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Diacylglycerol kinase (DGK) o, which is activated by Ca%*, contains a recoverin homology (RVH)
domain, tandem repeats of two Ca?*-binding EF-hand motifs, two cysteine-rich C1 domains and
the catalytic domain. We previously found that a DGKo. mutant lacking the RVH domain and EF-
hands was constitutively active and that the N-terminal region of DGKa, consisting of the RVH
domain and EF-hand metifs, interacted intra-molecularly with the C-terminal region containing
the C1 and catalytic domains. In this study, we narrowed down the interaction regions of DGKo.
At the C-terminal region, the C1 domains are responsible for the intra-molecular interaction. At
the N-terminal region, the EF-hand motifs mainly contribute to the interaction. Moreover, using
highly purified EF-hand motifs and C1 domains, we demonstrate that they directly bind to each
other. The co-precipitation of these two domains was clearly attenuated by the addition of Ca%*.
These results indicate that the Ca?*-induced dissociation of the intra-molecular interaction between
the EF-hand motifs and the C1 domains of DGKa is the key event that regulates the activity of the
enzyme.

© 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG)
to generate phosphatidic acid (PA) [1-5]. DG is an established acti-
vator of the conventional and novel protein kinase Cs, Ras guanyl
nucleotide-releasing protein, Unc-13 and chimaerin [6,7]. PA also
regulates various important signaling factors, such as phosphati-
dylinositol-4-phosphate 5-kinase, son of sevenless, Ras GTPase-
activating protein, C-Raf and atypical protein kinase C [3,8-10].
Therefore, DGK is thought to function in a variety of physiological
events by modulating the balance between two signaling lipids, DG
and PA.

Ten mammalian DGK isozymes (o, B, v, 8, €, ¢, 1N, 6, 1 and ¥),
which share two or three characteristic zinc finger-like C1 domains
and the catalytic region of the enzyme, are divided into five groups
according to their structural features [1-5]. Type I DGK isozymes
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(DGKs a, B and y) commonly contain tandem repeats of two EF-
hand motif domains and are classified as members of the EF-hand
family of Ca?*-binding proteins. In addition to the Ca%*-binding EF
hand motifs, all type I DGK isozymes contain an N-terminal rec-
overin homology (RVH) domain, two cysteine-rich C1 domains
and the C-terminal catalytic region [1-5]. Interestingly, these iso-
zymes exhibit different tissue- and cell-specific modes of expres-
sion. DGKa is most abundant in T-lymphocytes and the thymus
[11,12], oligodendrocytes of the brain [13]| and melanoma cells
[14]. DGKa is involved in a wide variety of pathophysiological
events [15], such as interleukin-2-dependent T-cell proliferation
[16], T-cell anergy [17,18], hepatocyte growth factor-induced cell
motility [19], melanoma apoptosis [14] and the progression of
human hepatocellular carcinoma [20].

Calcium-mediated cellular signal transduction plays an impor-
tant role in the control of the physiological functions in various
types of cells [21,22]. Most of the EF-hand proteins, such as cal-
modulin (CaM), troponin C and calcineurin regulation subunit B,
are relatively small molecules (10-20 kDa) [22] that play a special-
ized role as Ca®*-sensitive regulators of many target proteins, and
their amino acid sequences are primarily composed of EF-hand
motifs. In contrast, type I DGKs are relatively large for EF-hand pro-
teins (80-90 kDa), and represent a fusion protein connected to EF-
hand motifs (approximately 110 kDa) that are combined with
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other functional domains, including the RVH, C1 and catalytic
domains [1-5]. Calcium-activated neutral protease, calpain
[23,24] and inositol phospholipid-specific phospholipase C [25]
are the only known examples of this type of fusion protein with
a proven capacity for Ca".

Previously, we demonstrated that purified DGKo binds Ca®* in
2:1 metal:enzyme stoichiometry with an apparent dissociation
constant, Ky, of 300 nM [26,27]. The addition of Ca®* in the pres-
ence of phosphatidylserine significantly activated the enzyme
[26]. On the other hand, although DGK B and y possess EF-hand
motifs, the activities of these isozymes were not significantly
affected by Ca%* [27]. Intriguingly, a DGKo. mutant lacking the
RVH and the EF-hand motif domains translocated from the cytosol
to the membranes [28,29] and became constitutively active [28-
30]. DGKa was eluted at the monomer position (80 kDa) by gel fil-
tration [31]. These results [28-31] imply the presence of an intra-
molecular, not inter-molecular, interaction between the N-termi-
nal region of DGKa, consisting of the RVH domain and EF hand
motifs, and the C-terminal region, consisting of the C1 and catalytic
domains, which masks its activity. Moreover, by expressing the N-
terminal and C-terminal regions of DGKo separately, we recently
showed that the two domains interact with each other and that
this association is attenuated by the addition of Ca®* [32]. Further-
more, we demonstrated that Ca*-induced conformational changes
in the DGKa-N-terminal region disrupted the intra-molecular
association between the two regions of the enzyme [32]. However,
the precise domains that mediate this binding are unknown.

