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Titration of Long-Acting Insulin Using
Continuous Glucose Monitoring and
Smart Insulin Pens in Type 1
Diabetes: A Model-Based
Carbohydrate-Free Approach

Anas El Fathi”, Chiara Fabris and Marc D. Breton

Center for Diabetes Technology, University of Virginia, Charlottesville, VA, United States

Objective: Multiple daily injections (MDI) therapy is the most common treatment for type 1
diabetes (T1D), consisting of long-acting insulin to cover fasting conditions and rapid-
acting insulin to cover meals. Titration of long-acting insulin is needed to achieve
satisfactory glycemia but is challenging due to inter-and intra-individual metabolic
variability. In this work, a novel titration algorithm for long-acting insulin leveraging
continuous glucose monitoring (CGM) and smart insulin pens (SIP) data is proposed.

Methods: The algorithm is based on a glucoregulatory model that describes insulin and
meal effects on blood glucose fluctuations. The model is individualized on patient’s data
and used to extract the theoretical glucose curve in fasting conditions; the individualization
step does not require any carbohydrate records. A cost function is employed to search for
the optimal long-acting insulin dose to achieve the desired glycemic target in the fasting
state. The algorithm was tested in two virtual studies performed within a validated T1D
simulation platform, deploying different levels of metabolic variability (nominal and
variance). The performance of the method was compared to that achieved with two
published titration algorithms based on self-measured blood glucose (SMBG) records.
The sensitivity of the algorithm to carbohydrate records was also analyzed.

Results: The proposed method outperformed SMBG-based methods in terms of
reduction of exposure to hypoglycemia, especially during the night period (0 am-6 am).
In the variance scenario, during the night, an improvement in the time in the target
glycemic range (70-180 mg/dL) from 69.0% to 86.4% and a decrease in the time in
hypoglycemia (<70 mg/dL) from 10.7% to 2.6% was observed. Robustness analysis
showed that the method performance is non-sensitive to carbohydrate records.

Conclusion: The use of CGM and SIP in people with T1D using MDI therapy has the
potential to inform smart insulin titration algorithms that improve glycemic control. Clinical
studies in real-world settings are warranted to further test the proposed titration algorithm.
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Significance: This algorithm is a step towards a decision support system that improves
glycemic control and potentially the quality of life, in a population of individuals with T1D
who cannot benefit from the artificial pancreas system.

Keywords: type 1 diabetes, multiple daily injections, long-acting insulin, insulin titration, continuous glucose

monitoring, smart insulin pens

1 INTRODUCTION

In type 1 diabetes (T1D), life-long insulin replacement is required to
compensate for the practically nonexistent insulin secretion due to
the autoimmune destruction of the pancreatic beta-cells (1).
Without endogenous insulin, glucose regulation is a challenging
task, as it is heavily dependent on multiple daily treatment decisions
by the patient to account for a wide variety of factors influencing
insulin demand, e.g,, circadian rhythms, physical activity, food, and
stress. Consequently, most patients run the risk of developing long-
term micro-/macro-vascular complications due to sustained
hyperglycemia (2, 3). Tight glucose control is key to avoiding
long-term complications, but fear of hypoglycemia due to
overdosing on insulin remains a limiting factor (4). In recent
years, technological advances in glucose monitoring devices (5),
modern insulin analogs (6), and insulin delivery systems have
facilitated T1D management (7, 8). Nevertheless, T1D patients are
still not achieving their glycemic targets (9), with complication rates
and excess mortality significantly higher in T1D compared to the
general population (10).

Worldwide, most T1D patients implement insulin therapy
through multiple daily injections (MDI) of insulin (11). Insulin
injections comprise two types of insulin formulations: (i) a long-
acting analog (e.g., insulin detemir, glargine, or degludec) to
maintain glucose levels constant during fasting conditions and
overnight, accounting for about 50% of daily insulin
requirements; (ii) a rapid-acting analog (e.g., insulin lispro, aspart
or glulisine) at mealtimes to compensate for the glycemic excursions
due to the macronutrient content of the ingested food or as a
correction for hyperglycemia (12). Long-acting insulins, also called
basal insulins, are characterized by a slow, often peak-less,
absorption with an action duration of up to 24 hours (13). For
maximum glucose-lowering effect, basal insulins are typically
injected at a consistent time, once or twice a day (e.g. every
morning before breakfast and/or every night before bedtime), by
means of a vial and a syringe or more convenient insulin pens. The
next generation of insulin pens, called smart insulin pens (SIP), can
record the history of previous doses, estimate the insulin on board,
and connect with a smartphone (14).

The amount of basal insulin needed by a person is specific to
each individual as it represents their insulin need in fasting
conditions and overnight. Because of changes in people’s lifestyle
and metabolism, this dose is periodically titrated to achieve the
desired glycemic goals (1). The standard-of-care clinical
approach to basal insulin titration involves adjusting the
insulin dosage by few units based on self-monitored blood
glucose (SMBG) data measured daily in fasting conditions (i.e.,
pre-breakfast) (15-18). Continuous glucose monitoring (CGM)
devices offer the possibility to record glucose levels almost

continuously (e.g., 5-minute sampling time), for the whole day.
Algorithms using CGM data have been proposed to adapt
therapy parameters as part of decision support systems (19-
22).If the CGM system is combined with a SIP and a smartphone
application, this integrated technology allows to collect a
complete data record which enables algorithmic adjustments of
the basal insulin dose to accommodate the daily insulin needs of
an individual following MDI therapy.

