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Abstract
Background: Small increases in zinc (Zn) consumption above recommended amounts have been
shown to reduce copper (Cu) status in experimental animals and humans. Recently, we have
reported that copper chaperone for Cu/Zn superoxide dismutase (CCS) protein level is increased
in tissues of overtly Cu-deficient rats and proposed CCS as a novel biomarker of Cu status.

Methods: Weanling male Wistar rats were fed one of four diets normal in Cu and containing
normal (30 mg Zn/kg diet) or moderately high (60, 120 or 240 mg Zn/kg diet) amounts of Zn for
5 weeks. To begin to examine the clinical relevance of CCS, we compared the sensitivity of CCS
to mild Cu deficiency, induced by moderately high intakes of Zn, with conventional indices of Cu
status.

Results: Liver and erythrocyte CCS expression was significantly (P < 0.05) increased in rats fed
the Zn-60 and/or Zn-120 diet compared to rats fed normal levels of Zn (Zn-30). Erythrocyte CCS
expression was the most sensitive measure of reduced Cu status and was able to detect a decrease
in Cu nutriture in rats fed only twice the recommended amount of Zn. Liver, erythrocyte and white
blood cell CCS expression showed a significant (P < 0.05) inverse correlation with plasma and liver
Cu concentrations and caeruloplasmin activity. Unexpectedly, rats fed the highest level of Zn (Zn-
240) showed overall better Cu status than rats fed a lower level of elevated Zn (Zn-120). Improved
Cu status in these rats correlated with increased duodenal mRNA expression of several Zn-
trafficking proteins (i.e. MT-1, ZnT-1, ZnT-2 and ZnT-4).

Conclusion: Collectively, these data show that CCS is a sensitive measure of Zn-induced mild Cu
deficiency and demonstrate a dose-dependent biphasic response for reduced Cu status by
moderately high intakes of Zn.
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Background
Zinc (Zn) and copper (Cu) play vital roles as structural
and catalytic components of metalloenzymes and are
essential nutrients required for growth and development
[1-3]. It is well recognized that consuming large quantities
of Zn for extended periods of time causes severe Cu defi-
ciency and can lead to the development of anaemia and
other abnormalities [4-8]. Of potentially greater signifi-
cance, however, are studies showing that even small
increases in Zn consumption above recommended
amounts depress Cu status in experimental animals [9,10]
and humans [11,12]. This strong antagonism of excess Zn
to Cu status was the basis for setting the Tolerable Upper
Intake Levels (ULs) for Zn [1]. At present, the mechanism
by which Zn impedes Cu absorption is not known.

In humans, overt Cu deficiency is uncommon and usually
only seen in specific situations [13]. However, mild Cu
deficiency from consuming diets inadequate in Cu
[14,15] or high in Zn [16] may be of concern. Notably,
studies have shown that a large proportion of young chil-
dren have Zn intakes exceeding the ULs and much of the
Zn consumed by these children is from Zn-fortified foods
[16-18]. Although overt Zn toxicity has not been reported
in these children, excessive Zn intake may cause small but
potentially harmful reductions in Cu balance, stressing
the need for sensitive biomarkers able to detect mild Cu
deficiency.

Insertion of Cu into Cu/Zn superoxide dismutase (SOD1)
requires the copper chaperone for SOD1 (CCS). We have
previously shown that CCS protein is up-regulated in liver
and erythrocytes of Cu-deficient rats [19] and Cu regulates
the degradation of CCS by the 26 S proteosome [20].
Another group has since reported a similar increase in
CCS in tissues of Cu-deficient rats and mice [21,22]. CCS
is a promising biomarker of reduced Cu status, as CCS
protein level is more responsive to Cu deficiency than
reduction in SOD1 activity [19], the endpoint used to set
the ULs for Zn [1]. Further, CCS is particularly appealing

given that commonly used measures of Cu status are
affected by various common conditions unrelated to Cu
nutriture [14,15,23-25] and thought to be insensitive to
marginal deficiency [14,15,26]. The latter is underscored
by experiments in rats showing that diets marginally low
in Cu induce abnormalities in heart morphology and
function, but minimal changes in conventional indices of
Cu status [27,28].

Several reports have established increased CCS protein in
tissues of overtly Cu-deficient rats and mice [19-22], how-
ever, it is not known whether CCS is responsive to small
reductions in Cu status. The objectives of this study were
two-fold; (1) to examine the effects of graded levels of
moderately high dietary Zn on Cu status and (2) to evalu-
ate the ability of CCS to detect small reductions in Cu
nutriture, induced by excess Zn, as a first step in determin-
ing the usefulness of CCS as a biomarker that can be used
in a clinical setting.

