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environment for RNA replication by cleaving host enzyme
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Many RNA viruses create specialized membranes for genome
replication by manipulating host lipid metabolism and traffick-
ing, but inmost cases, we do not know themolecularmechanisms
responsible or how specific lipids may impact the associated
membrane and viral process. For example, hepatitis C virus
(HCV) causes a specific, large-fold increase in the steady-state
abundance of intracellular desmosterol, an immediate precursor
of cholesterol, resulting in increased fluidity of the membrane
where HCVRNA replication occurs. Here, we establish themech-
anism responsible for HCV’s effect on intracellular desmosterol,
whereby the HCV NS3-4A protease controls activity of 24-dehy-
drocholesterol reductase (DHCR24), the enzyme that catalyzes
conversion of desmosterol to cholesterol. Our cumulative evi-
dence for the proposedmechanism includes immunofluorescence
microscopy experiments showing co-occurrence of DHCR24 and
HCV NS3-4A protease; formation of an additional, faster-migrat-
ing DHCR24 species (DHCR24*) in cells harboring a HCV subge-
nomic replicon RNA or ectopically expressing NS3-4A; and
biochemical evidence that NS3-4A cleaves DHCR24 to produce
DHCR24* in vitro and in vivo. We further demonstrate that NS3-
4A cleaves DHCR24 between residues Cys91 and Thr92 and show
that this reduces the intracellular conversion of desmosterol to
cholesterol. Together, these studies demonstrate that NS3-4A
directly cleaves DHCR24 and that this results in the enrichment
of desmosterol in the membranes where NS3-4A and DHCR24
co-occur. Overall, this suggests a model in which HCV directly
regulates the lipid environment for RNA replication through
direct effects on the host lipidmetabolism.

Viruses are well-known for their hijacking of cellular proc-
esses to enable their own replication while also evading or
counteracting the host response to infection (1). This is accom-
plished using diverse mechanisms that include viral regulation
of host transcription and translation, as well as post-transla-
tional regulation of host factors (2, 3). For example, hepatitis C
virus (HCV) disrupts sensing by the host innate immune

system by directly cleaving two critical adaptor proteins,
mitochondrial antiviral signaling protein (MAVS) and Toll–
interleukin-1 receptor domain containing adaptor-inducing
interferon-b (TRIF) (4–6) HCV. Other viruses are also known
to alter host metabolism to meet the energetic and metabolic
needs of replication, for example, by altering the expression
and/or localization of host proteins responsible for synthesis or
trafficking of critical metabolites. One such example is the
interaction of HCV nonstructural protein 5A (NS5A) with
phosphatidylinositol 4-kinase a, which appears to regulate the
phosphorylation status and function of NS5A while also stimu-
lating the accumulation of phosphatidylinositol 4-phosphates
that recruit viral and host factors required for RNA replication
(7, 8). The clinical association of HCV infection with steatosis
and hyperlipidemia positions it as a good experimental system
for studying how viruses perturb and exploit the host lipid ma-
chinery (9–13).
Several studies of chronic HCV patients have confirmed that

the presence of HCV affects host sterol metabolism (9–13).
Both proteomic and lipidomic profiling by targeted liquid chro-
matography - mass spectrometry (LC-MS) have shown that
HCV perturbs multiple host lipid biosynthetic pathways (14).
Additionally, unbiased lipidomic MS profiling by our
laboratory previously discovered that HCV causes a 10-fold
increase in intracellular desmosterol, an immediate precursor
to cholesterol, without affecting the abundance of cholesterol
(15–17). We demonstrated that the HCV-induced accumula-
tion of desmosterol is functionally important for HCV replica-
tion, as evidenced by strong reduction of accumulated HCV
RNA when desmosterol is depleted from cells and restoration
of HCV RNA levels upon addition of exogenous desmosterol
but not cholesterol (15, 17). However, how HCV regulates host
metabolism to cause an increase in the steady-state abundance
of desmosterol remains unknown.
Here, we establish a mechanism used by HCV to regulate

desmosterol abundance. Themechanism involves post-transla-
tional regulation of the key enzyme in desmosterol metabolism,
24-dehydrocholesterol reductase (DHCR24), which converts
desmosterol to cholesterol. Our study reveals that DHCR24 is
proteolytically cleaved between Cys91 and Thr92 by HCV NS3-
4A protease, resulting in inactivation of DHCR24 and accumu-
lation of desmosterol in the replication membranes where
NS3-4A and DHCR24 co-reside. This, in turn, is associated
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with robust HCV replication. Together, our studies suggest a
model in which the HCV NS3-4A protease remodels the host
lipid membrane by directly interacting with and cleaving a host
biosynthetic enzyme to generate a chemical environment that
promotes increased viral RNA replication.