This manuscript proposes a model-based algorithm that
utilizes CGM and SIP records to adapt and individualize the
long-acting insulin dose for people with T1D under MDI
therapy. The algorithm uses an insulin-glucose model to
interpret the data, but does not require users to record their
meals, which was a limitation of a previously proposed model-
based approach (23). Not requiring carbohydrate records renders
the method suitable to serve people using MDI therapy, since
most do not perform precise carbohydrate counting (24). The
proposed method is shown to outperform traditional SMBG-
based approaches for the titration of basal insulin (16), in two in-
silico experiments performed within the University of Virginia/
Padova T1D Simulator (25-27). Further, the robustness of the
approach to missing carbohydrate records is assessed by
comparing the changes to insulin dose suggested by the
algorithm with and without carbohydrate information.

2 METHODS

2.1 Novel Algorithm for Titration of Long-
Acting Insulin Using CGM and SIP Data

In MDI therapy, people inject long-acting insulin every day
approximatively at the same time, to provide a background
insulin concentration that keeps their glucose levels in target
during fasting conditions and overnight. Here, the objective is to
adapt daily long-acting insulin doses in a cyclic manner (e.g,
weekly) using individual glucose and insulin data history. It is
assumed that a CGM device records glucose levels and a SIP records
the time and size of insulin doses (bolus and basal). It is also
assumed that data records are preprocessed for non-valid or empty
values and sampled with a fixed sampling time dt into arrays with
size n. Glucose data is denoted by G, basal insulin data by Up,s,, and
bolus insulin data by Upgus. At each cycle ¢, the optimal basal dose
B is determined from the available data D = {G, Upasas Ubolus} and
a new long-acting basal dose B,; is generated from the previously
used dose B by following a run-to-run update rule (28):

B, = B¢ + ®(BF' - Be), 1)
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where @ is a saturation and dead-zone nonlinearity function that
ensures a safe change in the basal dose while being robust to small
changes in ngt (23). @ is defined as:

0 |X| < Xpmin

D(x) = ¥ max ‘X| > Xmax )

[x]

x  otherwise

where X,,;, and Xj,,.x are function parameters chosen to limit and
saturate @. A table of symbols is provided in Appendix A.3.

To determine the optimal basal dose BY', a model of glucose
metabolism capable of describing the glycemic response to meals,
bolus insulin, and basal insulin is individualized by model
identification on the available glucose traces. A residual
metabolic signal that allows to explain the experimental data
and describes unmodeled phenomena is computed as additional
model input by regularized deconvolution (29). The individualized
model is then used to predict the effect of basal insulin changes on
glucose fluctuations, in the absence of meal and bolus inputs but in
the presence of the residual metabolic signal. Thus, an
optimization problem can be formulated and solved to find the
optimal basal dose that results on the desired glucose profile in
fasting conditions.

2.1.1 Individualization of the Metabolic Model
The metabolic model used within the algorithm can be written as
the following discrete-time, linear, time-invariant model:

X(k + 1) = AdX(k) + BgasalUbasal(k) + BgolusUbolus (k) (3)
+ BﬂieaJUmeal (k) + B(le)w(k)

Y(k) = C*X(k),

where k is the discrete timestamp; X is the metabolic state vector
including plasma glucose concentration, insulin concentration in
the subcutaneous space and in plasma, insulin action, and
carbohydrate absorption from stomach and gut; Y is the model
output coinciding with plasma glucose concentration; and A9,
Bl 1B e BE o BY, and CY are state-space matrices describing
the interaction between glucose and the system inputs.

For our purposes, a linearized subcutaneous oral glucose
minimal model (SOGMM) is employed (29), augmented with
a basal dose channel (see Appendix A.1):

fky 7

[~S ~8G, 0 0

0 0 Venw Venw
0 -p, 0 0 0 0 B0 0
0 0 -ky 00 0 0 0 0
0 0 ky, -k, 0 0 0 0 0
Ac=1{0 0 0 0 —(kgq+ky)0 0 0 0
(4)
0 0 0 0 kg “k,0 0 0
0 0 0 k, kg ko kg O 0
0 0 0 0 0 0 0 —(ky +kq) 0
10 0 0 0 0 0 0 ke kg |

Bi=[00KkF(1-KF00000"

where A and By, represent the continuous counterpart of the
state-space matrices A% and B _; F, k, kqp, k, are basal insulin
pharmacokinetics parameters described as follows: F
(dimensionless) is the basal insulin bioavailability, k
(dimensionless) is the precipitate fraction of the administered
dose, kg, (min™!) is the rate constant of dissolution from
precipitate to soluble state, k, (min™!) is the rate constant of
insulin absorption to plasma; and the remaining parameters are
the same as described in Hughes et al. (29).