Methods
Animals and Test Diets
Weanling (21-day-old) male Wistar rats (n = 12/diet
group) (Charles River Canada, St. Constant, Canada) had
free access to one of 5 test diets [29] and demineralised
drinking water. Food consumption and body weight were
measured weekly. After 5 weeks of consuming the diets,
rats were killed by exsanguination while anesthetised with
3% isoflurane. Blood was withdrawn from the abdominal
aorta. The intestine was extracted and intestinal contents
removed by washing with isotonic saline. Extracted intes-
tine, liver and kidneys were frozen until analysis. The
Health Products and Food Branch Animal Care Commit-
tee of Health Canada approved the experimental proto-
col. Rats were treated in accordance with the guidelines of
the Canadian Council on Animal Care.

Test diets were prepared by adding appropriate amounts
of Cu (cupric carbonate) and Zn (zinc carbonate) from
cornstarch premixes. Other than differences in Cu and Zn

Table 1: Total food consumption, body weight and Zn content in tissues of rats fed diets differing in Zn and Cu1,2

Diet Group Test Diets 
(mg/kg diet)

Total Food 
Consumption 

(g)

Body Weight 
week 5 (g)

Liver Zn 
(µg/g dry 
weight)

Kidney Zn
(µg/g dry 
weight)

Mucosal Zn
(µg/g dry 
weight)

Zn Cu

Zn-30 41.27 ± 0.52a 5.70 ± 0.04a 881.0 ± 20.8a 345.1 ± 6.2a 91.99 ± 1.99a 104.82 ± 1.80a 97.12 ± 2.14a

Zn-60 65.09 ± 3.42b 5.57 ± 0.14a 876.9 ± 28.6a 346.3 ± 7.3a 94.08 ± 1.20a 102.42 ± 1.36a 98.94 ± 1.31a

Zn-120 129.18 ± 0.71c 5.77 ± 0.08a 852.8 ± 26.6a 343.4 ± 6.4a 104.40 ± 1.91b 105.95 ± 1.05a 115.28 ± 2.80b

Zn-240 242.22 ± 0.80d 5.78 ± 0.03a 908.6 ± 28.7a 364.9 ± 9.0b 109.33 ± 2.25b 112.97 ± 2.19b 146.04 ± 6.77c

Cu-D 48.48 ± 2.54e 1.07 ± 0.02b 891.2 ± 28.3a 339.0 ± 8.5a 94.69 ± 1.53a 102.07 ± 0.77a 94.93 ± 1.38a

1 Values in a column without a common letter differ, P < 0.05.
2 Values are means ± SEM, n = 12/diet group.
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content, composition of the diets were similar to those
described previously [19]. Zn and Cu content in samples
of each test diet were determined by flame atomic absorp-
tion spectrophotometry (AAS) (Perkin-Elmer 5100 PC;
Perkin Elmer Cetus Instruments, Norwalk, CT) as
described [30].

Blood Fractionation
Blood samples were collected in EDTA tubes and sepa-
rated into its components by centrifugation. Plasma was
frozen in aliquots. White blood cells (WBCs) were care-
fully removed (trying to avoid contamination with eryth-
rocytes), washed with isotonic saline and centrifuged. The
procedure was repeated 3–4 times until a WBC prepara-
tion with no visible contamination with erythrocytes was
obtained. Erythrocytes were washed 3 times with saline
prior to freezing.

Haematological Measurements
Blood samples were collected in vacutainer K3EDTA tubes
and shipped to VITA-TECH (Markham, Canada) for anal-
ysis of haematological parameters (See additional file 1:
Table 1).

Western Blotting
Liver protein extracts were prepared by homogenizing in
ice-cold 0.5% (v/v) Triton-X-100 buffer containing a pro-
tease inhibitor cocktail (Roche, Laval, Canada). WBCs and
erythrocytes were lysed in Triton-X-100 buffer or GSH rea-
gent (5 mmol/L KH2PO4/K2HPO4, 2 mmol/L glutathione,
pH 7.0), respectively. Extracts (40 µg total protein or hae-
moglobin) were separated over 8–16% Tris-Glycine gradi-
ent gels (Invitrogen, Burlington, Canada) under
denaturing and reducing conditions. Gels for each tissue
were simultaneously electroblotted onto a single nitrocel-
lulose membrane. The membrane was blocked for 1 h at
room temperature (RT) in TBS-Tween [20 mmol/L Tris,
500 mmol/L NaCl, 0.1% Tween 20 (v/v), pH 7.5] supple-
mented with 5% (wt/v) nonfat dry milk (BioRad, Her-
cules, CA). Membranes were probed with a CCS antibody
(FL-274; Santa Cruz Biotechnology, Santa Cruz, CA) at a

