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Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and
adjuvant chemotherapies are extensively used in order to reduce tumor development
and improve disease-free survival. However, chemotherapy also leads to severe off-
target side-effects resulting, together with the tumor itself, in major skeletal muscle
deconditioning. This review first focuses on recent advances in both macroscopic
changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast
cancer patients, particularly as a consequence of the chemotherapy treatment. To
date, only six clinical studies used muscle biopsies in breast cancer patients and
highlighted several important aspects of muscle deconditioning such as a decrease
in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and
mitochondrial alterations. However, in comparison with the knowledge accumulated
through decades of intensive research with many different animal and human models of
muscle atrophy, more studies are necessary to obtain a comprehensive understanding
of the cellular processes implicated in breast cancer-mediated muscle deconditioning.
This understanding is indeed essential to ultimately lead to the implementation of efficient
preventive strategies such as exercise, nutrition or pharmacological treatments. We
therefore also discuss potential mechanisms implicated in muscle deconditioning by
drawing a parallel with other cancer cachexia models of muscle wasting, both at the
pre-clinical and clinical levels.

Keywords: cancer cachexia, muscle atrophy, protein turnover, intermuscular adipose tissue, inflammatory
cytokines, mitochondria, oxidative stress, satellite cells

INTRODUCTION

Cancer represents the leading cause of death worldwide and a substantial barrier to increasing
life expectancy. Among the different cancer sites, breast cancer is the most commonly diagnosed
cancer, with 11.7% of total cases and 6.9% of cancer deaths (Sung et al., 2021). Effective therapy of
breast cancer requires a multidisciplinary approach including surgery, radiotherapy, neoadjuvant
and/or adjuvant therapies. Currently, neoadjuvant and adjuvant chemotherapies are extensively
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used in breast cancer patients to reduce tumor development
and improve disease-free survival, but also leads to severe off-
target side-effects (Maughan et al., 2010; Redden and Fuhrman,
2013; Fisusi and Akala, 2019; Schirrmacher, 2019). Among
these treatment-related side effects, both pre-clinical and clinical
studies highlighted that chemotherapeutic agents result in major
skeletal muscle deconditioning and, together with exacerbated
fatigue, are part of a vicious cycle which negatively impacts their
quality of life (Berger et al., 2015; Caan et al., 2018; Aleixo et al.,
2019; Cespedes Feliciano et al., 2019; Hiensch et al., 2019; Mallard
et al., 2020). Although breast cancer represents the most deadly
female cancer, 5-year survival rate is over 90% (National Cancer
Institute, Surveillance, Epidemiology, and End Result program,
2019) emphasizing the critical need to fight long-lasting effects
observed in survivors such as skeletal muscle deconditioning.

Skeletal muscle deconditioning is a direct consequence
of global muscle homeostasis perturbation, leading to both
structural and functional alterations that will translate into a
decrease in muscle mass and/or force as well as an increase in
fatigability (Chopard et al., 2009; Baldwin et al., 2013; Brioche
et al., 2016; Cruz-Jentoft et al., 2019; Arc-Chagnaud et al.,
2020). In the context of cancer patients, skeletal muscle atrophy
represents a major characteristic of cachexia, which can be
defined as an ongoing loss of skeletal muscle mass that cannot be
fully reversed with nutrition and leading to functional alterations
(Fearon et al., 2011). It is now well admitted that cancer cachexia
is one of the most life-threatening aspects of cancer. Indeed, it
has been shown that cachexia substantially increases sedentary
behavior, functional impairment, loss of autonomy, quality of
life degradation, surgical risks and overall adverse effects of
chemotherapy (Fouladiun et al., 2007; Fearon et al., 2011; Roberts
et al., 2013; Wallengren et al., 2013; Mason et al., 2016; Rutten
et al., 2016; Schwarz et al., 2017; Baracos et al., 2018; Daly et al.,
2018). Importantly, cachexia is also strongly correlated with a
decrease in cancer patients survival and is actually the leading
cause of death in cancer (Warren, 1932; Martin et al., 2015;
Deluche et al., 2018; Huh et al., 2020). Thus, the management of
skeletal muscle deconditioning during cancer and its treatment
represents a major challenge for healthcare, particularly in breast
cancer patients, considering both the high incidence of new
cases (Sung et al., 2021) and the prevalence of cancer cachexia
(∼25%) in breast cancer patients (Baracos et al., 2018). Even
if, compared to other cancers, breast cancer does not display
the highest prevalence of cachexia, it is important to note that
cachexia diagnosis is based on global weight loss (Fearon et al.,
2011), and not only muscle mass loss, which likely led to
an underestimation of cachexia prevalence in clinical practice
(Roeland et al., 2017).

To date, the cellular mechanisms of skeletal muscle
deconditioning are of great importance and have been extensively
reviewed in healthy people, elderly as well as in relation with
many chronic diseases (Sandri, 2008; Chopard et al., 2009;
Bodine, 2013; Bonaldo and Sandri, 2013; Schiaffino et al., 2013;
Argilés et al., 2014; Bowen et al., 2015; Brioche et al., 2016;
Petruzzelli and Wagner, 2016; Baracos et al., 2018; Larsson et al.,
2019; Dolly et al., 2020; Silva et al., 2020; Vainshtein and Sandri,
2020; Sartori et al., 2021). However, in comparison with the

knowledge accumulated through decades of intensive research
with many different animal and human models, a comprehensive
understanding of the cellular processes implicated in breast
cancer-mediated muscle deconditioning is still needed in order
to develop efficient strategies to counteract it.

This review focuses on recent advances in both macroscopic
changes and cellular mechanisms implicated in skeletal muscle
deconditioning of breast cancer patients, specifically as a
consequence of chemotherapy treatment. This review also aims
to highlight other potential mechanisms by drawing a parallel
with cancer cachexia models of muscle wasting, both at the
pre-clinical and clinical levels.