In this study, we attempted to narrow down the interaction
domains in both the N-terminal and C-terminal regions of DGKua,
and we found an intra-molecular and direct interaction between
the C1 domains of DGKa and its EF-hand motifs.

2. Results

2.1. The C1 domains of DGKu interact with the N-terminal region of
the enzyme

We first attempted to narrow down the region of interaction in
the C-terminal region of DGKa, which contains the C1 domains and
catalytic region. To this end, the C1 domains and the catalytic
region of DGKa that were separately fused with enhanced green
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Fig. 1. Schematic representation of the DGKo mutants used in this study. RVHD,
recoverin homology domain; EFHs, EF-hand motifs; C1Ds, C1 domains; CR, catalytic
region; NTR, N-terminal region; CTR, C-terminal region.

fluorescence protein (EGFP) were constructed (Fig. 1). They were
then expressed in mammalian COS-7 cells in addition to EGFP con-
nected to the C-terminal region of DGKa (85 K), and proteins with
the expected molecular weights, 46 K and 68 K, respectively, were
obtained (Fig. S1). Glutathione S-transferase (GST, 26 K), and GST-
fused with the N-terminal region of DGKa (48 K) (Fig. 1; Fig. S2)
were produced by bacteria expression, followed by affinity purifi-
cation using glutathione-Sepharose beads.

We examined the physical interaction between the N-terminal
region of DGKa and the C1 domain or catalytic region of the
enzyme by conducting a co-precipitation analysis using the puri-
fied GST-fused DGKo-N-terminal region and lysates from COS-7
cells expressing the EGFP-DGKa-C1 domains or EGFP-DGKa-cata-
lytic region. As previously reported [32], it was confirmed that
the GST-DGKo-N-terminal region was co-precipitated with the
EGFP-DGKa-C-terminal region (Fig. 2). As shown in Fig. 2, the C1
domains of DGKao were strongly co-precipitated with the DGKo-
N-terminal region, while the catalytic region was not able to bind
to the DGKa-N-terminal region. However, GST alone did not pull-
down the EGFP-DGKo-C1 domains (Fig. 2). These results indicate
that the C1 domains of DGKa are responsible for interacting with
the N-terminal region of the enzyme.
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Fig. 2. The DGKo-N-terminal region interacts with DGKa-C1 domains. (A) EGFP-
DGKoa-C-terminal region (CTR), -C1 domains (C1Ds) and -catalytic region (CR) were
co-precipitated with GST alone or GST-DGKa-N-terminal region (NTR) in the
absence of Ca?* (with the addition of 5 mM EGTA). The precipitation of EGFP- and
GST-tagged proteins was analyzed by Western blotting using anti-GST and anti-GFP
antibodies. The data shown are representative of three independent experiments.
Input: purified GST alone and GST-DGKo-NTR (upper panels) and COS-7 cell lysates
expressing EGFP-DGKx-CTR, -C1Ds and -CR (lower panels). (B) The quantified
relative intensities of the co-precipitated EGFP-DGKa-CTR, -C1Ds and -CR bands.
The amount of EGFP-DGKa-CTR co-precipitated with GST-DGKo-NTR was set to
100%. The corresponding value of GST alone was subtracted. The error bars
represent the standard deviation of three independent experiments. Statistical
significance was determined using the student’s t-test (**P < 0.01).
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2.2. The EF-hand motifs of DGKo. interact with the C-terminal region of
the enzyme