Results

HCV reduces the intracellular conversion of desmosterol to
cholesterol without affecting the expression or abundance of
cholesterol biosynthetic enzymes DHCR7 and DHCR24

Desmosterol is produced in the Bloch branch of late-stage
cholesterol biosynthesis by reduction of 7-dehydrodesmosterol
by 7-dehydrodesmosterol reductase (DHCR7). Under normal
physiological conditions, desmosterol does not accumulate and
is rapidly converted to cholesterol by DHCR24 (Fig. 1A).
Because HCV has no known gene products capable of cata-
lyzing lipid synthesis or metabolism, we investigated whether
HCV perturbs the expression of DHCR7 and DHCR24. For
these experiments, we used autonomously replicating RNAs
encoding either the full-length HCV polyprotein (full-length
genomic replicon, or FGR) or encoding only the NS3-5B pro-

teins (subgenomic replicon, or SGR) (Fig. 1B) (18). These and
other replicon systems are well-established models for study-
ing HCV gene expression and RNA replication in the absence
of the complicating effects of viral entry, assembly, or egress.
We first quantified DHCR7 and DHCR24 transcripts by

reverse-transcription quantitative PCR (RT-qPCR) assay and
found that the abundance of these transcripts is unaffected by
the presence or absence of the HCV full-genomic and subge-
nomic replicon RNAs (Fig. 1C). This finding is consistent with
transcript profiling studies showing that HCV infection induces
no changes in DHCR7 or DHCR24 mRNA abundance (19, 20)
and indicates that the HCV-associated increase in intracellular
desmosterol is not due to viral perturbation at the mRNA level.
Next, we examined the steady-state abundance of DHCR7 or
DHCR24 proteins by immunoblot analysis of whole cell lysates
and detected no differences between cells harboring HCV repli-
con RNAs and negative control cells (Fig. 1D). Although we
cannot exclude the possibility that noncoding RNAs might reg-
ulate translation of DHCR7 and/or DHCR24 mRNAs, this does
not appear to happen to a significant extent based on the
steady-state abundance of DHCR7 and DHCR24 proteins.
These data show that HCV’s effect on desmosterol homeostasis

Figure 1. Effect of HCV on enzymes in the Bloch pathway of late-stage cholesterol biosynthesis. A, the nonstructural (NS) proteins of HCV form a replica-
tion complex located on a specialized membrane derived from the host ER. Our data indicate that the enzymes that catalyze cholesterol biosynthesis, which
are integral membrane proteins found on the ER surface, co-reside with the nonstructural proteins on the replication membrane in addition to being present
on ER membrane itself. Desmosterol, the penultimate molecule in the Bloch branch of cholesterol biosynthesis, is depicted as blue ovals; cholesterol is
depicted as orange ovals. B, FGR and SGR RNAs derived fromHCV clone JFH1 were used as experimental models to examine the effects of HCV on desmosterol
synthesis and metabolism. Replicons were stably expressed in Huh7.5 cells. C, FGR and SGR RNAs do not significantly alter mRNA abundance of DHCR7 or
DHCR24, as measured by RT-qPCR. The bar graph represents the average of two biological replicates with error bars equal to the standard deviation. Neither
FGR nor SGR caused a significant change in the abundance of DHCR7 or DHCR24 transcripts. D, the SGR RNA does not cause a significant change in the
steady-state abundance of DHCR7 or DHCR24 proteins as assessed by immunoblot of whole-cell lysates. *, The molecular mass (MW) marker for the immuno-
blot probed for actin was excised during processing; however, the actin band relative to core and NS5A was consistent between this and other immunoblots
in which the molecular mass markers were recorded. The location of the 46-kDa marker relative to actin on comparable immunoblots is indicated. E, cellular
conversion of deuterated desmosterol (desmosterol-d6) to deuterated cholesterol (cholesterol-d6) was monitored by extraction of cellular lipids and quantifi-
cation of desmosterol-d6 and cholesterol-d6 by LC-MS. No conversion of desmosterol-d6 to cholesterol-d6 was observed in cells treated with U18666A, a
DHCR24 inhibitor, which was used as a positive control. The presence of the SGR RNA causes a significant decrease in conversion of desmosterol-d6 to choles-
terol-d6 (Student’s t test p value of 0.0012when comparedwith Huh7.5-negative control cells, “Mock”). The bar graph represents the average of two biological
replicates with error bars equal to standard deviation.
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does not involve changes in the expression or abundance of
DHCR7 and DHCR24. This led us to consider the possibility
that HCV increases intracellular desmosterol by either increas-
ing DHCR7 activity or decreasing DHCR24 activity. Because
neither enzyme is known to be rate-determining for the path-
way and because desmosterol is rapidly converted to choles-
terol under normal physiological conditions, we deemed a vi-
rus-associated reduction in the DHCR24-catalyzed conversion
of desmosterol to cholesterol to be the more likely scenario.
To investigate this possibility, cells harboring HCV replicon

RNAs and negative control cells were treated with medium
containing deuterated desmosterol (desmosterol-d6), and con-
version of the desmosterol-d6 to cholesterol-d6 was monitored
over time by LC-MS analysis of extracted lipidomes. Conver-
sion of desmosterol-d6 to cholesterol-d6 was reduced in cells
harboring the HCV subgenomic replicon or treated with
U18666A, a small molecule known to inhibit DHCR24’s enzy-
matic activity and intracellular sterol transport (21–24), when
compared with cells lacking the replicon (Mock) (Fig. 1E). This
observation supports the proposal that HCV negatively regu-
lates DHCR24 activity.