CHEMOTHERAPY-INDUCED SKELETAL
MUSCLE MACROSCOPIC ALTERATIONS
IN BREAST CANCER PATIENTS

Two families of chemotherapeutic agents are commonly used in
clinical practice for breast cancer patients: anthracyclines (i.e.,
doxorubicin or epirubicin) leading to DNA damage, and taxanes
(i.e., docetaxel or paclitaxel) acting as cytoskeletal disruptors
(Shah and Gradishar, 2018; Willson et al., 2019). Importantly,
non-hormone-dependent (i.e., triple-negative or HER2-positive)
breast cancer treatment also includes immunotherapy, a
promising new field in breast cancer therapy (Emens, 2018;
Keenan and Tolaney, 2020). If immunotherapy has been
identified to induce severe cardiotoxicity (Behr et al., 2001;
Rochette et al., 2015; Bregni et al., 2016; Varricchi et al., 2018),
there is no study to date with a focus on skeletal muscle.
On the other hand, chemotherapeutic agents are recognized to
contribute to skeletal muscle deconditioning, resulting in an
altered quality of life, increased treatment-related toxicity, and
to an increased mortality risk (Rier et al., 2016; Shachar et al.,
2017; Deluche et al., 2018; Trestini et al., 2018; Cespedes Feliciano
et al., 2019; Huh et al., 2020). To date, several skeletal muscle
structural and functional alterations were identified (loss of
muscle mass and force, altered quality) with severe consequences
on exercise tolerance.

Muscle Mass
Although it is widely accepted that chemotherapy induces
skeletal muscle loss in breast cancer patients, very few studies
clearly demonstrated it. Indeed, by excluding all non-longitudinal
studies (i.e., with no pre vs. post-chemotherapy assessments) and
lean body mass measurements (i.e., with no assessment of muscle
mass in isolation), only two studies emerged (Rossi et al., 2020;
Wiederin et al., 2020). Both studies demonstrated a decrease
in pectoralis muscle area after chemotherapy. Wiederin et al.
(2020) found a 10% reduction in muscle mass using magnetic
resonance imaging in a cohort of breast cancer (N = 221),
sarcoma (N = 115) and lymphoma (N = 216) female patients.
In breast cancer only, Rossi et al. (2020) found a 15% reduction
in muscle mass by using CT Scan. Surprisingly, we were
unable to find any other longitudinal study on whole-body or
locomotor muscle mass for breast-cancer patients undergoing
chemotherapy. As a loss of skeletal muscle mass is strongly
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associated with poor functional outcomes (Fearon et al., 2011;
Baracos et al., 2018; Cruz-Jentoft et al., 2019; Aleixo et al., 2020a)
and chemotherapy efficacy (Caan et al., 2018; Lee et al., 2021)
in breast cancer patients, further studies are needed to better
characterize the loss of muscle mass in order to counteract it
effectively thereafter.

Muscle Force
On the other hand, the impact of chemotherapy treatment
on muscle force is more documented. Numerous studies,
with various protocols of force evaluation (handgrip, isometric
knee extension, mid-thigh pull, and shoulder strength, etc.),
found inconsistent results on chemotherapy-treated breast
cancer patients. Indeed, some longitudinal studies (Schmidt
et al., 2015; Ramos da Silva et al., 2021) documented
no change in isometric muscle force in both lower limbs
(quadriceps femoris muscle) and upper limbs (latissimus
dorsi, pectoralis, and handgrip muscles), while others found
a significant reduction from −4 to −17% in handgrip
or knee extensors muscle force (van Waart et al., 2015;
Gadéa et al., 2018; Mijwel et al., 2018a; CeŠeiko et al.,
2020; Toth et al., 2020). Discrepancies in study protocols
(study duration, measurements timepoints, and treatments
administered) and in the methods of force evaluation (isometric
vs. isokinetic contractions, different muscle groups investigated)
may explain these contrasting results. Other studies also
highlighted a decrease in muscle force of breast cancer patients
undergoing chemotherapy in comparison with healthy women
(Klassen et al., 2017; Marques et al., 2020), supporting the
fact that chemotherapeutic agents may affect skeletal muscle
force production.

Muscle Quality
There is a growing body of evidence that the loss of
muscle strength and power mostly exceeds the loss of muscle
mass observed in many diseases or inactivity experiments,
emphasizing that a deterioration in muscle quality could explain
the loss in force and lead to functional impairments (di Prampero
and Narici, 2003; Brioche et al., 2016; Pagano et al., 2018; CeŠeiko
et al., 2020; Toth et al., 2020). Muscle quality can be assessed
through different techniques, including magnetic resonance
imaging, computed tomography or ultrasound echography
(Karampinos et al., 2012; Addison et al., 2014; Aubrey et al.,
2014; Khan et al., 2019; Stock and Thompson, 2021), that allows
the detection and quantification of abnormalities in skeletal
muscle composition. Among these abnormalities, intermuscular
adipose tissue (IMAT) accumulation is particularly of interest.
Indeed, these muscle fatty infiltrations (i.e., adipocytes located
between muscle fibers and muscle groups), also referred as
myosteatosis, are known to be associated with inactivity (Manini
et al., 2007; Leskinen et al., 2009; Tuttle et al., 2011; Pagano et al.,
2018), pathologies (Gorgey and Dudley, 2007; Wren et al., 2008;
Karampinos et al., 2012; Gallagher et al., 2014; Uezumi et al.,
2014b) and have been particularly investigated in sarcopenia
(Goodpaster et al., 2000, 2001; Song et al., 2004; Marcus et al.,
2010; Brioche et al., 2016). An accumulation of IMAT is closely
linked to poor muscle quality and therefore muscle dysfunction

(Jubrias et al., 1997; Visser et al., 2002, 2005; Delmonico et al.,
2009; Marcus et al., 2010; Murphy et al., 2011; Tuttle et al.,
2011; Beavers et al., 2013). In the specific context of cachexia, a
reduction in muscle quality has been observed in breast cancer
patients treated with chemotherapeutic agents. In a longitudinal
study, metastatic breast cancer patients showed an altered
muscle attenuation after taxane-based chemotherapy, indicating
a decrease in muscle quality (Rier et al., 2018). In a cross-sectional
study, breast cancer survivors who received anthracyclines were
compared to control subjects and a clear increase in thigh IMAT
content (∼30%) have been found and was interestingly correlated
with an impaired cardiorespiratory fitness (Beaudry et al., 2020).
Another cross sectional study highlighted an increased IMAT
content in cancer patients (including breast-cancer patients)
when compared to non-cancer individuals (Reding et al., 2019)
and also showed a good correlation with the development of
exercise intolerance.