We next attempted to narrow down the interaction region at
the N-terminal region of DGKo, which contains the RVH domain
and EF-hand motifs. To this end, in addition to the GST-DGKa-N-
terminal region, the RVH domain and the EF-hand motifs of DGKa
(Fig. 1) were separately fused with GST, expressed in Escherichia
coli cells and purified (Fig. S2). These proteins showed the expected
molecular weights, 38 K and 36 K, respectively (Fig. S2). We con-
firmed that the GST-DGKa-N-terminal region was co-precipitated
with EGFP-DGKo-C-terminal region (Fig. 3). The bands of the
RVH domain and the EF-hand motifs that were pulled down were
weaker than that of the N-terminal region. However, compared
with the RVH domain, the EF-hand motifs exhibited markedly
stronger interactions with the C-terminal region, and the observed
band was an approximately three times more intense (Fig. 3). This
result indicates that the EF-hand motifs of DGKa mainly contribute
to the interaction with the C-terminal region of the enzyme.
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Fig. 3. The DGKa-C-terminal region interacts with DGKa-EF-hand motifs. (A) EGFP-
DGKa-C-terminal region (CTR) was co-precipitated with GST alone, GST-DGKo-N-
terminal region (NTR), GST-DGKa-RVH domain (RVHD) or GST-DGKo-EF hand
motifs (EFHs) in the absence of Ca®" (with the addition of 5mM EGTA). The
precipitation of EGFP- and GST-tagged proteins was analyzed by Western blotting
using anti-GFP and anti-GST antibodies. The data shown are representative of three
independent experiments. Input: purified GST alone, GST-DGK«-NTR, -RVHD and -
EFHs (upper panel) and COS-7 cell lysates expressing EGFP-DGKa-CT (lower panel).
(B) The quantified relative intensities of the co-precipitated GST-DGKo-NTR, GST-
DGKo-RVHD and GST-DGKo-EFHs bands. The amount of GST-DGKa-NTR co-
precipitated with EGFP-DGKo-CTR was set to 100%. The value of GST alone was
subtracted. The error bars represent the standard deviation of three independent
experiments. Statistical significance was determined using the student’s t-test
(**P<0.01).

2.3. EF-hand motifs of DGKu interact with the C1 domains of the
enzyme

Because the N-terminal and C-terminal regions were used as
partners of the C1 domains and EF-hand motifs in Figs. 2 and 3,
respectively, we next confirmed that the EF-hand motifs of DGKo
indeed associated with the C1 domains of the enzyme. We per-
formed a co-precipitation analysis using the purified GST-fused
DGKo-EF hand motifs and lysates of COS-7 cells expressing the
EGFP-DGKa-C1 domains. As shown in Fig. 4, the DGKo-EF hand
motifs co-precipitated with the EGFP-DGKa-C1 domains in the
absence of Ca".

Because the EF-hand motifs of DGKat are known to bind to Ca®*
(Kq =~ 300nM) [26,27], we next attempted to determine whether
the physical interaction between the EF-hand motifs and the C1
domains of DGKa was regulated by Ca?*. Adding 1 uM Ca®' to
the co-precipitation mixture markedly attenuated the co-precipi-
tation of the EGFP-DGKoi-C1 domain with the GST-DGKo-EF-hand
motifs, with an approximate 100% decrease (Fig. 4). The result
demonstrated that Ca?* induced the dissociation of the physical
interaction between the DGKo-EF hand motifs and the DGKo-C1
domains, and supports the previously suggested model that Ca%*-
induced conformational changes of the EF-hand-containing
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Fig. 4. DGKo-EF-hand motifs interact with DGKa-C1 domains. (A) GST alone or GST
fused with DGKo-EF hand motifs (EFHs) was co-precipitated with EGFP-DGKo-C1
domains (C1Ds) in the absence (with the addition of 5 mM EGTA) or presence of
Ca®" (1 uM free-Ca**, adjusted by adding EGTA/Ca®" solution as calculated using
Calcon software). The precipitation of EGFP- and GST-tagged proteins was analyzed
by Western blotting using anti-GFP and anti-GST antibodies. The data shown are
representative of three independent experiments. Input: purified GST alone and -
EFHs (upper panels) and COS-7 cell lysates expressing EGFP-DGKx-C1Ds (lower
panel). (B) The quantified relative intensities of the EGFP-DGKa-C1Ds co-precip-
itated with GST-DGKa-EFHs in the absence or the presence of Ca*. The amount of
EGFP-DGKoa-C1Ds in the absence of Ca?* was set to 100%. The corresponding value
of GST alone was subtracted. The error bars represent the standard deviation of
three independent experiments. Statistical significance was determined using the
student’s t-test (***P < 0.005).
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Fig. 5. Purified DGKa-C1 domains interact with purified DGKa-EF-hand motifs. (A)
6xHis-TF-fused DGKa-C1 domains (C1Ds) were expressed in bacteria and purified.
GST alone or GST fused with DGKa-EF hand motifs (EFHs) was co-precipitated with
6xHis-TF-DGKo-C1Ds in the absence of Ca%* (5 mM EGTA). The precipitation of
6xHis-TF- and GST-tagged proteins was analyzed by Western blotting using anti-
6xHis and anti-GST antibodies. A representative result of three independent
experiments is shown. Input: purified GST alone and -EFHs (upper panels) and
purified 6xHis-TF-DGKo-C1Ds (lower panel).