DHCR24 is post-translationally modified in cells expressing
the active NS3-4A protease

Because HCV has no effect on DHCR7 or DHCR24 expres-
sion or abundance yet appears to affect the DHCR24-catalyzed
reaction in cells, we next investigated whether DHCR24 is
post-translationally modified in the presence of the virus. Im-
munoblot analysis of cells transfected with a C-terminal FLAG-
tagged DHCR7 or DHCR24 (DHCR7–FLAG and DHCR24–
FLAG respectively) revealed an additional, faster-migrating
DHCR24-FLAG species in the presence of HCV SGR (Fig. 2A).
We confirmed that formation of this faster-migrating DHCR24
species (DHCR24*) was not an artifact of ectopic expression
of DHCR24–FLAG by demonstrating that DHCR24* is
detected when endogenous DHCR24 is immunoprecipitated
from cells harboring the SGR (Fig. 2B).
To map which of the HCV proteins expressed by the subge-

nomic replicon (NS3, NS4A, NS4B, NS5A, and NS5B) is suffi-
cient to induce formation of DHCR24*, we first co-expressed
NS3-4A and NS5A individually with DHCR24–FLAG (Fig. 2C).
NS3 contains a C-terminal helicase domain and an N-terminal
serine protease domain that requires its cofactor NS4A for cat-
alytic activity (25). Although no inherent enzymatic function
has been reported for NS5A, it is known to affect host lipids
through interaction with phosphatidylinositol 4-kinase a (8)
and is hypothesized to have a significant role in coordinating
genome replication and viral assembly (26). We found that
expression of the NS3-4A protease is sufficient to induce for-
mation of DHCR24*–FLAG. Production of DHCR24*–FLAG
requires active protease activity because no DHCR24*–FLAG
is produced in the presence of the NS3-4A inhibitor danoprevir
or when NS3 is expressed alone without NS4A. Further, pro-
duction of DHCR24* is lost when a catalytic residue in the pro-
tease active site is mutated (NS3-4A–H57A) (28–30) but is
unaffected by a point mutation introduced to the NS3 helicase
active site (NS3-4A–D290A) (29) (Fig. 2D). Together, these

results demonstrate that formation of DHCR24* requires the
active NS3-4A serine protease domain.
We further validated that the active NS3-4A protease is

sufficient to generate DHCR24* by immunoprecipitating
DHCR24–FLAG from uninfected cells and incubating this pro-
tein with recombinant NS3-4A. This successfully recapitulated
formation of DHCR24*–FLAG in vitro (Fig. 2E). This in vitro
reaction is blocked in the presence of telaprevir, a Food and
Drug Administration–approved NS3-4A inhibitor, or a com-
petitive peptide mimetic (31, 32) (Fig. 2E). Taken together,
these experiments demonstrate that the NS3-4A protease
causes production of DHCR24*.

DHCR24 is a direct substrate of the NS3-4A protease

To examine the possibility that NS3-4A directly cleaves
DHCR24, we isolated the two DHCR24 species observed
by SDS-PAGE following incubation of immunoprecipitated
DHCR24–FLAG with recombinant NS3-4A protease in vitro.
“Bottom-up” LC-MS/MS analysis of the isolated species dem-
onstrated that both bear the FLAG-derived DYKDDDDK
sequence and thus are derived from DHCR24–FLAG (Fig. S1).
Likewise, LC-MS/MS analysis of endogenous DHCR24 immu-
noprecipitated from cells harboring the HCV subgenomic rep-
licon verified that both products are derived from DHCR24
(Fig. 2B). These results indicate that DHCR24 is a substrate for
NS3-4A–mediated proteolysis. Due to several technical issues,
including difficulty in driving complete conversion of immuno-
precipitated DHCR24 to DHCR24*, poor ionization of the reac-
tion products, and limited recovery of recombinant DHCR24
proteins due to high hydrophobicity, we were unable to identify
the position of the cleavage site by LC-MS/MS.

Mapping of cleavage of DHCR24 by NS3-4A

To facilitate expression and purification of DHCR24, we
fused it to a maltose-binding protein (MBP) at its N terminus.
We then expressed the MBP–DHCR24 fusion with a bacteria-
derived cell-free, in vitro translation system (33) and purified it
by using magnetic amylose resin. Incubation of recombinant
NS3-4A with the MBP–DHCR24 from this heterologous
expression system produced a species akin to DHCR24* from
HCV replicon cells (Fig. S2). Immunoblotting with an antibody
that recognizes an epitope in the region between 68 and 85 of
DHCR24 suggested that the cleavage site is located between the
putative transmembrane region (residue 52) and the catalytic
region (residue 110) of DHCR24 (Fig. 3A).
To specifically investigate the 56–110 region of DHCR24 as a

substrate for NS3-4A, a surrogate peptide spanning this region
was expressed as a fusion between the soluble proteins MBP
and GFP, with a FLAG tag at the C terminus (Fig. 3B). Incuba-
tion of this purified test substrate with recombinant NS3-4A
produces cleavage fragments (Fig. 3C) that are not observed in
the absence of NS3-4A or in the presence of the NS3-4A inhibi-
tor telaprevir. Next, we used two 15-mer surrogate peptides
corresponding to residues 52–66 (Fig. 3D) and 85–99 (Fig. 3E)
of DHCR24 to map the NS3-4A proteolysis site. Reaction of
recombinant NS3-4A with the substrate spanning residues 85–
99 led to two distinct products and a proportionate decrease in
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the full-length substrate. We purified the two product species
and subjected them toN-terminal sequencing by Edman degra-
dation. This revealed an N-terminal sequence of TGRPG, cor-
responding to the sequence of DHCR24 beginning at Thr92,
and suggested that the peptide bond between residues Cys91