Exercise Tolerance
As a consequence of the abovementioned skeletal muscle
alterations, combined with a well-known cardiotoxicity (Bird
and Swain, 2008; Kazemi-Bajestani et al., 2014; Nicolazzi
et al., 2018; Varricchi et al., 2018; Jerusalem et al., 2019),
chemotherapy is strongly impacting exercise tolerance. In
clinical setting, the six-minute walk test (6MWT) represents a
reference test reflecting exercise tolerance and is widely used
in various pathologic populations (Enright, 2003; Agarwala
and Salzman, 2020), including cancer patients (Galiano-Castillo
et al., 2016; Wesolowski et al., 2020). A recent systematic-
review reported, through the analysis of 21 original studies
using the 6MWT, that 1,084 breast cancer patients (including
both patients under treatment and survivors) showed a 24%
reduction in performance compared to 878 healthy people
(But-Hadzic et al., 2021). Aside the 6MWT, widely used
as an indirect measurement of cardiorespiratory fitness, the
assessment of the maximal oxygen consumption (V̇O2max)
represents the gold standard measurement of exercise tolerance
(Astrand and Saltin, 1961; Schumacher et al., 2019). Interestingly,
consistent results between the 6MWT and V̇O2max were
found in breast cancer patients. Indeed, another systematic
review reported, from the analysis of 27 clinical trials, a
significant 25% reduction in V̇O2max after chemotherapy
treatment compared to healthy sedentary women (Peel et al.,
2014). This cardiorespiratory deconditioning seems to strengthen
the development of cancer-related fatigue and particularly
physical fatigue (Neil et al., 2013), with consequences on
exercise intolerance. Indeed, physical fatigue, assessed by the
reduction in force during the repetition of maximal voluntary
contractions, has been found to be exacerbated in breast
cancer patients undergoing chemotherapy treatment compared
to healthy individuals (Klassen et al., 2017), negatively impacting
their exercise tolerance. Together with the decrease of skeletal
muscle mass, a reduction in exercise capacity is also strongly
associated with higher risk of adverse outcomes such as
treatment-induced toxicity, mortality or functional impairment
(Jones et al., 2012; Peel et al., 2014; Foulkes et al., 2019;
Yu et al., 2020).
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CELLULAR MECHANISMS OF SKELETAL
MUSCLE DECONDITIONING IN BREAST
CANCER PATIENTS: WHAT DO WE
KNOW?

Skeletal muscle biopsy (e.g., using Bergström needle) is the only
technique allowing full investigation of the cellular mechanisms
of muscle deconditioning (Bergstrom, 1975; Tarnopolsky et al.,
2011). To date, only six clinical studies, published in seven
different publications, used muscle biopsies in early breast
cancer patients (stage I–III) to decipher mechanisms of muscle
deconditioning (Lønbro et al., 2017; Bohlen et al., 2018; Guigni
et al., 2018; Mijwel et al., 2018b; Møller et al., 2019; Toth et al.,
2020; Wilson et al., 2020). Altogether, these studies highlighted
several important aspects of muscle deconditioning detailed
below and outlined in Figure 1.

Decrease in Skeletal Muscle Fibers
Cross-Sectional Area and Phenotypic
Shift
Muscle fibers CSA is one of the most substantial measurement
of muscle deconditioning at the cellular level. Recently, Mijwel
et al. (2018b) and Guigni et al. (2018) showed a clear decrease
in both type I and type II vastus lateralis muscle fibers
CSA after anthracycline-cyclophosphamide and taxane-based
chemotherapy treatment. Interestingly, Mijwel et al. (2018b)
demonstrated it through a longitudinal study while Guigni
et al. (2018) have done it with a cross-sectional study design,
by comparing breast cancer patients to healthy individuals.
To highlight the substantial magnitude of the decrease in
overall muscle fibers CSA during chemotherapy in breast
cancer patients, it should be noted that this decrease was
comparable to the considerable effect of 60 years of healthy
aging (Lexell et al., 1988). If comparing muscle CSA of breast
cancer patients under chemotherapy for 4 months with 60 years
of aging is insightful to emphasize the profound impact of
chemotherapy on the skeletal muscle apparatus, it is not fully
accurate as other mechanisms are involved and interact with
CSA differently in cancer vs. aging. Two other longitudinal
studies found no reduction in muscle fibers vastus lateralis CSA
during chemotherapy including taxanes, cyclophosphamide,
doxorubicin, and carboplatin (Lønbro et al., 2017; Toth et al.,
2020). However, in these studies, the second muscle biopsy was
performed after ∼5 weeks and might explain the lack of atrophy
as the effects of chemotherapeutic agents on skeletal muscle are
strongly suggested to be cumulative. It is important to note
that in vitro and in vivo studies also demonstrated the negative
impact of both chemotherapeutic agents (McLoon et al., 1998;
Gouspillou et al., 2015; Min et al., 2015; Barreto et al., 2016;
Guigni et al., 2018) and breast cancer-bearing mice models (Hesse
et al., 2019; Wang et al., 2021) on skeletal muscle structure,
strengthening the results obtained in clinical studies.

Concerning fiber type distribution, only Mijwel et al. (2018b)
reported significant changes, with a reduced proportion of type I
muscle fibers after chemotherapy treatment. This potential type I

to type II phenotypic shift is classically found in muscle disuse
models (Baldwin et al., 2013) while the opposite is observed
with aging (Larsson et al., 2019). This suggests that muscle
deconditioning in breast cancer patients might also be driven by
a decrease in overall physical activity during their treatment (De
Groef et al., 2018; Gadéa et al., 2018; Yildiz Kabak et al., 2020), a
well-known trigger of protein turnover dysregulation.