N-terminal region of DGKot unmask the DGKa-C-terminal region
containing the C1 domains and the catalytic region [28-30,32].

Because the C1 domains of DGKa were expressed in COS-7 cells
and were not purified, we cannot exclude the possibility that con-
taminating factors may have affected the interaction between the
C1 domains and the EF-hand motifs of the enzyme. Therefore, we
next attempted to confirm that highly purified DGKo. C1 domains
were able to bind to the DGKo EF-hand motifs that we had previ-
ously purified (Fig. S2). The bacterially expressed, cysteine-rich C1
domain has not been successfully purified so far because this
domain is insoluble and is recovered in inclusion bodies. To cir-
cumvent the problems relating to insolubility, we employed a cold
shock-trigger factor (TF) expression system [33], and 6xHis-TF-
fused C1 domains of DGKa were successfully expressed and puri-
fied (Fig. S3). It was confirmed that the purified 6xHis-TF-C1
domains had the expected molecular weight, 70K (Fig. S3). As
shown in Fig. 5, purified GST-DGKo-EF hand motifs clearly co-pre-
cipitated with purified 6xHis-TF-DGKo-C1 domains, indicating
that these two domains directly bind to each other.

3. Discussion

In this study, we demonstrated for the first time that the EF-
hand motifs of DGKo interacted intra-molecularly with its C1
domains (Figs. 2-5). Moreover, the highly purified C1 domains
were pulled down with the highly purified EF-hand motifs
(Fig. 5), indicating that these domains directly interact with each
other. We previously proposed the mechanisms by which DGKa
is activated [32]. In that model, the N-terminal region of DGKua,
consisting of the RVH domain and the EF-hand motifs, sterically
masks the C-terminal region of the enzyme, consisting of the C1
and catalytic domains. In the presence of elevated levels of Ca%*,
a conformational change that uncovers the C1 and catalytic
domains is trigger. In the new model, it is clear that the EF-hand
motifs interact with the C1 domains (Fig. 6) and that the interac-
tion between them is Ca®*-sensitive (Fig. 5). Therefore, we have
further refined the knowledge regarding the mechanism by which
DGKa is activation.

In this study, we identified the EF-hand motifs of DGKa as a
new target of the C1 domain. The C1 domain is included in a wide
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Fig. 6. A schematic representation of the proposed intra-molecular interaction and
activation mechanisms of DGKo.. The EF-hand motifs interact with the C1 domains.
The N-terminal region, consisting of the RVH domain and the EF-hand motifs,
sterically masks the C-terminal region of the enzyme. Elevated levels of Ca®* trigger
a conformational change that uncovers the C1 and catalytic domains. RVHD,
recoverin homology domain; EFHs, EF-hand motifs; C1Ds, C1 domains; CR, catalytic
region.

variety of important proteins, such as conventional and novel pro-
tein kinase Cs, Ras guanyl nucleotide-releasing protein, Unc-13 and
chimaerin, and is known well to bind to DG and phorbol ester [6,7].
However, the protein target of C1 domain has not been clearly elu-
cidated. With regard to its protein target, we previously reported
that the N-terminal region of B2-chimaerin containing Src homol-
ogy 2 and C1 domains, interacted with DGKYy [34]. However, the C1
domain alone did not bind to the catalytic region of DGKYy. The C1
domain in B2-chimaerin is located at the core of the structure,
rather than being exposed, with the putative membrane-binding
hydrophobic residues being occluded by intra-molecular contacts
with other regions of the protein [35]. The present study showed
that the C1 domain of DGKa bound intra-molecularly to the EF-
hand motifs of the enzyme and that a Ca?*-sensitive interaction
should regulate the activity of the enzyme (Figs. 2-5). Our results
expand the knowledge regarding the target and function of C1
domain.