and Thr92 is the target of NS3-4A cleavage (Fig. 3E). Consistent
with this hypothesis, NS3-4A is well-known to have a strong
preference for Cys in the P1 site, and we found that replace-
ment of Pro with Cys, a substitution known to inhibit proteoly-
sis of membrane-bound enzymes by proteases (34, 35), pre-
vented cleavage of the MBP–DHCR24(52–66)-GFP-FLAG
substrate by NS3-4A in vitro (Fig. 3F).

NS3-4A inactivation results in increased conversion of
desmosterol

To examine the effect of proteolysis of DHCR24 by NS3-4A
on the conversion of desmosterol to cholesterol in cells, we per-
formed genome editing to “knock out” DHCR24 expression in
Huh7.5 cells (Fig. S3) and then monitored the fate of desmos-
terol-d6 in cells ectopically expressing DHCR24–FLAG. As
expected, WT DHCR24–FLAG supports conversion of des-
mosterol-d6 to cholesterol-d6 in Huh7.5-DHCR24KO cells. Co-
expression of recombinant NS3-4A reduces the conversion
of desmosterol-d6 to cholesterol-d6 to approximately half of
the conversion observed in the control cells expressing only
DHCR24–FLAG (Fig. 4A). This reduction in intracellular

DHCR24 activity is furthermore associated with proteolytic
cleavage of DHCR24 by the viral protease, as reflected by the
appearance of a species corresponding to DHCR24*-FLAG
(Fig. 4B). Importantly, the conversion of desmosterol-d6 to
cholesterol-d6 is far less affected when telaprevir is used to in-
hibit NS3-4A protease activity or when the inactive NS3
(H57A)-4A mutant is expressed (Fig. 4A). Conversion of des-
mosterol-d6 to cholesterol-d6 in these protease-inhibited sam-
ples does not differ in a statistically significant manner from the
control samples in which DHCR24-FLAG is expressed alone
without NS3-4A present. In contrast, the telaprevir-treated
and NS3(H57A)-4A mutant samples do exhibit significantly
reduced conversion of desmosterol-d6 to cholesterol-d6 com-
pared to the samples in which NS3-4A and DHCR24 are co-
expressed. These data thus provide a link between proteolytic
activity of NS3-4A, cleavage of DHCR24, and changes in the
DHCR24-catalyzed conversion of desmosterol to cholesterol.
Since cleavage of DHCR24 between Cys91 and Thr92 is pre-

dicted to separate the N-terminal membrane-associated do-
main from the FAD-binding and catalytic domain, we hypothe-
sized that this might affect DHCR24-catalyzed conversion of
desmosterol to cholesterol by releasing the catalytic domain
from the ERmembrane. Supporting this hypothesis, no conver-
sion of desmosterol-d6 to cholesterol-d6 was observed upon
ectopic expression of DHCR24(Thr92–His516) in Huh7.5-
DHCR24KO cells (Fig. 4A). Consistent with a model in which

Figure 2. DHCR24 is post-translationally modified in the presence of NS3-4A. A, FLAG-tagged DHCR7 or DHCR24 was immunoprecipitated and analyzed
by immunoblot. A faster-migrating DHCR24-FLAG species, which we dubbed DHCR24*–FLAG, is detected in cells stably expressing SGR. DHCR24* is marked in
this figure with an arrow. B, an analogously faster-migrating DHCR24* species was also detected when endogenous DHCR24 was immunoprecipitated from
Huh7.5 cells stably expressing SGR but not in samples prepared from negative control Huh7.5 cells. C, formation of DHCR24*–FLAG induced in the presence of
the SGR RNA (left blot) is recapitulated with ectopic expression of NS3-4A but not NS5A (right blot). D, formation of DHCR24*–FLAG occurs in cells expressing
the active NS3-4A protease, but this is blocked in the presence of danoprevir, an NS3-4A inhibitor (inh), or when NS3 is expressed alone without NS4A.
DHCR24*–FLAG also fails to form when the protease active site is mutated to destroy catalytic function (NS3-4A-H57A), whereas DHCR24*–FLAG formation is
not impaired bymutation of the NS3 helicase active site (NS3-4A D290A). E, the formation of DHCR24*–FLAG in cells expressing NS3-4A is recapitulated in vitro
when DHCR24-FLAG immunoprecipitated from Huh7.5 cells is incubated with recombinant NS3-4A. This in vitro reaction is blocked in the presence of NS3-4A
inhibitor or when a peptide substrate (subst) of NS3-4A is added in excess. DHCR24–FLAG immunoprecipitated from Huh7.5 SGR cells is included as a positive
control in the far right lane. Although molecular mass markers are not indicated for this blot because they were excised during processing, the relative loca-
tions of the bands are consistent with DHCR24 (upper band) and DHCR24* (lower band) observed in other experiments.MW, molecular mass.
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DHCR24 is a direct substrate of the HCV NS3-4A protease
in vivo, we detect co-occurrence of DHCR24 with NS3-4A
when the NS3-5B polyprotein is expressed and processed at
physiological levels in the Huh-7.5[VEEV/NS3–5B] cell culture
model (36) (Fig. S4). We attempted to block cleavage of
DHCR24 by mutation of Cys91 (C91S, C91A, C91F) but were
unable to evaluate the impact of these substitutions on proteol-
ysis by NS3-4A or HCV replication because these substitutions

significantly reduce or completely inactivate DHCR24’s cata-
lytic activity (data not shown).