Protein Turnover
If a large number of excellent reviews have already documented
the critical role of protein turnover homeostasis in the
mechanisms related to skeletal muscle atrophy (Sandri, 2008;
Chopard et al., 2009; Bodine, 2013; Bonaldo and Sandri, 2013;
Schiaffino et al., 2013; Brioche et al., 2016; Larsson et al., 2019;
Vainshtein and Sandri, 2020; Sartori et al., 2021) including
in cancer cachexia (Argilés et al., 2014; Bowen et al., 2015;
Petruzzelli and Wagner, 2016; Baracos et al., 2018; Dolly et al.,
2020; Silva et al., 2020), little is known in the unique context
of breast cancer. Indeed, only four studies investigated the
mechanisms related to protein turnover homeostasis in breast
cancer patients (Bohlen et al., 2018; Mijwel et al., 2018b; Møller
et al., 2019; Wilson et al., 2020). Two publications from the same
research team showed, through RNAseq analysis on pectoralis
muscle, an increased expression of genes related to ubiquitin-
mediated proteolysis and a decreased expression of genes related
to ribosomes (Bohlen et al., 2018; Wilson et al., 2020). These
results potentially indicate an altered protein turnover balance,
with a reduced protein synthesis and an increased protein
breakdown. Mijwel et al. (2018b) did not find any changes
in MuRF1 protein expression (a key E3 ligase implicated in
the ubiquitin-proteasome system) after chemotherapy in breast
cancer patients, nor concerning the autophagy pathway, with
no changes in the protein expression of different key markers
implicated in this pathway (i.e., p-Ulk1, LC3B-II/I ratio, beclin-
1, all reflecting autophagosome formation). These results could
be explained by the “late” time-point of biopsy collection
in this study as cellular processes triggering muscle atrophy,
particularly those related to protein breakdown, tend to go
back to “normal” expression profiles when the muscle atrophy
is well established (Ferreira et al., 2008; Hanson et al., 2013;
Atherton et al., 2016; Kawanishi et al., 2018). Finally, the study
conducted by Møller et al. (2019) also investigated proteins
involved in signaling pathways implicated in protein turnover
from vastus lateralis muscle. Very surprisingly, they found a
decreased protein expression of the E3 Ligases MAFbx and
MuRF1 as well as an increase in p62 and phosphorylated-
Ulk1 expression (Ser757), suggesting a decreased activity of
the ubiquitin proteasome and autophagy systems, respectively.
However, it is important to highlight that 9 out of 10 patients
included in this study performed the baseline biopsy after at
least one cycle of chemotherapy with epirubicin and doxorubicin
(Lønbro et al., 2017). Given the aggressiveness of chemotherapy
treatments, this is a serious methodological bias that likely
altered “baseline” measures, and therefore, conclusions. Another
limitation lays in the heterogeneous population of cancer patients
investigated (i.e., seven patients with breast-cancer, one patient
with head and neck cancer, one patient with rectal cancer,
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FIGURE 1 | Current state of knowledge on skeletal muscle deconditioning in breast cancer patients. The use of chemotherapeutic agents in clinical breast cancer
treatment is directly affecting skeletal muscle tissue, leading to major muscle deconditioning. To date, few clinical studies investigated the underlying cellular
mechanisms that may be responsible for the macroscopic changes highlighted in breast cancer patients, affecting muscle function and having severe health
consequences. The question mark indicates inconsistent results or a mechanism that needs to be consolidated with more studies. CSA, cross sectional area.

and one patient with sarcoma). To sum up, there are strong
discrepancies between studies that investigated pathways of
protein synthesis and breakdown in breast cancer patients
undergoing chemotherapy. Further studies are needed as the
understanding of these processes is critical to counteract the
skeletal muscle atrophy outlined above.

Mitochondrial Alterations
Mitochondrial alterations represent, to date, one of the most
investigated aspect of muscle deconditioning in breast cancer,
especially in response to chemotherapeutic agents. In clinical
studies, the RNAseq analysis used by both Bohlen et al.
(2018) and Wilson et al. (2020) showed a clear dysregulation
of genes implicated in mitochondrial function and oxidative
phosphorylation. Interestingly, the authors showed a decrease
in multiple genes implicated in the electron transport chain,
antioxidant capacity, and altered PPAR signaling (including
PGC-1α), emphasizing that mitochondria and overall energy
homeostasis may be perturbed in breast cancer patients treated
with chemotherapeutic agents. Guigni et al. (2018) confirmed
a clear decrease in mitochondrial content and size for breast

cancer patients compared to healthy matched controls, in both
the intermyofibrillar and subsarcolemmal compartments. The
authors concluded that these alterations, due to the mitotoxic
effects of antineoplastic drugs, may constitute a possible
explanation to the high prevalence of exercise intolerance and
fatigue in all cancer’s types, including those not typically prone to
cachexia such as breast cancer patients. Finally, the longitudinal
study of Mijwel et al. (2018b) highlighted a decrease in citrate
synthase activity with chemotherapy. The decrease in citrate
synthase activity, a marker for mitochondrial quantity (Larsen
et al., 2012), is in line with the results of Guigni et al. (2018)
and confirms the likely lower mitochondria quantity in breast
cancer patients. This study also reports a decreased protein
expression of PINK1, an essential protein implicated in the final
stages of mitophagy, therefore suggesting a lower mitophagy
process in breast cancer patients. In addition, no variation
in protein levels of Parkin has been detected in this study,
nor those of the autophagy pathway, clearly indicating that
mitophagy is not upregulated and that future studies should
investigate this mitochondrial quality control pathway. Finally,
an increased protein expression of SOD2, an essential antioxidant
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enzyme and redox signaling trigger through H2O2 production
(Zou et al., 2017), was also found. Alone, this result does not
permit to raise any conclusion whether it reflects an increase in
antioxidant defenses or, at the opposite, a compensation for an
increase in oxidative stress (i.e., superoxide anion) linked to the
chemotherapeutic treatment. Clearly, future studies with protein
expression analysis of oxidative stress and antioxidant pathways
as well as enzymes activities are still necessary to understand
the potential implication of redox balance in skeletal muscle
deconditioning of breast cancer patients.

POTENTIAL OTHER CELLULAR
MECHANISMS OF MUSCLE
DECONDITIONING IN BREAST CANCER
PATIENTS: WHAT CAN WE LEARN FROM
OTHER CANCERS?