In equation (3), the initial state X(0) at time of day t, can be
determined by assuming that basal insulin doses were given each
day at the same time tg, considering the other model inputs to be
zero. In other words, X(0) is the steady state resulting from a
train of Dirac basal inputs given at tp in the absence of any meals
and boluses. A closed form for X(0) is derived in Appendix A.2.
as:

X(0) = exp(A°(T ~ tp)) (I - exp(A“T)) 'BcUpsea  (5)

The SOGMM model takes the meal input stored in U, in
the form of the amount of carbohydrates in the consumed meals.
Since the amount of carbohydrates is unknown, this input is
artificially reconstructed following insulin dosing rules (30):

500

TDI

Umea.l(k) = maX( 1800

(Ubolus(k) —MTDI>,O>k ELnl (6)

where TDI is the total daily dose of insulin and G, is basal
glucose. According to (6), the input Uy, can be nonzero only if
the input Uy is nonzero, thus including only instances of
bolused carbohydrate intakes. To include in the input vector
unbolused meal events, U, is further augmented by including
meal inputs identified through an unbolused-meal detection
algorithm (31, 32).

Model (3) is individualized on patient data D = {G, Uy,
Upolus) Dy estimating one insulin sensitivity parameter (S;) per
day. Additionally, carbohydrate absorption rate parameters (f,
kq1kq2,kq12) are estimated for each meal to account for inter-
meal absorption differences (e.g., from the type and ratio of
macronutrients in the consumed meal) and errors in the
reconstructed meal input. Population parameters are used for
the remaining parameters.

The list of parameters is denoted by 0=(f", kg, g‘z,kg‘]zSﬁ
mEmealsdEdays- Parameters are estimated following a maximum-a-
posteriori approach where the posterior probability of observing
6 conditioned on the data D is maximized. Note that in this step
the residual metabolic signal (®) is not considered. The
parameter vector is thus obtained as:

0 = argmeaxp(mG) Upasal> Upolus> @ = 0)

= argmea.xP(G|6, Ubasal? Ubolus) = O)P(e)) (7)

where D(0) is derived from a personalized normal prior
distribution and D(GIO, Upasat, Upoluss ® = 0) is the likelihood
of the measurements G calculated by assuming they are
independently and identically distributed under a normal
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distribution with a constant coefficient of variation and mean Y
(e> Ubasal» Ubolus’ 0= 0)-

2.1.2 Estimation of the Residual Metabolic Signal

The residual metabolic signal ® is estimated by regularized
deconvolution via inversion of the individualized model
outlined above. The deconvolution procedure is described by
Patek et al. (33).

2.1.3 Optimization of Long-Acting Insulin

The individualization procedure and the residual metabolic
signal estimation are performed daily using an extended daily
data (a day padded by a 6-hour head and a 2- hour tail before and
after the day). Using the identified model, the glucose trace in
response to the basal dose, in the absence of meals and insulin
boluses, can be predicted as:

Xpasat (K + 1) = A1 (K) + Bitgea Upasar () + By oo(k) (8)
Ybasal(k) = Cdeasal(k)r

The basal dose can then be optimized to achieve a desired
theoretical fasting glucose profile Yy,,s,. For this purpose, the
glycemic risk during the day (midnight to midnight) is
minimized using a risk function assuming higher values when
glucose is <70 mg/dL and >180 mg/dL (34). Protection against
hypoglycemia is reinforced by further penalizing glucose levels
under the desired target G, (set to 110 mg/dL) during the night
period Zy;gnes personalized to the patient data D by searching for
periods of time without insulin boluses. The optimization
problem can be written as follows:

0] Y asal k
B = argglin{zkrisk(Ybasal(k)) + Otqumgm max(l _ b Gl( ) ,0> }, 9)
basal

t

and is solved via grid search performed around the currently
used basal dose B, testing changes up to +40%, with a fixed 1%
step size. If multiple days are analyzed simultaneously, BY" is
found for each day and then averaged over days. The final
optimal dose is rounded to the nearest half unit, to
accommodate SIP resolution. This algorithm can be run
routinely at night whenever the daily data is collected.

2.2 State-of-the-Art Algorithms for Basal
Insulin Titration Using SMBG Data
Currently, most patients using MDI therapy do not own a SIP
nor consistently use a CGM, even though these technologies are
getting cheaper and more accessible (5) (35). Long-acting insulin
can still be titrated and adapted using SMBG values from a
glucose meter. SMBG is taken in fasting conditions, usually
before the breakfast meal, and used to adjust the basal insulin
dose. In the following, two existing strategies to adapt the basal
insulin dose using SMBG records will be presented and
compared against the proposed algorithm.

For each cycle , collected SMBG values, denoted (Gy,y)ic(1,c)»
will be used to compute the new optimal basal dose B In order
to keep a fair comparison between the algorithms, the same update

rule, with the same saturation and dead-zone, reported in equation
opt

(1) is used but with the newly calculated B

2.2.1 Control to Range

Long-acting insulin dose can be titrated following a control-to-
range heuristic rule. Rules are composed of a chosen range (e.g.,
80-130 mg/dL) and an insulin adjustment step (e.g., 1U). Most
titration algorithms used in clinical practice can be considered of
this sort (36). Here, an algorithm similar to the one proposed by
Visentin et al. to titrate insulin glargine was used (37), which
defines the optimal insulin dose as:

B, - Aby min (Gha) < Goin
i€[1,C]

B =0 B.~Abi & X (Ghya) < Ginax (10)

(L,

B, Otherwise

where Gppin = 80; Gax = 130; Abg is 10% of B, and is at least 1U;
and Ab; is ranging from 0.5U to 5U, with 0.5U step every 20
mg/dL.