Discussion
Many viruses compartmentalize their replication machinery

to avoid the host defense but also to improve the efficiency of
the viral process. For example, many RNA viruses, including
HCV, are known to remodel sections of the host ER membrane

Figure 3. DHCR24 is proteolytically cleaved by NS3-4A between Cys91 and Thr92. A, the topology model of DHCR24 predicts (54) an N-terminal mem-
brane-associated domain that tethers a C-terminal FAD-binding site to the surface of the ER membrane. The dashed line indicates the region suggested by
antibody reactivity to contain the cleavage site. Antibodymapping of the cleavage products from in vitro reaction of recombinant DHCR24–FLAG and NS3-4A
proteins predicted cleavage between the N- and C-terminal domains. The experimentally mapped cleavage site between Cys91 (C91) and Thr92 (T92) is indi-
cated. B, to map the cleavage site, peptides spanning different regions of the putative cleavage regionwere cloned between an N-terminal MBP domain and a
C-terminal GFP domain with a FLAG tag. C, incubation of the candidate substrate containing DHCR24 residues 56–110 with recombinant NS3-4A produced a
faster-migrating band when probed with an anti-FLAG antibody. This was blocked in the presence of telaprevir, an NS3-4A inhibitor. Analogous reactions
were performed with test substrates containing DHCR24 residues 52–66 or 85–99. D, no cleavage was observed for the DHCR24(52–66) substrate. E, cleavage
of the DHCR24(85–99) substrate by recombinant NS3-4A was detectable by immunoblot using both anti-MBP and anti-GFP. Edman degradation of the GFP-
containing peptide revealed the amino acid sequence of NH2-TGRPGLTG-COOH, indicating that cleavage occurs between Cys91 and Thr92. F, cleavage of the
DHCR24(85–99) substrate was abrogated by mutation of Cys91 to Pro. Note that the peptide spanning map in B and the immunoblot in E are reproduced in
Fig. S5 to help orient the reader in viewing the Edman degradation traces.MW, molecular mass.
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to form specialized replication compartments (37–41). In our
previous work, we have documented specific HCV-induced
changes to host lipid metabolism, including a large-fold
increase in desmosterol (15, 16). Enrichment of desmosterol in
the membrane where viral RNA replication occurs is, more-
over, correlated with an increase in the diffusivity of the mem-
branes where RNA replication occurs (17). Prior to the work
we describe here, however, the mechanism responsible for
HCV’s regulation of desmosterol was unknown.
We now report that HCV decreases the intracellular conver-

sion of desmosterol to cholesterol by inactivating DHCR24,
the enzyme that catalyzes this reaction, thus leading to accu-
mulation of desmosterol. We establish that HCV inactivates

DHCR24 post-translationally via targeted proteolysis. Further-
more, we demonstrate that the HCV NS3-4A protease co-
occurs with DHCR24 on ER-derived membranes and/or on the
ER membrane itself and cleaves DHCR24 at the peptide bond
between Cys91 and Thr92 (Fig. 5). The proteolysis reaction,
which we confirmed both in vitro and in cellulo under a range
of conditions, thus separates the membrane-associated domain
of DHCR24 from the FAD-binding and catalytic domains. The
proteolytic cleavage of DHCR24 by NS3-4A may inactivate
the enzyme and/or may release the enzyme from the mem-
brane, thereby limiting its access to substrate. Both events
would reduce the intracellular conversion of desmosterol to
cholesterol.
Interestingly, we do not observe complete conversion of

DHCR24 to DHCR24* when we probe endogenous or ectopi-
cally expressed DHCR24 in SGR cells (Fig. 2, A–C), when we
ectopically express recombinant NS3-4A with DHCR24 (Fig.
2D), or in the in vitro reaction of immunoprecipitated
DHCR24–FLAGwith recombinant NS3-4A (Fig. 2E). Although
this might reflect product inhibition of NS3-4A by DHCR24*,
the absence of detectable, uncleaved polyprotein intermediates
in the in cellulo experiments would seem to argue against this
occurring to a significant extent in the context of viral replica-
tion. Another potential explanation is that not all DHCR24 is
accessible to NS3-4A. This could be because only a fraction of
DHCR24 co-occurs withNS3-4A and the fraction that does not
cannot be cleaved to form DHCR24*. Alternatively, DHCR24
may exist in conformations or in complexes with other proteins
that prevent interaction with and cleavage by NS3-4A. Our im-
munofluorescence imaging is consistent with the idea that
DHCR24 is distributed between NS3-4A–containing and NS3-
4A–lacking membranes in the cell (Fig. S4). Our prior work
characterizing the HCV-induced enrichment of desmosterol in
whole cell lipidomes and quantifying the enrichment of des-
mosterol in crude replication complexes when compared with
membranes lacking the viral replicase (15, 17) is also consistent
with the idea that modification of DHCR24 in these mem-
branes is responsible for the enrichment observed in whole cell
lipidomes.
We also think it worth noting that cleavage of DHCR24 may