final concentration of 0.6 mg/L (for liver and erythro-
cytes) or 0.2 mg/L (for WBCs) overnight at 4°C. After
washing with TBS-Tween, membranes were incubated
with an anti-rabbit (0.16 mg/L) HRP-conjugated second-
ary antibody (BioRad) in blocking solution for 2 h at RT.
Antibody-bound proteins were detected by enhanced
chemiluminescence and exposure to film. Membranes
were stripped with stripping buffer (100 mmol/L 2-mer-
captoethanol, 2% (wt/v) SDS, 62.5 mmol/L Tris-HCl, pH
6.8) and re-probed with an antibody against Actin [(I-19)-
R, Santa Cruz Biotechnology] or GAPDH (MCA-1D4,
Encor Biotech, Alachua, FL) at 0.5 mg/L concentration or
at a 1:1000 dilution, respectively. Film was scanned and
band intensity determined using Scion Image software
(Scion Corporation, Frederick, MD). Band intensities
were determined at exposures within the linear response
range of the film.

Mineral Analyses in Tissues
Cu and Zn content in liver and kidney samples were deter-
mined by flame AAS as described [30]. Plasma Cu concen-
tration was measured by graphite furnace AAS using a
SIMAA 6000 (Perkin-Elmer Cetus Instruments) with Zee-
man background correction. To determine Zn and Cu lev-
els in the intestinal mucosa, mucosal cells were gently
scraped with a glass cover slide from a 10 cm intestinal
segment starting 10 cm caudal to the pyloric sphincter.
Mucosal scrapings were dried, dissolved in concentrated
HNO3 and microwave digested using a CEM (Mars5)
microwave (CEM Corporation, Matthews, NC). Zn and
Cu in digested samples were determined by flame AAS
and graphite furnace AAS, respectively.

Quantitative PCR
A segment (1 cm in length; starting 8 cm caudal to the
pyloric sphincter) of frozen intestine was excised and total
RNA isolated using QIAGEN's RNeasy mini kit (QIAGEN,
Mississauga, Canada). All RNA samples were treated with
RNase-free DNase (QIAGEN). cDNA from each sample
was generated using an oligo (dT) primer (Ambion, Aus-
tin, TX). Sequences for genes (MT-1, ZnT-1, ZnT-2 and

Table 2: Tissue Cu concentrations and SOD1 activity 1,2

Diet Group Liver Cu 
(µg/g dry weight)

Kidney Cu 
(µg/g dry weight)

Mucosal Cu 
(µg/g dry weight)