2.2.2 Control to Reference

This baseline algorithm is taken from recent work from Cescon
et al. where an iterative learning control (ILC) is proposed to
optimize the basal insulin dose (16). This ILC algorithm finds the
new optimal dose B(épt to be administered such that the SMBG
values are driven as close as possible to the desired reference
trajectory Guarget:

9 1 i
BCPt = BC + YF(q) (Gtarget - EEiE[],C] Gbasal): (11)

where yis a gain set to 1, Gyarge is set to 110 mg/dL, and F(q) is a
discrete filter described in (16). Similarly to (16), the DC gain of
the filter F(q) is individualized to each subject as 3.

2.3 In-Silico Studies and Outcome Metrics
The basal insulin dosing adaptation algorithm was tested in a
120-day simulation study including 100 virtual adult subjects
with T1D using MDI therapy. The simulation experiment was
carried on in the FDA-accepted University of Virginia/Padova
T1D Simulator. Daily basal insulin doses of glargine-100 were
administered either in the morning or before bedtime and were
usually taken around mealtime, when possible (i.e., if a meal is
programmed at the same time as the programmed time interval
when the basal dose is taken, the basal dose is given at the same
time as the meal). Bolus doses accompanied announced meals
and were calculated using the counted carbohydrates, glucose at
mealtime, glucose target (set to 110 mg/dL), and the subject
carbohydrate ratio and insulin sensitivity factor. The virtual
subjects could treat hypoglycemia events, but a hypoglycemia
unawareness algorithm was implemented where there is a chance
that the hypoglycemia event is not treated for a period (e.g., for
each minute while glucose is under 70 mg/dL there is a 10%
chance that the hypoglycemia is treated, equivalent to 4% chance
hypoglycemia lasts for >30min). Additionally, hypoglycemia
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events between 0 am at 6 am were not treated to reinforce
night hypoglycemia.

Each virtual subject was characterized by a basal glucose and
the basal dose needed to achieve this basal glucose, U,,;. The
starting basal dose was altered from Ut by +50% for half of the
subjects and -50% for the other half. The carbohydrate ratio was
not optimized but slightly altered to keep a reasonable total daily
insulin dose: the bolus dose was decreased by 25% for subjects w
here the basal dose was increased by 50% and vice-versa. As
reported in (27), a model for glucose meter was used to generate
SMBG values from blood glucose levels, and a model for a CGM
sensor was used to generate glucose readings (38). Consumed
carbohydrate amount was predetermined in the simulator but
unknown to the adaptation algorithms.

Five treatment arms were simulated: a) a control arm where
altered insulin dosing parameters were kept the same throughout
the experiment (CTR); b) a baseline arm where the control to
range SMBG algorithm is employed (SMBG-Rule); ¢) a baseline
arm where the control to reference SMBG algorithm is employed
(SMBG-ILC); d) an experimental arm where the proposed
algorithm is employed (CGM-Opt); e) another experimental
arm similar to d) but where counted carbohydrate amount was
given to the optimization algorithm instead of being
reconstructed (CGM-Opt-Carb). Treatment arms for each
virtual subject were identical, with the same meals and
metabolic/behavioral variability.

Similar to clinical practice (39), the insulin dose was titrated
every three days to provide enough time for insulin dose change
effects on fasting glucose to stabilize. In the SMBG-Rule and
SMBG-ILC arms, three pre-breakfast SMBG values were used. In
the CGM-opt and CGM-Opt-Carb arm, the CGM data up to the
time of the next basal dose recommendations (around three
days) was used. The simulation experiment was not interrupted
during the 120 days. The same simulation was repeated for two
different scenarios: nominal and variance, described below.

2.3.1 Nominal Scenario

In this scenario, the virtual subjects consumed three similar
meals each day at the same time. Meals were taken at 7AM, 1PM,
7PM and the amount of carbohydrates per meal was 50g, 75g and
75g. There was no additional metabolic/behavioral variability.

2.3.2 Variance Scenario

In this scenario, metabolic/behavioral variability was
implemented. Behavioral variability consisted of consuming
three main meals and up to three unannounced and unbolused
snacks. Meal sizes were variable, but the total carbohydrates
consumed over the day were between 200g and 300g, main meals
were bigger than 30g, and snacks were smaller than 40g (e.g.,
three main meals 50g, 70g, 60g and two snacks 20g, 20g). The
carbohydrate amount used in the insulin bolus calculation was
subject to a random carbohydrate counting error uniformly
distributed between -40% and +40%. The insulin bolus could
be delayed by up to 1 hour after consuming a meal. Metabolic
variability was implemented by varying the insulin sensitivity
during the day and between days.