not be the only mechanism whereby HCV NS3-4A regulates
desmosterol. Although in this study we utilized the appearance
of DHCR24* as a biomarker for HCV-induced changes in the
DHCR24-catalyzed conversion of desmosterol to cholesterol,
these two phenomena are not perfectly correlated. For exam-
ple, in the representative experiment depicted in Fig. 4, telapre-
vir-treatment is sufficient to block the effect of NS3-4A on con-
version of desmosterol to cholesterol, yet some DHCR24* is
observed in this sample. Although this could reflect technical
issues (e.g. incomplete inhibition of the protease), this could
also reflect NS3-4A’s regulation of DHCR24 activity via a cleav-
age-independent mechanism. Related to this, an additional
regulatory mechanismmight explain why inhibition of NS3-4A
activity (telaprevir, NS3-H57A mutant) may not completely
restore intracellular DHCR24 activity. Additional experi-
ments are needed to address these and other possibilities
unequivocally.

Figure 4. Expression of active NS3-4A protease reduces conversion of
desmosterol-d6 to cholesterol-d6 in Huh7.5-DHCR24KO cells. Conversion
of desmosterol-d6 to cholesterol-d6 and formation of DHCR24* were moni-
tored in Huh7.5-DHCR24KO cells. The extent of conversion in Huh7.5-
DHCR24KO cells expressing DHCR24 alone was set as 100%. A, the conversion
of desmosterol-d6 to cholesterol-d6 was monitored by GC-MS analysis of
extracted lipidomes. Each bar of the graph represents an average of 6 biolog-
ical replicates, with error bars representing the standard deviation. Although
no conversion of desmosterol-d6 to cholesterol-d6 is observed in the
Huh7.5-DHCR24KO cells expressing a GFP control protein, ectopic expression
of DHCR24-FLAG is sufficient to restore intracellular conversion of desmos-
terol-d6 to cholesterol-d6. Co-expression of active NS3-4A with DHCR24-
FLAG reduces this reaction significantly, and this is correlated with formation
of DHCR24*. NS3-4A9s effect on the intracellular reaction is abrogated in the
presence of telaprevir (p = 0.0061) or when NS3 bears the H57A mutation in
the protease active site (p = 0.0186). There was no significant (ns) difference
in conversion of desmosterol-d6 to cholesterol-d6 between the Huh7.5-
DHCR24KO cells expressing DHCR24 alone, telaprevir-treated cells co-express-
ing DHCR24with NS3-4A (p = 0.2064) or cells co-expressing DHCR24with the
inactive NS3-4A H57A mutant (p = 0.1189). B, DHCR24-FLAG species were
immunoprecipitated and analyzed by immunoblots with anti-FLAG and anti-
NS3 antibodies. Analysis of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) in cell lysates performed as an internal control is shown. Co-expres-
sion of active NS3-4A with DHCR24-FLAG results in formation of DHCR24*,
which is correlated with reduced conversion of desmosterol-d6 to choles-
terol-d6. DHCR24 residues 92-516, which correspond to the soluble catalytic
domain, has mobility comparable to DHCR24*-FLAG, but ectopic expression
of this construct does not support intracellular conversion of desmosterol-d6
to cholesterol-d6. Note that the a-FLAG blot was cut between the GFP and
DHCR24(92-516) lanes to remove the intervening lane with the molecular
weight ladder.
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Collectively, these findings support a model in which NS3-
4A cleaves DHCR24 co-occurring in the replicationmembrane,
leading to reduced conversion of desmosterol to cholesterol
and, hence, accumulation of desmosterol at this site. Taken
with prior work showing that HCV RNA replication is strongly
correlated with desmosterol abundance in replication mem-
branes, the specific proteolytic cleavage of DHCR24 by NS3-4A
now provides a biochemical mechanism by which HCV regu-
lates the lipid environment to support replication of the viral
RNA genome. We note that NS3-4A and other HCV nonstruc-
tural proteins may further affect intracellular desmosterol (and
other lipids) by mechanisms that limit access of biosynthetic
enzymes to their lipid substrates or that affect enzyme struc-
ture, dynamics, and activity. Additional study to investigate
these possibilities is warranted.
To our knowledge, we are the first to report that an enzyme

involved in the cholesterol biosynthetic pathway is a substrate
for NS3-4A. A previous study (42) reported proteolytic activa-
tion of host proteins involved in lipid metabolism induced by
HCV protein expression and suggested that sterol regulatory ele-
ment binding proteins, major regulators in cholesterol/fatty acid
biosynthesis pathways, may be subject to regulation byHCV. The
proposedmechanism, however, was through ER stress and struc-
tural changes caused by expression of HCV NS4B and core pro-
teins (42) rather than through direct proteolytic regulation of
these host proteins by NS3-4A. Thus, in addition to the complex
and indirect effects of HCV on lipid biosynthesis, metabolism,
and signaling, our studies show that viruses can also directly affect
specific lipid species that are functionally important in viral
replication.