Based on the knowledge accumulated through decades of
intensive research, this part of the review aims to identify
potential cellular mechanisms responsible for skeletal muscle
deconditioning in breast cancer patients by drawing a parallel
with pre-clinical studies and other cancers models of muscle
wasting. As summarized in Figure 2, we have limited our review
to the main and well admitted mechanisms of muscle wasting
in cancer; our list is therefore not exhaustive. Among the large
variety of studies discussed hereafter, we found few studies related
to skeletal muscle plasticity conducted on mouse models of breast
cancer while several pre-clinical studies explored the effect of
doxorubicin administration, one of the most commonly used
chemotherapeutic agents to treat breast cancer patients. This
lack of specific investigations indicates a major imbalance in
comparison with other cancers and also emphasizes the need
to remain cautious with the mechanisms identified thereafter
as they mainly stem from the analysis of different cancers
and treatments. However, it will provide future directions for
researchers willing to investigate specifically the mechanisms of
muscle deconditioning in breast cancer.

Protein Turnover
The sensitive balance between protein synthesis and protein
breakdown is the major mechanism regulating muscle mass
(Chopard et al., 2009; Schiaffino et al., 2013; Bowen et al., 2015;
Argilés et al., 2019; Silva et al., 2020; Vainshtein and Sandri, 2020).

Skeletal muscle protein synthesis is mainly promoted by the
PI3K-Akt-mTOR pathway and cachexia patients with pancreatic
carcinoma or lung cancer demonstrated an altered PI3K-Akt-
mTOR signaling (Schmitt et al., 2007; Murton et al., 2017), a
result also found in various pre-clinical models (White et al.,
2011; Padrão et al., 2013; Gallot et al., 2014; Puppa et al., 2014;
Bohnert et al., 2016; Chen M. C. et al., 2016; de Lima Junior
et al., 2016; Sun et al., 2016; Chacon-Cabrera et al., 2017; Quan-
Jun et al., 2017; Nissinen et al., 2018; Salazar-Degracia et al.,
2018). Importantly, both clinical (Bennegård et al., 1984; Emery
et al., 1984; Dworzak et al., 1998) and pre-clinical studies (Beck
et al., 1991; Smith and Tisdale, 1993; Samuels et al., 2001; Smith

et al., 2004; Constantinou et al., 2011; Nissinen et al., 2016,
2018; Toledo et al., 2016; Antoun and Raynard, 2018; Cruz
et al., 2019; Costamagna et al., 2020) highlighted a reduction in
muscle protein synthesis, emphasizing that a reduction in protein
synthesis may explain, at least in part, the muscle deconditioning
occurring in cancer patients. Among all these studies, only
two worked on rodents treated with doxorubicin and showed
a reduced PI3K-Akt-mTOR signaling (de Lima Junior et al.,
2016; Nissinen et al., 2016). Moreover, through RNAseq analysis,
Wilson et al. (2019) also found an altered skeletal muscle mTOR
signaling in breast cancer-bearing mice. These important studies
clearly demonstrated that both breast cancer per se and the
chemotherapeutic agents used in clinical setting to treat it may
alter the main protein synthesis pathway in skeletal muscle,
possibly leading to altered protein turnover.

On the other hand, protein breakdown includes two major
pathways, the ubiquitin-proteasome and autophagy-lysosomal
systems (UPS and autophagy, respectively), that are responsible
for the degradation of most proteins and organelles in skeletal
muscle cells. First, numerous pre-clinical studies observed an
increase in skeletal muscle protein breakdown (Beck et al., 1991;
Smith and Tisdale, 1993; Temparis et al., 1994; Baracos et al.,
1995; Samuels et al., 2001; Smith et al., 2004; Silva et al., 2015;
Toledo et al., 2016), demonstrating that a decrease in protein
synthesis is not the only mechanism that could explain the loss
muscle mass in cancer cachexia. UPS and autophagy pathways
have been largely investigated both in clinical and pre-clinical
studies. The UPS is almost unanimously found to be increased in
cancer patients, particularly the “atrogenes” MAFbx and MuRF1
and the overall ubiquitination profile (Williams et al., 1999;
Bossola et al., 2003; DeJong et al., 2005; Khal et al., 2005;
Constantinou et al., 2011; Puig-Vilanova et al., 2015; Zhang
et al., 2020). Importantly, the increase in UPS activity as well as
mRNA/proteins implicated in this pathway is also consistently
found in a large number of pre-clinical studies (Baracos et al.,
1995; Gomes et al., 2001; Lecker et al., 2004; Acharyya et al.,
2005; Khal et al., 2005; Moore-Carrasco et al., 2007; Zhou
et al., 2010; Julienne et al., 2012; Padrão et al., 2013; Chacon-
Cabrera et al., 2014, 2017; Gallot et al., 2014; Johnston et al.,
2015; Silva et al., 2015; Bohnert et al., 2016; Chen M. C. et al.,
2016; Hatakeyama et al., 2016; Sun et al., 2016; Toledo et al.,
2016; Guo et al., 2017; Damrauer et al., 2018; Pin et al., 2018;
Salazar-Degracia et al., 2018; Chen L. et al., 2019; Lee et al.,
2019; Liu et al., 2019; Ranjbar et al., 2019; Bae et al., 2020;
Huot et al., 2020), strengthening the fact that the UPS plays a
major role in the protein breakdown aggravation. Concerning the
autophagy system, clinical studies also demonstrated an increase
in several important markers such as beclin1, Atg5, or LC3B-
II/I ratio (Op den Kamp et al., 2012; Johns et al., 2014; Aversa
et al., 2016; Pigna et al., 2016; de Castro et al., 2019; Zhang
et al., 2020). Together with pre-clinical studies showing the same
results (Penna et al., 2013, 2019a; Chacon-Cabrera et al., 2014;
Bohnert et al., 2016; Salazar-Degracia et al., 2016, 2018; Sirago
et al., 2017; Ballarò et al., 2019; Ranjbar et al., 2019), autophagy
might also play a significant role in the increased protein
breakdown of cancer patients. However, it appears of great
importance to highlight that the majority of these studies also
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FIGURE 2 | Potential cellular mechanisms of skeletal muscle deconditioning in breast cancer patients. Through the analysis of clinical and pre-clinical studies related
to all cancer’s types, several different pathways may be implicated in skeletal muscle deconditioning in breast cancer patients. Both the cancer per se and its
treatment lead to increased levels of inflammatory cytokines and Myostatin/Activin A pathways (in orange), consequently decreasing protein synthesis (in blue) and
increasing pathways implicated in protein breakdown (in green). The activation of the autophagy-lysosomal system needs to be elucidated as an increase in
autophagosomes formation has been consistently found as well as increased levels of p62, suggesting that lysosome activity might be disrupted in cancer cachexia,
leading to no change in autophagy flux (green dotted line). The combination of high levels of inflammatory cytokines, ROS and mitochondrial altered dynamics,
biogenesis and function (in purple) would also lead to increased protein breakdown and apoptosis. On the other hand, it would also lead to high levels of
endoplasmic reticulum stress, resulting in an increase in the UPR system (in brown) and consequently protein breakdown. The involvement of the PERK/eiF2α/ATF4
pathway, known to be implicated in non-cancer models of muscle atrophy, needs to be clarified, as it might surprisingly be necessary to counteract muscle atrophy
in cancer-related models of muscle atrophy (brown dotted line). Moreover, different studies also highlighted a reduction in the number of satellite cells (SCs), their
capacity to differentiate and skeletal muscle capacity to regenerate, emphasizing that cancer-related muscle atrophy may also result from muscle altered
repair/regrowth (in red). Finally, increased presence of fibro-adipogenic progenitors might also be implicated in muscle deconditioning as they are implicated in both
IL-6-mediated muscle atrophy (in non-cancer models of muscle atrophy) and Intermuscular adipose tissue development (in gray). Altogether, these cellular
mechanisms might play an important role in breast cancer-related skeletal muscle deconditioning and clearly need to be further investigated through clinical studies
using muscle biopsies. MAM, mitochondria-associated ER membranes.