This study provides several new insights into the functions and
regulatory mechanisms of EF-hand-containing proteins. First,
although EF-hand-containing proteins, such as calmodulin [36],
calpain [23,24], calcineurin regulation subunit B [37] and ALG-2
[38] bind the cofactors, Ca?*/calmodulin dependent protein kinase
II, calpain small subunit 1, calcineurin and annexin XI, respectively,
in an inter-molecular fashion, this study is, to our knowledge, the
first demonstration that the EF-hand motifs, instead of the N-ter-
minal region of DGKa containing the RVH domain and EF-hand
motifs [32], can participate in an intra-molecular association. Sec-
ond, we identified the C1 domains of DGKa as a new target of the
EF-hand motif. Therefore, we expanded the binding protein list of
the EF-hand motif.

Compared with the N-terminal region of DGKa, the EF-hand
motifs alone and the RVH domain alone exhibited weaker interac-
tion activities (Fig. 3). The result suggests that both the EF-hand
motifs and the RVH domain are necessary to achieve the maximum
binding activity with the C-terminal region. However, the EF-hand
motifs exhibited markedly stronger interactions with the
C-terminal region, corresponding to an approximately thrice
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strong intensity, than the RVH domain. This indicates that EF-hand
motifs are mainly responsible for the binding to the C1 domains.
Because Jiang et al. [30] previously reported that the EF-hand
motifs and RVH domain act as a functional unit during the Ca®*-
induced activation of DGKo, the RVH domain may sterically mask
the catalytic site of the catalytic region.

In this study, we have shown that DGKa is quite unique among
the EF-hand-containing proteins. Furthermore, our identification of
a direct, intra-molecular, interaction between the EF-hand motifs
and C1 domains of DGKa helps elucidate the activation mechanism
of this pathophysiologically important enzyme [15]. However, fur-
ther studies, including the determination of the tertiary structure
of DGKo, are needed to explore the regulation of the activity of
the enzyme in greater detail.

4. Experimental procedures
4.1. Plasmid constructs

The pGEX-6P-1-DGKo-N-terminal region (amino acids (aa)
1-200) construct (Fig. 1) was generated as previously described
[32]. The pEGFP-DGKa-C-terminal region (aa 197-734) construct
was prepared as previously described [39]. The cDNAs encoding
the DGKa-RVH domain (aa 1-110) and DGKa-EF-hand motifs (aa
103-200) were generated from porcine DGKo-cDNA [11] and sub-
cloned into pGEX-6P-1 (GE Healthcare Bio-Sciences, Tokyo, Japan)
at the EcoRI/Xhol site. The cDNAs encoding the DGKa-C1 domains
(aa 196-362) and DGKa-catalytic region (aa 363-734) were gener-
ated from porcine DGKa-cDNA and subcloned into pEGFP-C3 at the
Hindlll/Pstl site. The ¢cDNA encoding the DGKo-C1 domains (aa
196-362) was also subcloned into pCold TF DNA (Takara Bio, Otsu,
Japan) at the HindIll/Pstl site.

4.2. Expression and purification of GST fusion proteins

BL21 cells were transformed with the pGEX-6P-1 constructs.
GST alone and GST-fusion proteins were expressed and purified
according to the procedure recommended by the manufacturer
(GE Healthcare Bio-Sciences). Specifically, the expression of fusion
proteins was induced with 0.1 mM isopropyl-1-thio-B-p-galacto-
pyranoside (Wako Pure Chemical Industries) at 37 °C for 3 h. The
cells were then lysed by sonication in 50 mM Tris-HCl, pH 7.4,
0.25M sucrose, 1% (V/V) Triton X-100 (Nacalai Tesque, Kyoto,
Japan), 1 mM EDTA (Dojindo, Kumamoto, Japan), 1 mM dithiothre-
itol, 20 pg/ml aprotinin (Wako Pure Chemical Industries), 20 pig/ml
leupeptin (Nacalai Tesque), 20 pg/ml pepstatin (Nacalai Tesque),
20 pg/ml soybean trypsin inhibitor (Wako Pure Chemical Indus-
tries) and 1 mM phenylmethylsulfonyl fluoride (Wako Pure Chem-
ical Industries). The insoluble material was removed by
centrifugation. The supernatants were purified by affinity chroma-
tography on a glutathione-Sepharose 4B column (GE Healthcare
Bio-Sciences) at 4 °C. The purified proteins were dialyzed in phos-
phate-buffered saline containing 5 mM ethylene glycol tetraacetic
acid (EGTA) (Dojindo).