2.3.3 Outcome Metrics

Algorithm performance was assessed using established metrics of
glycemic variability and quality of glycemic control (40),
including, time in the target range of 70-180 mg/dL (TIR);
time in hypoglycemia <70 mg/dL (TBR); and time in
hyperglycemia >180 mg/dL (TAR) (A complete list of outcome
metrics are listed in Table 1). Metrics were calculated for each
arm every 15 days. Before starting the 120 days experiment, an
initial 15 days was simulated and used as a baseline. All results
are reported as mean + standard deviation across subjects for a
15-day duration. Changes of a certain 15-day period as
compared to the baseline period are reported as average and
confidence interval (CI).

3 RESULTS

Comparing the last 15 days of the 120-day simulation to the
baseline period, the CGM-Opt did not change TIR in the
nominal scenario (+1.0% CI(-1.5% to 3.6%)), but increased
TIR from 57.4% (+14.6%) to 63.6% (+15.4%) by +6.2% CI
(3.6% to 8.8%) in the variance scenario. At the same time,
TBR was decreased using the CGM-Opt in both scenarios
(-5.1% CI(-6.9% to -3.4%) in the nominal scenario, and -1.7%
CI(-3.0% to -0.4%) in the variance scenario). The CGM-Opt
performed exceptionally well during the night period, where TIR
increased by +16.1% CI(11.0% to 21.1%) in the nominal scenario
and by +17.4% CI(13.8% to 21.0%) in the variance scenario,
while TBR was decreased by -14.0% CI(-19.0% to -8.9%) in the
nominal scenario and by -8.1% CI(-11.6% to -4.6%) in the
variance scenario. These results are summarized in Figure 1
for the nominal scenario and Figure 2 for the variance scenario.
An exhaustive comparison between the four arms (CTR, SMBG-
Rule, SMBG-ILC, and CGM-Opt) is provided in Table 1.

The average basal dose in the last 15-days was compared to
the original Uy, ;. In Table 2, results of this comparison are
shown separately for virtual subjects that started with a higher
basal dose and with a lower basal dose. In Figure 3, the
percentage basal dose changes in both scenarios are shown.

There was no clinically significant change in the glycemic
metrics between the CGM-Opt arm and the CGM-Opt-Carb
arm. Between the two arms the difference in glycemic outcomes
in the last 15 days were: TIR differed by +0.1% CI(-0.1% to 0.3%)
and TBR by 0.0% CI(-0.0% to 0.01%) in the nominal scenario;
and TIR differed by +0.2% CI(0.0% to 0.4%) and TBR by 0.0% CI
(-0.1% to 0.1%) in the variance scenario. Similarly, as it can be
seen in Table 3, there was no differences between calculated
optimal basal dose B(épt for each day in the two arms (CGM-Opt
vs CGM-Opt-Carb).

4 DISCUSSION

People with T1D live with the life-long burden of making
important decisions about their daily insulin doses.
Technological advances in diabetes treatment can help in
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TABLE 1 | Summary of glycemic outcomes for the in-silico experiment.