found an increase in p62 mRNA/protein expression, suggesting
that if autophagosome formation is certainly increased, lysosome
activity might be disrupted in cancer patients, leading to no
modifications in autophagy flux (Penna et al., 2014; Klionsky
et al., 2021). Furthermore, different studies showed that skeletal
muscle protein breakdown is mostly ATP-dependent (i.e., UPS)
in pre-clinical models of cancer cachexia (Temparis et al.,
1994; Baracos et al., 1995; White et al., 2011), emphasizing
again that autophagy might not be implicated or has a minor
role in cancer-induced skeletal muscle wasting. As it is well
known that the loss of autophagy leads to muscle wasting

exacerbation in response to atrophic stimulus (Vainshtein and
Sandri, 2020), further studies are needed to elucidate the
variations of autophagic flux, whether it is an increase or a
decrease, in cancer cachexia.

The FoxO family of transcription factors (FoxO1 and
FoxO3 particularly) and NF-κB are known to be essential
transcription factors implicated in the regulation of numerous
genes of both UPS and autophagy pathways in various
models of skeletal muscle atrophy (Vainshtein and Sandri,
2020). These transcription factors have been found to be
upregulated in different cancer cachexia models (Cai et al., 2004;
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Lecker et al., 2004; White et al., 2011; Op den Kamp et al., 2013;
Chacon-Cabrera et al., 2014, 2017; Gallot et al., 2014; Puppa et al.,
2014; Chen M. C. et al., 2016; Sun et al., 2016; Sirago et al., 2017;
Salazar-Degracia et al., 2018; Lee et al., 2019; Bae et al., 2020)
including in cancer patients (Rhoads et al., 2010; Skorokhod et al.,
2012; Puig-Vilanova et al., 2015; Johns et al., 2017).

Aside from studies presented in the section of this review
dedicated to breast cancer clinical studies (Lønbro et al., 2017;
Bohlen et al., 2018; Guigni et al., 2018; Mijwel et al., 2018b; Møller
et al., 2019; Wilson et al., 2020), no preclinical study has been
done in order to explore protein breakdown in breast cancer
models. However, some pre-clinical studies explored the effect of
doxorubicin on skeletal muscle and an increase in both UPS and
autophagy pathways was suggested as MAFbx, beclin1, Atg12,
Atg7, and LC3B-II/I ratio increased with doxorubicin treatment
in mice and rats (Smuder et al., 2011; Kavazis et al., 2014; Hulmi
et al., 2018; Montalvo et al., 2020). Importantly, only Montalvo
et al. (2020) explored p62 protein levels and found no change
in its expression, again emphasizing the need to obtain a more
precise understanding of the autophagic pathway. Interestingly,
Yu et al. (2014) also treated mice with doxorubicin and found no
change in numerous autophagy markers. Altogether, pre-clinical
studies demonstrated altered protein synthesis and breakdown
mainly in response to doxorubicin administration in rodents,
again emphasizing that these mechanisms may induce skeletal
muscle wasting in breast cancer patients.

Pro-inflammatory and TGF-β Family
Cytokines
As a critical upstream of protein turnover alteration,
inflammation plays a key role in the development of muscle
wasting in cancer patients. Indeed, either released by the tumor
or immune cells, pro-inflammatory cytokines like TNF-α,
TWEAK, IL-6, IL-1β, IL-8, and INFγ have been found to be
upregulated at a systemic level in animals (Costelli et al., 1993;
Baltgalvis et al., 2008; Zhou et al., 2010; Toledo et al., 2016;
Guo et al., 2017; Chen T. et al., 2018; Bae et al., 2020; Bernardo
et al., 2020; Huot et al., 2020) and in cancer patients (Scott
et al., 1996; DeJong et al., 2005; Moses et al., 2009; Skipworth
et al., 2011; Op den Kamp et al., 2013; Puig-Vilanova et al.,
2015; Johns et al., 2017; Riccardi et al., 2020). Importantly,
from a study that included 661 breast cancer patients, systemic
inflammatory cytokines were associated with a poor survival,
reduced disease-specific survival and disease-free survival (Cho
et al., 2018). These inflammatory cytokines have been also found
to be upregulated within skeletal muscle in pre-clinical studies
(Skipworth et al., 2011; Johnston et al., 2015; Chen M. C. et al.,
2016; Hatakeyama et al., 2016; Chen L. et al., 2019; Lee et al.,
2019; Bae et al., 2020), but none of these has been investigated in
breast cancer models.