Liver SOD1 Activity 
U/mg protein

Erythrocyte SOD1 
Activity 

U/mg Hb

Zn-30 17.50 ± 0.87a 23.08 ± 1.07a 9.66 ± 0.25ab 27.39 ± 1.90a 53.21 ± 2.21a

Zn-60 16.08 ± 0.57ab 21.28 ± 1.04ab 9.21 ± 0.26ab 26.91 ± 1.15a 52.61 ± 1.97a

Zn-120 14.70 ± 1.07b 20.57 ± 0.85b 8.64 ± 0.51a 24.31 ± 1.84a 48.58 ± 1.45a

Zn-240 16.38 ± 0.65ab 21.74 ± 0.82ab 9.78 ± 0.36b 25.25 ± 1.44a 49.06 ± 1.61a

Cu-D 9.45 ± 0.82c 15.84 ± 0.32c 5.50 ± 0.49c 19.40 ± 1.76b 41.81 ± 1.55b

1 Values in a column without a common letter differ, P < 0.05.
2 Values are means ± SEM, n = 12/diet group.
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ZnT-4) were obtained from GenBank (See additional file
2: Table 2 QPCR primers). To obtain the rat Zip4
sequence, primers specific for the mouse Zip4 gene (For-
ward: 5'-ACT GGA CGG CCT GTT AAA TAC GCT-3';
Reverse: 5'-TAC TCC GAC TGC TAG AGC CAC GTA-3')
were used to amplify the rat Zip4 cDNA from total RNA.
The sequence of the PCR product was aligned against the
rat genome and the mouse Zip4 gene to confirm amplifi-
cation of the rat Zip4 cDNA. All primers used for QPCR
(See additional file 2: Table 2 QPCR primers) were
designed using PrimerQuest (Integrated DNA Technolo-
gies, Skokie, IL). QPCR was performed using an Mx4000
Multiplex Quantitative PCR System (Stratagene, La Jolla,
CA). Reactions were performed in triplicate using the Bril-
liant SYBR Green QPCR Core Reagent kit (Stratagene). To
ensure amplification of a single homogeneous product,
post-amplification dissociation curves were performed.
All primer sets produced a single product of expected size
(See additional file 3: Figure 1 PCR fragments of genes
analysed by QPCR). Changes in gene expression were
determined using the standard curve method with β-Actin
as the normalizing gene.

Enzyme Assays
Liver and erythrocyte SOD1 activity was measured by the
cytochrome c reduction assay [31] modified for analysis
with a microplate reader. Plasma caeruloplasmin (Cp)
activity was measured as described [32].

Statistical Analyses
Data were analysed by one-way ANOVA and differences
between means were determined by Fisher's least signifi-
cant difference test. Data are reported as mean ± SEM. Lin-
ear regression analyses were performed to examine the
association between conventional indices of Cu status
and tissue CCS expression. Pearson's correlation coeffi-
cient (r) was calculated to measure the goodness of fit of
the data. To test for differences in the response means and
the non-response mean for plasma Cu and Cp activity
(Figure 1), data were analysed using an ANOVA model
with diet group as the main effect. The mean levels were
compared using Tukey's Studentized Range Test. Because
of the partial response behaviour, these data were fitted
using maximum likelihood methods with the diet groups
fitted with the same mean as the Zn-30 group for the non-
responders and separate means for the responders, each
with a common variance and proportion of responders.
The response means and the non-response mean were
compared using the log-likelihood difference and
grouped when not significantly different. Because the
maximum likelihood approach does not classify individ-
ual observations, a cut-off value of 2 standard deviations
from the mean of Zn-30 rats was used to characterise indi-
vidual rats as responders and non-responders (Table 3).
Fisher exact test was used to determine differences in the

Scatter plots of (A) plasma Cu concentration and (B) Cp activity of rats fed diets differing in Zn and CuFigure 1
Scatter plots of (A) plasma Cu concentration and (B) 
Cp activity of rats fed diets differing in Zn and Cu. 
Each solid circle corresponds to one rat (n = 12/diet group). 
The horizontal line across all diet groups represents the non-
response mean of Zn-30 rats and that of the non-responders 
from other diet groups (see Methods). The dashed line 
within each diet group signifies the response mean for that 
diet group. The non-response mean (diet group Zn-30) and 
the response means (diet groups Zn-60, Zn-120, Zn-240 and 
Cu-D) were compared. Diet groups without a common let-
ter differ (P < 0.05).
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number of responders between diet groups. Statistical sig-
nificance was set at P < 0.05. Data were analysed using Sta-
tistica 7 software (StatSoft, Tulsa, OK).

Results
Test diets were prepared by adding 30, 60, 120 and 240
mg Zn/kg diet, which corresponds to normal amounts of
Zn or 2, 4 or 8 times the AIN recommended amount [33],
respectively. An additional group of rats was fed a Cu-defi-
cient diet containing normal amounts of Zn and served as
a positive control for Cu deficiency. Precise Zn and Cu
content of each test diet is shown in Table 1. All test diets
contained higher amounts of Zn than what would be
expected from amounts added to the diet preparations.
Analysis of individual dietary components revealed that
casein was the major contributor to the additional Zn in
the final diet preparations (data not shown).

Total food consumption of rats from each diet group was
similar (Table 1). Rats fed the Zn-120 and Zn-240 diet
accumulated larger (P < 0.05) amounts of Zn in the liver
compared to control rats fed normal amounts of Zn (Zn-
30) (Table 1). Only rats fed the largest amount of Zn (Zn-
240) showed a significant (P < 0.05) increase in kidney Zn
content. Zn in the intestinal mucosa of rats fed the Zn-120
or the Zn-240 diet was increased (P < 0.05). Zn content in
the liver, kidney and intestinal mucosa of rats fed the Cu-
deficient diet (Cu-D) was similar to that of rats fed ade-
quate Cu (Zn-30), indicating that the Cu-deficient diet did
not affect Zn accumulation in these tissues.