Baseline 15days CTRlast15 SMBG-Rule @ SMBG-ILC last 15days CGM-Opt last 15 days
before start last
15 days
Nominal Overall Time in 70-180 (mg/dL) 68.2 (18.3) 67.4 (18.5) 71.2 (17.7) 74.2 (17.2) 68.4 (17.5)
Time in 70-140 (mg/dL) 41 4(19.3) 40 7 (19.3) 45 4 (16.5) 49.3 (15.1) 40.2 (12.0)
Time < 70 (mg/dL) 6 (8.4) 6 (8.5) 1(4.4) 2.2 (4.1) 0.5 (1.5)
Time < 54 (mg/dL) 9(5.7) 0(5.8) 5(1.5) 0.5 (1.9 0.1 (0.6)
Time > 180 (mg/dL) 26 2 (18.3) 27 O (18.7) 26 6 (18.5) 23.6 (17.9) 31.0 (17.9)
Time > 250 (mg/dL) 2(5.7) 4 (5.8) 7 (6.9) 3.3 (6.7) 5.0 (8.4)
Mean (mg/dL) 147.7 (25.4) 148.5 (25.9) 150.5 (23.8) 145.4 (23.1) 160.5 (20.6)
Standard deviation (mg/ 43.0 (14.0) 43.4 (14.0) 41.7 (12.5) 41.7 (12.6) 40.4 (11.9)
dL)
Total insulin (U) 49.1 (24.7) 49.2 (24.7) 48.4 (23.2) 51.4 (25.2) 43.5 (20.1)
Basal insulin (U) 28.6 (22.6) 28.6 (22.6) 27.8 (19.4) 31.3(20.2) 21.7 (14.2)
Bolus insulin (U) 20.5 (11.0) 20.5 (11.1) 20.6 (10.6) 20.1 (10.0) 21.8 (10.7)
Night [0)am- Time in 70-180 (mg/dL) 82.8 (25.3) 82.6 (25.5) 92.8 (15.0) 93.9 (12.6) 98.6 (3.8)
6am] Time in 70-140 (mg/dL) 64.9 (31.5) 65.0 (31.3) 81.6 (19.9) 87.3 (15.4) 86.6 (13.2)
Time < 70 (mg/dL) 15.2 (25.8) 15.4 (26.1) 5.8 (15.1) 5.1 (12.4) 0.2 (1.0)
Time < 54 (mg/dL) 8.4 (18.1) 8.6 (18.4) 1.3 (5.6) 1.0 (3.4) 0.0 (0.1)
Time > 180 (mg/dL) 2.0 (5.0 2.0 (5.0) 1.4 (3.7) 1.0 (3.7) 1.2 (3.7)
Time > 250 (mg/dL) 0.0 (0.0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Mean (mg/dL) 108.3 (30.7) 108.0 (30.6) 110.5 (21.8) 104.6 (17.4) 122.6 (8.3)
Standard deviation (mg/ 16.9 (8.2) 17.1 (8.2) 15.3 (6.9) 15.0 (6.2) 14.9 (6.1)
dL)
Pre-breakfast SMBG(mg/dL) 113.6 (38.9) 113.2 (39.1) 117.5 (19.0) 111.6 (6.2) 130.2 (14.1)
Variance Overall Time in 70-180 (mg/dL) 57.4 (14.6) 57.4 (14.4) 63.9 (14.4) 65.0 (12.4) 63.6 (15.4)
Time in 70-140 (mg/dL) 30 2(13.8) 30.1 (13.6) 38.9 (13.3)x 44.5 (13.3) 36.7 (14.2)
Time < 70 (mg/dL) 5(5.2) 4.6 (5.5 5 3(5.4) 9.8 (7.1) 2.8 (2.9)
Time < 54 (mg/dL) 2 5 (3.5) 2.4 (3.7) 6 (3.1) 5.0 (4.1) 1.3 (1.5)
Time > 180 (mg/dL) 38.1 (15.7) 38.0 (15.6) 30 9 (15.6) 25.2 (14.3) 33.5 (16.9)
Time > 250 (mg/dL) 11.5(8.7) 11.1(8.5) 1(7.8) 7.3 (6.8) 10.5 (8.8)
Mean (mg/dL) 169.8 (25.3) 169.1 (25.3) 158.8 (24.8) 144.9 (25.0) 165.8 (26.0)
Standard deviation (mg/ 60.7 (14.6) 59.8 (14.1) 58.1 (14.3) 58.8 (14.8) 56.8 (13.5)
dL)
Total insulin (U) 51.8 (22.6) 52.0 (22.7) 57.9 (25.7) 67.1(32.8) 55.1 (26.5)
Basal insulin (U) 28.2 (18.5) 28.2 (18.5) 35.0 (18.4) 45.4 (25.8) 31.7 (17.9)
Bolus insulin (U) 23.5(13.2) 23.8 (13.1) 22.9 (11.7) 21.8(10.8) 23.5 (11.4)
Night [0)am-  Time in 70-180 (mg/dL) 68.5 (18.9) 69.0 (19.8) 80.2 (14.5) 72.9 (14.2) 86.4 (9.9)
6am] Time in 70-140 (mg/dL) 42.8 (24.7) 41.9 (24.2) 59.4 (18.4) 61.1 (14.9) 59.4 (14.7)
Time < 70 (mg/dL) 10.9 (16.9) 10.7 (17.9) 9 8(13.3) 20.6 (16.3) 2.6 (3.3)
Time < 54 (mg/dL) 7.0 (12.3) 6.5 (12.4) 2(8.4) 10.9 (10.7) 1.1 (2.0)
Time > 180 (mg/dL) 20.6 (20.6) 20.4 (21.1) 10 1(12.6) 6.5 (9.0) 11.0 (9.6)
Time > 250 (mg/dL) 3.1(5.3) 2.5 (4.9) 6 (3.5) 1.0 (2.6) 1.7 (3.2)
Mean (mg/dL) 138.5 (38.1) 138.3 (38.1) 125.1 (26.6) 107.0 (24.9) 135.9 (13.7)
Standard deviation (mg/ 39.5 (14.9) 37.1 (11.7) 36.0 (11.8) 36.4 (11.7) 35.7 (12.0)
dL)
Pre-breakfast SMBG(mg/dL) 144.4 (37.1) 144.5 (37.8) 132.3 (10.6) 115.0 (7.5) 138.0 (18.1)

Values are reported as mean and standard deviation. Best outcomes are in green and worst in red.

easing this burden. Specifically, the new generation of SIP and
the affordability of CGM are facilitating the development of a
decision support system designed for people using MDI therapy.
The proposed algorithm will enable such decision support
systems by automatically suggesting adaptation of the basal
insulin dose after analyzing SIP and CGM records.