Current HCV treatments target the viral NS3-4A serine pro-
tease, the NS5B RNA polymerase, and NS5A, which are critical
for viral replication (43); however, there has been interest in
targeting cholesterol biosynthesis as an alternative strategy.
Statins, classically used to treat high cholesterol levels by target-
ing HMG-CoA reductase, have been shown to inhibit HCV
replication in cell culture. Several clinical trials have examined
the prospect of repurposing statins for use against HCV and
other viruses (12, 44–46). Inhibition of HMG-CoA reductase
affects both cholesterol synthesis and protein lipidation, both
of which affect HCV replication (47–49). The disadvantage of
using statins as probes or as drugs is that they inhibit the first
rate-determining step in isoprenoid biosynthesis, and its prod-
uct, mevalonate, is the principal component of terpenes and
sterols, as well as nonisoprenoid products including heme, vita-
min D, and coenzyme Q (50). Consequently, small molecules
targeting HMG-CoA reductase have pleiotropic effects on cell
metabolism. This makes it challenging to deconvolute which of
these effects is the source of antiviral activity (Fig. 1), and
increases the risk of deleterious effects mediated by off-targets.
We note that Takano et al. (21) previously identified DHCR24
and DHCR7 as potential targets for anti-HCV drug develop-
ment. This was based on findings that DHCR24 expression is
augmented in liver samples from HCV-infected patients and
that U18666 has an antiviral effect on HCV. Although there are
differences between our studies that may be due to the com-
plexity of mechanisms regulating sterol biosynthesis, as well as
our use of different experimental models and assays, we believe
that their findings are at least partially consistent with our
model. First, the reduction in HCV reporter replicon activity

Figure 5. Proposed mechanism: HCV increases the abundance of desmosterol in replication membranes through NS3-4A–mediated proteolysis of
DHCR24. A, sequence alignment of other known NS3-4A protein substrates with DHCR24 reveals previously unnoticed sequence similarity. B, during HCV replica-
tion, NS3-4A located on the ERmembrane interacts with DHCR24 and cleaves it at the peptide bond between Cys91 and Thr92. This inactivates the enzyme and/or
leads to its diffusion away from the membrane. The result is decreased conversion of desmosterol to cholesterol in the membrane where NS3-4A resides and
where RNA replication occurs. This is associatedwith increasedmembrane diffusivity and RNA replication. HCV sequences are fromHCV-J6 (genotype 2a).
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observed in the presence of U18666Awas only partially rescued
by the addition of exogenous cholesterol. We posit that an
unmet requirement for desmosterol may be responsible for the
“unrescued” U18666A antiviral activity. Second, release or
inactivation of DHCR24 by NS3-4A may trigger compensatory
mechanisms (51, 52) that up-regulate DHCR24 expression in
other parts of the ER under conditions of chronic liver
infection.
Our work here provides insight into a specific requirement

for desmosterol in HCV replication. In contrast to mevalonate,
the first step in cholesterol biosynthesis that is shared with
other lipid pathways, desmosterol is a penultimate and nones-
sential intermediate in cholesterol biosynthesis. We have iden-
tified how HCV remodels the host machinery involved in cho-
lesterol biosynthesis through proteolysis of DHCR24 by the
HCV NS3-4A protease. Going forward, elucidation of the dis-
crete, specific lipidome changes that regulate viral RNA replica-
tion and other viral processes will continue to be important for
understanding how host lipids contribute to and regulate these
processes and may provide new avenues for development of
specific antiviral strategies.

Experimental procedures

Detailed methods and descriptions of plasmids are provided
in the supporting information.

Cell culture

Huh7.5 cells and Huh7.5[VEEV-NS3-5B] cells under selec-
tive pressure (puromycin at final concentration of 5 mg/ml)
were cultured in Dulbecco’s modified Eagle’s medium supple-
mented with nonessential amino acids and 10% fetal bovine se-
rum (Invitrogen) in a 37 °C incubator with 5% CO2 (53).
Huh7.5–SGR cells stably replicating the HCV JFH1 (2a) subge-
nomic replicon were generated by electroporation of Huh7.5
cells with in vitro transcribed replicon RNA as previously
described (18). Huh7.5–SGR cells were maintained in Dulbec-
co’s modified Eagle’s medium supplemented with nonessential
amino acids, 10% fetal bovine serum (Invitrogen), and G418
sulfate (750 mg/ml final concentration) (15, 16, 18).

Reverse transcription–quantitative real-time PCR

Total RNA from was isolated with TRIzol reagent (Invitro-
gen), and cDNA was generated using iScript reagents following
the manufacturer’s protocol (Bio-Rad). cDNAs were digested
with RNase H, diluted 1:10 with nuclease-free water, and ana-
lyzed by real-time qPCR using the iQTM SYBR Green Super-
mix kit (Bio-Rad) according to the manufacturer’s instructions.
The reactions were run on a MyiQTM iCycler (Bio-Rad) and
analyzed with the MyiQTM Optical System Software (Bio-
Rad). qPCR conditions were an initial 95 °C for 5 min, followed
by 40 cycles of 95 °C for 15 s and 60 °C for 30 s. Threshold cycle
(Ct) ratios were determined by normalizing to actin and a con-
trol sample using the following equation: Ratio = 100 3 2
(AACt), where AACt = (CtHCV 1 gene – CtHCV 1 Actin) 2
(CtHCV2 gene – CtHCV1 Actin), where HCV reflects either
the HCV FGR or SGR replicon. Statistical analysis was con-
ducted using a two-tailed unpaired t test with a statistical signifi-

cance set at a p value of 0.05 using GraphPad Prism release 5.0
(GraphPad Software, SanDiego, CA).