Rats consuming the diet containing the largest amount of
Zn (Zn-240) showed a significant (P < 0.05) increase in
body weight at week 4 (data not shown) and 5 (Table 1)
of the study compared to rats fed normal Zn. Conversely,
body weight of rats fed the Zn-60, Zn-120 or Cu-D diet
did not differ from that of Zn-30 rats (Table 1). Haemo-
globin (Hb) levels and other haematological parameters
of rats fed elevated Zn or the Cu-D diet were similar to

those of rats fed the Zn-30 diet (See additional file 1: Table
1).

Rats fed 4 times the normal level of Zn (Zn-120) showed
a small decrease (P < 0.05) in liver Cu compared to rats
fed normal Zn (Table 2). Surprisingly, liver Cu did not
decrease further in rats fed the highest amount of Zn (Zn-
240). In fact, Cu levels did not differ from those of Zn-30
rats. A similar trend was observed for kidney Cu content.
Diets high in Zn did not alter Cu content in the intestinal
mucosa when compared to rats fed normal Zn. However,
Cu content in the intestinal mucosa was higher (P < 0.05)
in Zn-240 compared to Zn-120 rats. Cu levels in the liver,
kidney and intestinal mucosa of rats fed the Cu-D diet
were markedly decreased (P < 0.05) compared to rats fed
the control diet. Liver and erythrocyte SOD1 activity was
unaffected (P > 0.05) in rats fed high Zn (Table 2). In con-
trast, rats fed the Cu-D diet showed a significant (P < 0.05)
decrease in SOD1 activity in liver and erythrocytes.

Scatter plots of plasma Cu levels clearly showed that while
some rats responded to increased dietary Zn with a reduc-
tion in plasma Cu other rats had normal levels (Figure
1A), indicating an all or none response. The number of
rats that responded increased from 2 rats when fed the Zn-
60 diet to 7 rats when fed the Zn-120 diet (Table 3). Con-
sistent with liver, kidney and intestinal mucosa Cu con-
tent indicating improved Cu status in rats fed the Zn-240
diet compared to rats fed the Zn-120 diet, only 3 rats fed
the Zn-240 diet were characterised as responders. The
response mean for plasma Cu was also higher in Zn-240
compared to Zn-120 rats (Figure 1A). Plasma Cu of Cu-D
rats was markedly decreased, consistent with data from a
previous study from our laboratory [10]. As expected,
given that most plasma Cu is associated with Cp, Cp activ-
ity paralleled very closely plasma Cu levels and showed a
similar all or none response behaviour (Figure 1B, Table
3). A strong positive correlation (r = 0.984) was found
between plasma Cu and Cp activity (data not shown).

Table 3: Effect of dietary Zn and Cu on plasma Cu concentration and Cp activity of rats

Animals Plasma Cu Concentration1,2 Cp Activity3,4

Zn-30 Zn-60 Zn-120 Zn-240 Cu-D Zn-30 Zn-60 Zn-120 Zn-240 Cu-D

No. of non-responders 12 10 5 9 0 11 10 5 9 0
No. of responders5 0a 2ab 7b 3ab 12c 1a 2ab 7b 3ab 12c

Total 12 12 12 12 12 12 12 12 12 12

1 Non-responders had a range of 667.6 – 1291.6 µg/L.
2 Responders (range <0.1 – 572.4 µg/L) were those animals having plasma Cu concentration lower than 2SD below the mean plasma copper 
concentration of animals in the Zn-30 diet group (Zn-30; mean ± SD = 975.0 ± 159.4 µg/L).
3 Non-responders had a range of 65.3 – 152.8 U/L.
4 Responders (range <0.1 – 57.8 U/L) were those animals having Cp activity lower than 2SD below the mean Cp activity of animals in the Zn-30 diet 
group (Zn-30; mean ± SD = 106.5 ± 23.9).
5 No. of responders were compared using the Fisher exact test. For each diet group, No. of responders without a common letter differ, P < 0.05.
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Liver CCS was increased (P < 0.05) >1.7-fold in rats fed
the Zn-120 diet compared to rats fed normal Zn (Figure
2A). CCS expression was lower (P < 0.05) in Zn-240 rats
compared to Zn-120 rats. Erythrocyte CCS was increased
(P < 0.05) >1.5-fold in Zn-60 and Zn-120 rats (Figure 2B).
The Cu-D diet induced a larger increase in CCS content in
liver and erythrocytes (>2.5-fold). WBC CCS expression
was not significantly (P > 0.05) increased in rats fed ele-
vated Zn, but was increased (P < 0.05) >3-fold in Cu-D
rats (Figure 2C). Rats fed high Zn and characterised as
responders for plasma Cu had higher (P < 0.05) liver and
WBC CCS expression than non-responders or Zn-30 rats
(Table 4). Erythrocyte CCS expression of responders was
higher (P < 0.05) than that of Zn-30 rats, but not signifi-
cantly (P > 0.05) different from non-responders.