Our algorithm is based on a metabolic model that describes
the complex glucose traces by separating the effects of the basal
insulin dose from other system inputs, i.e., insulin boluses and
consumed meals. This approach is inspired by the clinical
practice where patients are usually asked to skip meals in
order to optimize their basal insulin (41). Once the model is
able to describe the data, we can mathematically eliminate the

effect of meals and boluses on the glucose trace, thus isolating
the effect of basal dose on the theoretical fasting glucose and
allowing for its optimal tuning. This method follows a similar
insulin basal rate optimization approach described by Fabris
etal. (42). Estimating the residual metabolic signal is key to our
approach since it detects changes in the glucose curve that are
independent of delivered insulin boluses and consumed meals
but needs to be controlled through the basal dose. The original
idea of a model-based residual metabolic signal estimated for
insulin titration was introduced by Patek et al. and refined in
other works (29, 33, 43). Another similar model-based method
was proposed previously by El Fathi et al., but it employed a
simpler model to describe the basal dose absorption and action
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FIGURE 1 | Summary of glycemic outcomes in every 15 days period for the nominal scenario of the in-silico experiment. Values are shown as mean and standard deviation.
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FIGURE 2 | Summary of glycemic outcomes in every 15 days period for the variance scenario of the in-silico experiment. Values are shown as mean and standard deviation.

on glucose (23). In this work, a recent subcutaneous absorption
model of basal dose was employed (44). Another difference is
that the basal dose is optimized independently from other
model parameters, giving the possibility to mold the cost
function to enforce a desired outcome (e.g., increased
hypoglycemia protection at night.).

To put the performance of this algorithm into perspective, we
compared it with a control-to-range algorithm inspired by the
current clinical practice and a control-to-reference algorithm
that was recently proposed. Both algorithms use the current
standard of titrating the long-acting insulin dose from the pre-
breakfast SMBG measurement. In general, results have shown
that the proposed algorithm outperforms the other methods at

night and can achieve comparable results overall. This can be
explained by multiple factors (i) with CGM, we can observe the
full glucose profile, thus clearly detecting degradations in night
control; (ii) we explicitly biased the optimization equation in (9)
to reduce hypoglycemia events during the night; (iii) once the
night period is optimized, we did not aim to optimize glycemic
metrics in the day period by optimizing insulin boluses. Our
algorithm also reduced glycemic variability as measured by the
glucose standard deviation in both scenarios (Table 1). This is
aligned with our observation in Table 2 that this algorithm can
recover the theoretical steady-state basal dose, which in theory is
the one that will cause the least variations in the glucose curve.
Furthermore, one can argue that reducing overall glycemic
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TABLE 2 | Summary of changes in basal dose from theoretical steady-state optimal value.

Change in basal insulin from theoretical optimal

Nominal Baseline with higher dose
(n=50)
Baseline with lower dose
(n=50)
Baseline with higher dose
(n=50)
Baseline with lower dose
(n=50)

Variance

CTR SMBG-Rule SMBG-ILC CGM-Opt
14.2U (8.1) 8.7U (8.2) 6.5U (8.2) -4.2U (8.1)
50.4% (0.6) 31.7% (20.9) 25.0% (25.4) -11.3% (24.8)
14,70 (7.7) -10.7U (6.9) -1.6U (10.0) -10.2U (10.4)
-49.4% (0.7) -37.7% (13.8) 7.9% (29.3) -33.8% (26.7)
13.8U (5.3) 11.2U (9.8) 17.9U (13.4) 3.9U (7.2)
50.5% (0.6) 40.4% (30.5) 65.3% (41.7) 14.1% (29.9)
-15.1U (9.7) 1.5U (8.4) 15.8U (15.8) 2.5U (10.2)
-49.5% (0.7) 11.9% (31.9) 57.1% (40.5) 13.0% (30.2)

Results are reported as mean and standard deviation of absolute differences and percentage differences, respectively.
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FIGURE 3 | Summary of long-acting dose changes in titration days (every 3 days). Values are shown as median and interquartile range.

TABLE 3 | Summary of changes between the optimization procedure when the carbohydrate input is reconstructed or counted by virtual subjects.

Absolute differences averaged per subject (100 subjects)

Absolute differences averaged per change (39 changes)

Nominal scenario
Variance scenario

0.2U (0.4) [0 to 1.8]
0.4U (0.5) [0 t0 2.7]

Values are reported as mean, standard deviation, minimum, and maximum.

variability will facilitate optimizing parameters used to compute
insulin boluses in the day period.

Our simulations have shown that the control-to-range
algorithm used in the clinical practice (SMBG-Rule) is effective
in titrating the long-acting insulin dose by reducing both
hypoglycemia and hyperglycemia. Unexpectedly, the control-
to-reference algorithm (SMBG-ILC) did not perform similarly in
the two scenarios. In spite of showing good performance in the
nominal scenario, the ILC-based algorithm was not able to
reduce hypoglycemia in the variance scenario. In Table 1, we
can see that the mean fasting SMBG values were driven close to
110 as expected by the algorithm, but this was achieved at the
cost of a higher hypoglycemia exposure. This suggests that
individualizing the target of the ILC algorithm (or stopping
titration early) for each subject may be necessary in clinical
practice. This simulation also hints that the ILC algorithm may
benefit from the use of CGM data instead of SMBG.

