpp companion PCMBaseCpp (https://github.com/venelin/
PCMBaseCpp) (24) and the SPLITT C++ library (https://github.com/venelin/
SPLITT) (37). The RCP algorithm was implemented in the R-package PCMFit
(https://github.com/venelin/PCMFit) (38). Further details on the imple-
mentation, as well as the used third-party libraries and resources, are

provided in SI Appendix, sections A–G. The analysis of the mam-
mal data has been implemented in the R-package MGPMMammals
(https://github.com/venelin/MGPMMammals) (39) (see also SI Appendix, sec-
tion H). The simulation tests have been implemented in the R-package
MGPMSimulations (https://github.com/venelin/MGPMSimulations) (40) (see
also SI Appendix, sections I and J).
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Prof. Dr. Jörg Stelling for providing the analyzed mammal data including
the taxonomic labels for the internal nodes of the tree and for valuable
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