Immunoprecipitation and immunoblot analysis of DHCR7–
FLAG, DHCR24–FLAG, and endogenous DHCR24

Detailed descriptions of the co-transfection experiments for
ectopic expression of viral genes and DHCR24–FLAG with
NS3, NS3-4A, and NS5A proteins and immunoprecipitations
are provided in the supporting information. Briefly, Huh7.5
cells or Huh7.5–SGR cells were transfected with plasmids to
direct ectopic expression of DHCR24-FLAG or DHCR7-FLAG.
Immunoprecipitations were performed on 50 mg of protein for
each of two biological replicates) using a magnetic anti-
DYKDDDDK resin (Clontech) (overnight incubation at 4 °C).
The samples were boiled and eluted with 13 SDS denaturing
loading dye, separated by SDS-PAGE, and then transferred to a
polyvinylidene difluoridemembrane for immunoblotting.

Edman degradation for N-terminal amino acid sequence
determination

NS3-4A reaction products were separated by SDS-gel elec-
trophoresis (8–16% TGX mini-protean gel, Bio-Rad). The gel
was transferred onto polyvinylidene difluoride membrane (Bio-
Rad) using a Bio-Rad Trans-blot Turbo apparatus (TGX
mixed-MW setting: 2.5 A at 25 V for 3 min). The membrane
was washed three times with LC-MS grade water (Millipore–
Sigma) and stained for 30 s in 0.02% Coomassie Brilliant Blue
(Sigma) in 40% methanol, 5% acetic acid for 20–30 s at room
temperature and then destained in 40% methanol, 5% acetic
acid for 1 min at room temperature. The membrane was rinsed
in LC-MS grade water three times (5 min/rinse) and air-dried
overnight. The protein bands were excised from themembrane
and sequenced by automated Edman degradation on a gas
phase sequencer for 5 and 10 cycles (ABI Procise 494HT instru-
ment). There is a standard cycle of the 19 amino acids run at
the beginning of each run depicting how the retention time for
each amino acid is assigned. Data analysis was conducted using
SequencePro version 2.1. This was conducted in single biologi-
cal and technical replicate. The negative control was conducted
in the absence of NS3-4A. The chromatograms are reported in
Fig. S5; the peak (amino acid) in each cycle is indicated by an
arrow.

Measuring intracellular conversion of desmosterol-d6 to
cholesterol-d6

For experiments using the HCV SGR replicon, the cells were
electroporated with SGR RNA or buffer (“mock transfection”)
and then immediately treated with 10 mM deuterated desmos-
terol (desmosterol-d6; Avanti Polar Lipids). Mock electropo-
rated cells were additionally treated with 5 mM U18666A or an
equal volume of solvent control. At 48 h post-electroporation,
lipid extractions were performed, and the samples were ana-
lyzed by LC-MS or GC-MS (supporting information). Percent
conversion was calculated by the following equation: (peak area
cholesterol-d6)/(peak area cholesterol-d61 peak area desmos-
terol-d6) 3 100 = percent conversion. Statistical analysis was
conducted using a two-tailed unpaired t test with a statistical
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significance set at a p value of 0.05 using GraphPad Prism
release 5.0 (GraphPad Software). For experiments utilizing the
DHCR24KO Huh7.5 cells, DHCR24KO Huh7.5 cells were trans-
fected using Lipofectamine 2000 (Thermo Fisher Scientific). 1
mg of pIRES_DHCR24-FLAG along with 1 mg of pCMV-NS34A
or 1 mg of pCMV_NS34A-H47A mutant plasmids were diluted
together in 200 ml of Opti-MEM (Gibco). In a separate tube, 5
ml of Lipofectamine 2000 was added. The plasmid diluted in
Opti-MEM was added to the Lipofectamine 2000–Opti-MEM
mixture and incubated for 10min at room temperature prior to
addition to the cell medium. Desmosterol-d6 (Avanti Polar Lip-
ids, 5 mM) was added immediately to all wells, and telaprevir (10
mM) was added to the NS3-4A inhibitor wells. The cells were
cultured for 36 h (37 °C, 5% CO2) until lipid extraction and
analysis by LC-MS or GC-MS as described in supporting
information. Statistical analysis was conducted using a two-
tailed unpaired t test with a statistical significance set at a p
value of 0.05 using GraphPad Prism release 5.0 (GraphPad
Software).

Data availability

Raw data sets for the MS experiment reported in Fig. S1 have
been uploaded to MassIVE (MSV000085492). Chromatograms
for Edman degradation experiments are reported in Fig. S5.
All other data are located in the article. Original immuno-
blot scans showing molecular weight markers for Figs. 1D, 2,
and 4B are provided in Fig. S6. Data files for LC-MS, GC-
MS, and Sanger sequencing will be shared upon request
made to the corresponding author (priscilla_yang@hms.
harvard.edu).
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