We have also shown that our algorithm is robust to
carbohydrate information, as seen in Table 3. This is a result

0.2U (0.04) [0.2 t0 0.3]
0.4U (0.1) [0.2 10 0.7]

of keeping meal parameters free to describe the glucose curve
with the least a-priori knowledge during the model
individualization. Therefore, the proposed meal reconstruction
approach using the simple equation in (6) is shown to be
sufficient for titration purposes. Not relying on carbohydrate
counting will facilitate the use of this algorithm by T1D patients.
In Figure 3, we can see that the algorithm converges in about
30 days (after ~10 cycles). However, in the variance scenario, the
algorithm continued to make small changes. This can be
attributed to the metabolic and behavioral variability in this
scenario. In this scenario, the algorithm might be undesirably
chasing noise, which suggests that the dead zone in Eq. 2 can be
tuned to reduce this effect. Interestingly, as seen in Figure 2,
glycemic outcomes are kept stable even after these changes.
We should recognize that our results are limited by the type of
scenarios we chose and the capabilities of the simulation
platform, mainly the amount and frequency of the metabolic
and behavioral variabilities. These results are also limited by the
chosen cost function in Eq. 9 which is biased towards decreasing
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the hypoglycemia exposure risk during the night period, and
neglecting the daytime period. This algorithm may be combined
with an insulin bolus optimization algorithm that optimize
glycemic outcomes during the daytime period.

5 CONCLUSIONS

This paper introduces a novel algorithm to titrate long-acting
insulin doses in individuals with T1D following MDI therapy
and using CGM and SIP. With the quick rise of CGM use and
the arrival of SIP, the need for such algorithms is warranted.
Our proposed method did not require carbohydrate
information, and a proof-of-concept in-silico study
demonstrated that the method performs well in simulation,
increasing time spent in the target range, while reducing
exposure to hypoglycemia, hyperglycemia, and glycemic
variability. This algorithm will be evaluated as part of a
decision support system in an upcoming clinical trial with
people with T1D using MDI therapy (NCT04443153).
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APPENDIX

A.1 Long-acting Insulin Model Integration
in the UVA/Padova T1D Simulator

A long-acting insulin model describing subcutaneous absorption
was implemented following work by Schiavon et al. (44). This is a
two compartment model described by the following differential
equations:

% Iql (t) = _kspIqI (t) +kF Ubasal

Iql(()) =0

%IqZ(t) = _kanZ(t) + kspIql (t) + (1 - k)F Ubasa.l IqZ(O) =0
Ra(t) = kanZ(t)

where Up,sa (mU/kg/min) is the glargine insulin dose
administered into the subcutis, F (dimensionless) the glargine
bioavailability, k (dimensionless) the precipitate fraction of the
administered dose, kg, (min™') the rate constant of dissolution
from precipitate to soluble state, k, (min~") the rate constant of
insulin absorption to plasma, and R, is the insulin rate of
appearance into plasma.

Model parameters of the long-acting insulin Glargine-100
were used in the simulator. Parameters values were randomly
drawn from the reported empirical distribution by Visentin et al.
(37). Correlation between parameters were not considered.

A.2 Steady-State Solution for MDI

Virtual Subject

In here, we assume that the basal dose is given at the same time tp
each day (day duration is T). We assume a line time invariant
state space model where the basal dose is considered as a Dirac
input, and we ignore all other inputs to the system. At day 1, the
state at time t can be written as:

t
X(t) = exp(At)X(0) + / exp(A“(t — 1)) BcUpaea ()T
0
Since Upgear (t) = Upasal Ot = tg), we have for t >tg

X(t) = exp(At)X(0) + exp(A“(t — t3))Bc Upgsal

At day n, for tg + (n —1)T < t < nT, we assume that basal
injections have happened at {tB + kT}keg(o - 1}, and the current
time is ty + nT.

X(t) = exp(A“t)X(0) + nElexp(Ac(to +nT = (tg — kT)))BUpasal
k=0

Which can be written as,

X(t) = exp(A“t)X(0) + exp(A“(t,

n-1
- tB)) (Eexp((n - k)ACT)> BcUbasal

k=0

By performing the variable change k' = n - k.

X(t) = exp(A“t)X(0) + exp(A°(ty

n-1
- tB))eXP(ACT) ( E eXP(k lACT) BcUbasal
k'=0
Or, since A° is marginally stable,
X(t) = exp(A“t)X(0) + exp(A(ty — tg + T)) (I - exp(nA°T)) (I

— exp(A°T)) "B Upyaal

When t = t; +nT is big enough, we have exp(A° t) ~0 and exp
(nA° T) ~0.Thus, the above expression simplifies to:

X(ty) = exp (AS(T = (t — t,))) (I — exp (A°T)) "' B.Upgeal
Notice that this formula can be generalized for patients with

two basal dose injections a day by defining the basal doses time as
tg, and tg , and the basal doses as U,,g,, and Uy,

1

A.3 Table of Symbols

Symbol Description Units
G Subcutaneous glucose as measured by CGM mg/dL
Gpasal Capillary blood glucose as measured by glucose meter mg/dL
Gp Model parameter for basal glucose mg/dL
Gy Glucose target mg/dL
DI Total daily insulin units
Upasal Injected basal insulin dose units
Be Injected basal insulin dose at day ¢ units
Bocpt Optimized basal insulin dose to be given at day ¢ units
Upolus Injected bolus insulin dose units
Upear Counted carbohydrate content of consumed meal g
tg Time of injected basal insulin min
T Period of injecting basal insulin min
m Model parameter for bioavailability of meal m _
K4 kDb, KoY . )
q1:%q2: %12 Model parameters for time constants of meal min
y absorption
Si Model parameter for insulin sensitivity of day d 1/min per
mU/L
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