Pearson linear correlations revealed a strong inverse asso-
ciation between liver CCS and liver (r = -0.746) and
plasma (r = -0.816) Cu and Cp activity (r = -0.787) (Table
5). A significant (P < 0.001) association was also observed
when rats from the Cu-D diet group were omitted from
the analyses. Liver CCS only showed a moderate inverse
correlation with liver and erythrocyte SOD1 activity when
all rats were used in the analyses. A significant correlation
was not found (P > 0.05) when Cu-D rats were omitted
from the analyses, consistent with the lack of a significant
decrease in SOD1 activity in rats fed elevated Zn (Table 2).
Erythrocyte CCS expression was also significantly (P <
0.001) correlated with liver and plasma Cu and Cp activ-
ity (Table 5). WBC CCS expression showed a strong
inverse correlation with liver (r = -0.768) and plasma (r =
-0.813) Cu and Cp activity (r = -0.769).

Given that rats fed the highest amount of Zn (Zn-240)
showed better Cu status than rats fed a lower level of
excess Zn (Zn-120), it prompted us to evaluate changes in
expression of duodenal Zn-trafficking proteins in
response to these levels of Zn. Messenger RNA for MT-1
and Zn transporters ZnT-1, ZnT-2 and ZnT-4 was signifi-
cantly (P < 0.05) increased only in Zn-240 rats when com-
pared to Zn-30 rats (Figure 3). MT-1 (~5-fold) and ZnT-2
(~3-fold) showed the largest increases followed by ZnT-1
and ZnT-4. Zip4 expression was unchanged in rats fed ele-
vated Zn compared to rats fed normal Zn. Collectively,
these data indicate that mRNA expression of MT-1 and
several ZnT transporters in the duodenum of rats is refrac-
tory to small increases in dietary Zn, but responds to a
higher level of Zn intake.

Discussion
This is the first study to demonstrate that CCS protein
expression responds to mild Cu deficiency induced by
moderately high dietary Zn, underscoring the potential
usefulness of CCS as a biomarker in a clinical setting. In
contrast to rats and mice used in previous studies

(A) Liver, (B) erythrocyte and (C) WBC CCS content of rats fed diets differing in Zn and CuFigure 2
(A) Liver, (B) erythrocyte and (C) WBC CCS con-
tent of rats fed diets differing in Zn and Cu. CCS 
expression in liver is expressed relative to that of β-Actin. 
CCS expression in erythrocytes and WBCs is expressed rel-
ative to that of GAPDH. Bars signify the mean ± SEM, n = 12 
(for liver and erythrocytes) or 7 (for WBCs)/diet group. Diet 
groups without a common letter differ (P < 0.05).
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[19,21,22], rats used in this study had normal haematol-
ogy and did not show any indications of the development
of anaemia, indicating that these rats were not overtly Cu
deficient. Further, rats did not show impaired growth, a
phenotype associated with severe Cu deficiency in grow-
ing rats [19].

Erythrocyte CCS expression was determined to be the
most sensitive index of reduced Cu nutriture and was able
to detect a decrease in Cu status in rats fed only twice the
AIN recommended amount of Zn [33]. This sensitivity
may also partly account for the absence of a significant
difference in erythrocyte CCS expression between
responders and non-responders for plasma Cu, as CCS
may have increased in some rats fed high Zn but charac-

terise as non-responders. Notably, erythrocyte CCS
expression in non-responders was higher than in Zn-30
rats and this difference was approaching statistical signifi-
cance (P = 0.09). Liver CCS also responded to elevated
dietary Zn and was increased in rats fed 4 times the recom-
mended amount. These are important findings, as these
same rats did not show a significant decrease in SOD1
activity, the biomarker of reduced Cu status used to set the
ULs for Zn.

Rats fed elevated Zn showed an all or none response for
decreased plasma Cu and Cp activity, indicating that these
parameters are not ideal for diagnosing small reductions
in Cu status and providing an accurate assessment of pre-
cise Cu nutriture. These data are consistent with a previous
study showing a similar all or none response for Cp activ-
ity in rats fed elevated levels of Zn [9]. This response likely
reflects the presence of strong homeostatic mechanisms
that maintain plasma Cu levels in the normal range until
liver stores have been appreciably depleted.