In addition to pro-inflammatory cytokines, two particular
members of the TGF-β family have been particularly explored
in cancer cachexia: myostatin (MSTN) and Activin A. MSTN
clearly represents one of the most potent negative regulator of
muscle growth and is known to act through its receptor ActRIIB
and the subsequent activation of the SMAD2/SMAD3 cascade

(Rodriguez et al., 2014). MSTN and/or its downstream targets
have been found to be upregulated in many experiments on
cancer cachexia (Costelli et al., 2008; Bonetto et al., 2009; Zhou
et al., 2010; Murphy et al., 2011; Aversa et al., 2012; Padrão et al.,
2013; Chacon-Cabrera et al., 2014; Silva et al., 2015; Chen M. C.
et al., 2016; Sun et al., 2016; Chen M. C. et al., 2018; Salazar-
Degracia et al., 2018; Lee et al., 2019; Huot et al., 2020), as well
as in studies exploring the effect of doxorubicin administration
(Kavazis et al., 2014; Liu et al., 2019). Acting through the same
receptor than MSTN (ActRIIB), Activin A is also found to be
increased in cancer cachexia (Leto et al., 2006; Loumaye et al.,
2015; Matsuyama et al., 2015; Chen J. L. et al., 2016; Chen M.
C. et al., 2016; Barreto et al., 2017; Zhong et al., 2019; Bernardo
et al., 2020) and an independent prognosis factor of survival in
cancer patients (Loumaye et al., 2017). Several authors conducted
experiments with inhibition of the MSTN/Activin A pathway and
found a reduction, or even a complete reversal, in the decrease of
muscle mass and function in pre-clinical models (Liu et al., 2008;
Benny Klimek et al., 2010; Murphy et al., 2011; Busquets et al.,
2012a,b; Gallot et al., 2014; Hatakeyama et al., 2016; Levolger
et al., 2019; Ojima et al., 2020; Pettersen et al., 2020), leading
to the consideration of this pharmacological strategy for human
cancer patients.

Mitochondrial Alterations, Oxidative
Stress, and Unfolded Protein Response
Mitochondrial alterations represent a major aspect of muscle
deconditioning that have been already associated with skeletal
muscle atrophy in breast cancer patients (Bohlen et al., 2018;
Guigni et al., 2018; Mijwel et al., 2018b; Wilson et al., 2020),
and in other cancers such as gastrointestinal and lung cancer
patients (Op den Kamp et al., 2015; de Castro et al., 2019).
Triggered by both structural and functional mitochondrial
impairments, mitochondrial alterations have been particularly
studied in pre-clinical studies. First, altered morphology and/or
mitochondria loss have been found in different models of
cancer in animals and/or with chemotherapeutic agents (Shum
et al., 2012; White et al., 2012; Fontes-Oliveira et al., 2013;
Barreto et al., 2016; Brown et al., 2017; Sorensen et al., 2017)
as well as in gastric cancer patients (Zhang et al., 2020). Taken
together, these results showing mitochondrial alterations on
other cancer types strengthen the abovementioned results
specifically observed in breast cancer (Guigni et al., 2018;
Mijwel et al., 2018b) and might be a specific maladaptation
between cancers. Concerning mitochondrial function, the
overall oxidative pathway is clearly affected by both cancer and
chemotherapeutic agents (Ushmorov et al., 1999; Constantinou
et al., 2011; Julienne et al., 2012; Fermoselle et al., 2013; Gilliam
et al., 2013, 2016; Padrão et al., 2013; Tzika et al., 2013; McLean
et al., 2014; Gouspillou et al., 2015; Op den Kamp et al., 2015;
Puig-Vilanova et al., 2015; de Lima Junior et al., 2016; Brown
et al., 2017; Crouch et al., 2017; Pin et al., 2018; Ryan et al., 2018;
Neyroud et al., 2019; Penna et al., 2019b; Hulmi et al., 2020;
Kunzke et al., 2020). Among these studies, only two showed the
potent negative impact of doxorubicin on complexes respiratory
capacity (Gilliam et al., 2013; Gouspillou et al., 2015) while
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Crouch et al. (2017) highlighted a decrease in ATP production
with cyclophosphamide administration, an immunosuppressor
commonly associated with doxorubicin in breast cancer
treatment. Interestingly, various authors also found altered
mitochondrial dynamics, with a decreased fusion and increased
fission, leading to mitochondria fragmentation in cancer cachexia
(White et al., 2011, 2012; Barreto et al., 2016; Brown et al., 2017;
Marzetti et al., 2017; Pin et al., 2018; de Castro et al., 2019; Huot
et al., 2020). Surprisingly, although it was found that breast
cancer patients lost mitochondria during their chemotherapeutic
treatment (Guigni et al., 2018), mitochondria dynamics has not
been investigated to date in specific preclinical models of breast
cancer patients. Even if it is well known that mitochondria fission
is prerequisite for the activation of the mitophagy process, it
seems that mitophagy is also dysfunctional in cancer as several
authors showed a decrease in key markers such as PINK1 or
Parkin (Aversa et al., 2016; Marzetti et al., 2017). This statement
has been also confirmed in the study of Gouspillou et al. (2015)
with mice treated with doxorubicin (reduced Parkin protein
levels) as well as in the study of Mijwel et al. (2018b) with breast
cancer patients (reduced PINK1 protein levels).