4.3. Expression and purification of 6xHis-TF fusion protein

BL21 cells were transformed with the pCold-TF-DNA constructs.
The TF-fusion proteins were expressed and purified according to
the procedure recommended by the manufacturer (Takara Bio).
Specifically, the expression of fusion proteins was induced with
0.1 mM isopropyl-1-thio-B-p-galactopyranoside at 15 °C for 24 h.
The cells were then lysed by sonication in 50 mM Tris-HCI, pH
7.4, 0.25M sucrose, 1% (V/V) Triton X-100, 1 mM EDTA, 1 mM
dithiothreitol, 20 pg/ml aprotinin, 20 pg/ml leupeptin, 20 pg/ml

pepstatin, 20 pig/ml soybean trypsin inhibitor and 1 mM phenyl-
methylsulfonyl fluoride. The insoluble material was removed by
centrifugation. The supernatants were purified by affinity chroma-
tography on a Ni Sepharose 6 fast flow column (GE Healthcare) at
4 °C. The purified proteins were dialyzed in Tris-HCI buffer (pH
7.4) containing 5 mM EGTA.

4.4. Cell culture and transfection

COS-7 cells were maintained in Dulbecco’s modified Eagle’s
medium (Wako Pure Chemical Industries, Osaka, Japan) containing
10% fetal bovine serum at 37 °C in an atmosphere containing 5%
CO,. The cells were transfected with the cDNAs by electroporation
(1 x 10° cells/2 mm gap cuvette, 110 V, 20.0 ms pulse length, one
pulse) with the Gene Pulser Xcell™ Electroporation System
(Bio-Rad Laboratories, Tokyo, Japan) according to the manufac-
turer’s instructions.

4.5. In vitro binding assay

C0S-7 cells (~1 x 107 cells/100-mm dish) expressing either
enhanced green fluorescent protein (EGFP) alone or EGFP-tagged
DGKo-CTR were lysed in 1 ml of 50 mM HEPES, pH 7.2, 1% (V/V)
Nonidet P-40 (MP Biomedicals, Tokyo, Japan), 5mM EGTA,
150 mM NaCl, 5 mM MgCl,, 1 mM dithiothreitol, 1 mM phenyl-
methylsulfonyl fluoride and Complete protease inhibitor mixture
(1 tablet/50 ml, Roche Molecular Biochemicals, Tokyo, Japan). The
mixture was centrifuged at 12,000g for 10 min at 4 °C. The result-
ing cell lysates (500 pl each) were incubated with 10 pg of GST and
GST fusion proteins for 1h at 4 °C. Then, 10 pl of glutathione-
Sepharose beads were added to the lysates, and the mixture was
incubated for 30 min at 4 °C with constant rocking. The beads were
washed four times with 50 mM HEPES, pH 7.2, 0.1% (V/V) Triton
X-100, 0.5 mM EGTA, 100 mM NacCl, 5 mM MgCl, and 10% glycerol.
The washed beads were boiled in 50 pul SDS sample buffer. The
total lysates and precipitates were analyzed by Western blotting
using anti-GST and anti-GFP monoclonal antibodies as described
below.

One hundred fifty picomoles TF-fused DGKa-C1 domains was
incubated with 150 pmol of GST and GST fusion proteins in
10mM Tris-HCl, pH 7.4, 150 mM NaCl, and 5mM EGTA for
1h at 4°C. Then, 10 pul of glutathione-Sepharose beads were
added to the mixture, and the samples were incubated for
30 min at 4 °C with constant rocking. The beads were washed
three times with 50 mM HEPES, pH 7.2, 0.1% (V/V) Triton
X-100, 0.5 mM EGTA, 150 mM NaCl, 5 mM MgCl, and 10% glyc-
erol. The washed beads were boiled in 50 pl SDS sample buffer.
The total lysates and precipitates were analyzed by Western
blotting using anti-GST and anti-His tag monoclonal antibodies
as described below.

4.6. Western blot analysis

The cell lysates and immunoprecipitates were separated using
SDS-PAGE. The separated proteins were transferred to a PVDF
membrane (Bio-Rad Laboratories, Tokyo, Japan) and blocked with
5% (w/w) skim milk. The membrane was incubated with anti-GST
monoclonal antibody (B-14, Santa Cruz Biotechnology, Santa Cruz,
CA), anti-GFP monoclonal antibody (B-2, Santa Cruz Biotechnol-
ogy) or anti-6xHis monoclonal antibody (9C11, Wako Pure
Chemical Industries) in 5% skim milk for 1 h. The immunoreactive
bands were visualized using peroxidase-conjugated anti-mouse
IgG antibodies (Jackson ImmunoResearch Laboratories, West
Grove, PA) and the ECL Western blotting detection system (GE
Healthcare Bio-Sciences).
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