Although a gold standard for assessing reductions in Cu
status is lacking, decreased liver Cu content is regarded as
one of the most accurate and sensitive measures in exper-
imental animals, while plasma Cu and Cp activity are the
most common indicators used in clinical situations. The
strong inverse correlation of liver CCS expression with
these markers indicates that increased CCS expression was
specific for reduced Cu status and is a good predictor of
changes in common measures of Cu deficiency. Erythro-
cyte CCS showed a weaker association with these indica-
tors that may be explained, in part, by the slow turnover
of erythrocytes, which may not accurately reflect the cur-
rent Cu status of the rats. This is in contrast to plasma and
liver Cu levels and Cp activity that likely respond more
rapidly to changes in Cu availability.

Table 4: Comparison of tissue CCS expression between Zn-30 
rats and responders and non-responders for plasma Cu1,2

Animals CCS Expression

Liver Erythrocyte WBC

Zn-30 1.00 ± 0.14a 

(n = 12)
1.00 ± 0.18a 

(n = 12)
1.00 ± 0.20a 

(n = 7)
Non-responders3 1.18 ± 0.11a 

(n = 24)
1.44 ± 0.16ab 

(n = 24)
0.95 ± 0.11a 

(n = 17)
Responders4 1.97 ± 0.12b 

(n = 12)
1.86 ± 0.20b 

(n = 12)
2.02 ± 0.54b 

(n = 4)

1 Values in a column without a common letter differ, P < 0.05. Values 
are means ± SEM.
2 n values are in parentheses.
3 Rats from diet groups Zn-60, Zn-120 and Zn-240 characterised as 
non-responders for plasma Cu.
4 Rats from diet groups Zn-60, Zn-120 and Zn-240 characterised as 
responders for plasma Cu.

Table 5: Correlation between CCS content in tissues and liver and plasma Cu concentration, Cp activity and liver and erythrocyte 
SOD1 activity1,2

Tissue CCS Diet Groups3, n = 60 Diet Groups4, n = 48

Liver Cu Plasma Cu Cp Liver 
SOD1

Erythrocyte 
SOD1

Liver Cu Plasma Cu Cp Liver 
SOD1

Erythrocyte 
SOD1

Liver -0.746
(<0.001)

-0.816
(<0.001)

-0.787
(<0.001)

-0.418 
(<0.005)

-0.464
(<0.001)

-0.597 
(<0.001)

-0.649
(<0.001)

-0.615 
(<0.001)

-0.222
(NSD)

-0.221
(NSD)

Erythrocyte -0.633
(<0.001)

-0.618
(<0.001)

-0.590 
(<0.001)

-0.268 
(<0.05)

-0.332
(<0.01)

-0.425 
(<0.005)

-0.308 
(<0.05)

-0.297
(<0.05)

-0.001
(NSD)

0.001
(NSD)

WBC -0.7685 

(<0.001)
-0.8135 

(<0.001)
-0.7695 

(<0.001)
-0.4955 

(<0.005)
-0.5825 

(<0.001)
-0.4746 

(<0.05)
-0.5596 

(<0.005)
-0.5436 

(<0.005)
-0.0696 

(NSD)
-0.4296 

(<0.05)

1 Pearson's correlation coefficients.
2 P values are in parentheses; NSD = no statistical difference.
3 Diet groups Zn-30, Zn-60, Zn-120, Zn-240, and Cu-D.
4 Diet groups Zn-30, Zn-60, Zn-120, and Zn-240.
5 n = 35.
6 n = 28.
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During our experiments we discovered that CCS protein
in WBCs is more susceptible to degradation than CCS in
erythrocytes, requiring that WBCs be isolated quickly
from blood samples. Samples showing degradation of
CCS were excluded from our analyses. Of the 7 rats per
diet group analysed, we noticed that the majority of rats
fed high Zn were characterised as non-responders for
decreased plasma Cu and Cp activity. This over sampling
of rats showing normal plasma Cu and Cp activity may
account for the absence of a significant increase in WBC
CCS in rats fed elevated Zn. Nonetheless, WBC CCS
expression was increased in rats fed the Cu-deficient diet
and was highly correlated with conventional measures of
Cu status. Further, rats characterised as responders for
plasma Cu (which represents rats with poorer Cu status)
had higher WBC CCS levels than non-responders or Zn-
30 rats, indicating that WBC CCS responds to Cu defi-
ciency induced by excess zinc. Because of the slow turno-
ver of erythrocytes, WBC CCS may have value as an
indicator of early reductions in Cu status. Interestingly, we
found that the basal expression level of CCS in WBCs is
much higher than in other tissues such as liver, heart and
erythrocytes in rats (data not shown).

A major finding of this paper is that rats fed 8 times the
recommended amount of Zn (Zn-240) showed overall

better Cu status than rats fed 4 times the recommended
amount (Zn-120). This was consistently observed with
several biomarkers. Remarkably, Cu status indicators of
most rats fed the Zn-240 diet were indistinguishable from
rats fed a diet normal in Zn. Importantly, liver CCS was
significantly lower in Zn-240 compared to Zn-120 rats,
further demonstrating the exquisite sensitivity of CCS to
changes in Cu status. At this point, we cannot offer a def-
inite explanation as to why other studies from our labora-
tory [9,34] failed to detect this biphasic response, other
than to speculate that differences in the bioavailability of
the Zn source, other dietary components or duration of
the studies may account for this discrepancy.

Presently, the mechanism by which Zn interferes with Cu
absorption is unknown, although it is believed to occur at
the site of the intestinal enterocyte. It was thought that
increased metallothionein (MT) levels sequestered Cu in
the enterocyte leading to Cu deficiency [35,36]. However,
MT-null mice fed elevated Zn become Cu deficient indi-
cating that MT induction is not the primary cause of the
Cu deficiency [37]. Results presented here are consistent
with these data, as rats fed the Zn-60 and Zn-120 diet
showed reduced Cu status in the absence of increased
duodenal MT-1 transcript. Because MT can bind Cu, how-
ever, it would be interesting to determine whether higher

QPCR analysis of duodenal mRNA expression of Zn-trafficking proteins in rats fed diets differing in Zn and CuFigure 3
QPCR analysis of duodenal mRNA expression of Zn-trafficking proteins in rats fed diets differing in Zn and Cu. 
MT-1, ZnT-1, ZnT-2, ZnT-4 and Zip4 mRNA content is expressed relative to β-Actin expression. Bars represent the mean ± 
SEM, n = 4/diet group. For each gene, diet groups without a common letter differ (P < 0.05).
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MT-1 expression in Zn-240 rats played any role in increas-
ing Cu in the intestinal mucosa and improving Cu status
of these rats compared to Zn-120 rats.

Experiments with Caco-2 cells have indicated that ele-
vated levels of Zn affect Cu transport and reduce Cu efflux
at the basolateral side [38], suggesting that Zn may block
absorption of Cu by affecting the activity of a Cu trans-
porter. Thus, improved Cu status of Zn-240 compared to
Zn-120 rats may reflect a secondary effect of the higher Zn
diet on the activity of a Cu transporter. It is known that
distinct pools of Zn exist within cells and changes in
expression of Zn-trafficking proteins can alter the intracel-
lular distribution of Zn [39]. For example, increased
expression of ZnT-2 likely promotes the accumulation of
Zn within vesicles, decreasing cytoplasmic Zn levels [40].
In addition, increased MT levels result in more Zn bound
to MT. Given that transcripts of several Zn-trafficking pro-
teins were increased in the duodenum of rats fed the Zn-
240 but not the Zn-120 diet, it is possible that increased
expression of one or more of these Zn-trafficking proteins
altered the distribution of Zn within absorptive entero-
cytes of Zn-240 rats in a manner that alleviated the block
in activity of a Cu transporter.

Lastly, we report an interesting observation that rats fed
the highest level of Zn had increased body weight.
Although it is well recognized that Zn deficiency can result
in impaired growth [41], it is not established that con-
suming larger quantities of Zn, above recommend
amounts, can enhance growth. Given that lower doses of
Zn above the AIN recommended amount clearly
depressed Cu status of rats, the benefit of consuming this
higher level of Zn is presently unclear.

Conclusion
In this study we report two major discoveries. Firstly, we
show that CCS is a sensitive biomarker of Zn-induced
mild Cu deficiency in rats. Given this finding, further
studies evaluating CCS as a biomarker in humans are nec-
essary, as CCS may prove to be a better measure of
reduced Cu status than conventional indicators and
impact studies aimed at setting more accurate Dietary Ref-
erence Intakes for Zn and Cu. Secondly, we demonstrate a
dose-dependent biphasic response for the reduction of Cu
status by moderately high intakes of Zn. Although it is not
known whether humans respond to excess Zn in a similar
manner to rats, this finding offers a caution when inter-
preting data from studies reporting no reduction in Cu
status that have used a single dose of supplemental Zn
and emphasizes the importance of using a dose-response
approach.
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