As a consequence of mitochondrial dysfunction and potential
reduced mitophagy, fragmented and damaged mitochondria
accumulate in skeletal muscle and, in addition to being less
bioenergetically efficient, produce excessive amounts of oxidative
stress, mediated through increases in reactive oxygen species
(ROS). Indeed, many different studies found an increase in ROS
(Gilliam et al., 2013, 2016; Gouspillou et al., 2015; Min et al.,
2015; Chacon-Cabrera et al., 2017; Pin et al., 2018; Ballarò et al.,
2019; Montalvo et al., 2020), more specifically elevated levels
of hydrogen peroxide (H2O2). Unanimously, several studies
reported that doxorubicin administration in rodents led to an
increase in H2O2 production (Gilliam et al., 2013, 2016; Min
et al., 2015; Montalvo et al., 2020), while there is still no clinical
study available to confirm this increase in breast cancer patients.
One of the consequences of the increase in oxidative stress is
the alteration of protein turnover pathways, with a decrease
in protein synthesis, supported by an altered PI3k-Akt-mTOR
pathway, and an increase in protein breakdown systems (i.e.,
UPS and autophagy). Aside the protein turnover deregulation,
mitochondria-mediated oxidative stress is also a potent initiator
of apoptosis [see reviews from Powers et al. (2016),Aggarwal et al.
(2019), Sies and Jones (2020), and Hyatt and Powers (2021)].
Many studies showed an increase in key markers of apoptosis in
various pre-clinical models (Belizário et al., 2001; Ishiko et al.,
2001; Yoshida et al., 2001; Tsang et al., 2003; Figueras et al., 2004;
Schwarzkopf et al., 2006; Baltgalvis et al., 2008; Murphy et al.,
2011; Smuder et al., 2011; Chacon-Cabrera et al., 2014; Salazar-
Degracia et al., 2016, 2018) and in cancer patients (Busquets et al.,
2007; de Castro et al., 2019). Three other studies also explored the
effect of doxorubicin treatment in rodents and in vitro (C2C12)
and found increased levels of caspase 3 (both its activity and
cleaved form of caspase 3 protein expression) and of Bax (Gilliam
et al., 2012; Yu et al., 2014; Min et al., 2015). Finally, the study
of Ahmadabadi et al. (2020) also observed a decrease in Bcl-
2/Bax ratio in breast cancer-bearing mice, showing once again
that apoptosis might be upregulated in breast cancer patients.

Intuitively, the loss of muscle cells or myonuclei would appear
like one of the causes of muscle atrophy, and studies have
already shown associations between loss of muscle mass/CSA
and the number of apoptotic cells (Allen et al., 1997; Borisov
and Carlson, 2000; Smith et al., 2000; Dupont-Versteegden, 2005;
Andrianjafiniony et al., 2010; Guo et al., 2012; Chacon-Cabrera
et al., 2014; Cheema et al., 2015; Salazar-Degracia et al., 2016).

Increased levels in unfolded or misfolded proteins
and oxidative stress (due to the potential deficit in
autophagy/mitophagy and mitochondrial dysfunction) will
lead to endoplasmic reticulum stress and trigger the unfolded
protein response (UPR) that might represent another major
maladaptation taking place during cancer cachexia. Acting
through three pathways (PERK-eIf2α-ATF4, IRE1α-sXBP1,
and ATF6-ATF6N) the UPR contributes to skeletal muscle
atrophy by decreasing protein synthesis, increasing protein
breakdown and, ultimately, inducing apoptosis (Urbina-Varela
et al., 2020; Vainshtein and Sandri, 2020; Gallot and Bohnert,
2021). The UPR has been shown to be upregulated in several
pre-clinical studies of cancer cachexia (Bohnert et al., 2016,
2019; Gallot et al., 2019; Straughn et al., 2021) and in response
to doxorubicin treatment (Montalvo et al., 2020) leading to the
conclusion that the increased activity of the UPR system would
trigger the muscle atrophy program and contribute to muscle
wasting. However, as clearly described in the review of Gallot
and Bohnert (2021), specific increase in the PERK-eIf2α-ATF4
pathway might also be necessary during skeletal muscle atrophy
to counteract it, as both pharmacological (Bohnert et al., 2016)
or genetical tools (Gallot et al., 2019) aiming to inhibit this
pathway aggravated cancer-related muscle atrophy. On the
contrary, muscle-specific deletion of XBP1 in LLC-bearing mice
exhibited a reduced muscle atrophy, demonstrating that the
IRE1α-sXBP1 axis of the UPR system seems to be implicated in
cancer-mediated muscle atrophy.

Satellite Cells
The capacity of skeletal muscle to regenerate is another key
parameter of its functionality. After injury, successful skeletal
muscle regeneration appears to be driven by complex and
precisely orchestrated processes involving multiple cell types.
Of these cell types, satellite cells (SCs), localized between the
sarcolemma and the basal lamina of myofibers (Mauro, 1961),
represents the most studied and essential stem cells in order
to support the regeneration process. In the context of cancer
cachexia, several studies already showed that skeletal muscle
tissue exhibited signs of ongoing degeneration/regeneration
cycles, including ultrastructural damage, central nuclei
localization, increased macrophages abundance as well as SCs
proliferation in patients (Zampieri et al., 2010; He et al., 2013)
and in pre-clinical models (Mehl et al., 2005; Chacon-Cabrera
et al., 2014, 2017; Salazar-Degracia et al., 2016, 2018; Judge et al.,
2018), including in breast cancer-bearing mice (Ahmadabadi
et al., 2020). These signs of damage and regeneration might
indicate an increased fragility of the skeletal muscle and an
environment prone to lead to more degeneration/regeneration
cycles. Having in mind that several authors also highlighted
a clear decrease in regeneration capacity (He et al., 2013;
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Coletti et al., 2016; Inaba et al., 2018; Costamagna et al., 2020),
cancer-related muscle atrophy may also result from muscle
decreased repair/regrowth after injury and not only from
different pathways causing protein turnover dysregulation.
More specifically, the excellent study of He et al. (2013)
demonstrated that SCs were able to proliferate and commit
to the myogenic lineage, but unable to differentiate properly
due to an NF-κB dependent increase in Pax7 expression.
This increase in Pax7 expression was also found in breast
cancer-bearing mice (Hesse et al., 2019) as well as in other
cancers pre-clinical studies (Penna et al., 2010; Coletti et al.,
2016; Costamagna et al., 2020), ultimately leading to muscle
regeneration dysfunction. Importantly, D’Lugos et al. (2019)
found that chronic doxorubicin administration drastically
reduced SCs content in rats, suggesting that if cancer per se
would inhibit myogenic differentiation process, the combination
of both the disease and chemotherapeutic drugs administration
might lead to global SCs dysfunction and loss in breast cancer
patients. However, as highlighted in our section dedicated to
clinical studies in breast cancer patients, only Mijwel et al.
(2018b) investigated Pax7+-labeled SCs and found no change in
their number. Therefore, more studies are necessary to clarify
SCs fate and implication in breast cancer patients and/or pre-
clinical models.

Intermuscular Adipose Tissue and
Fibro-Adipogenic Progenitors
The abnormal development of fibrotic and/or IMAT deposits
within skeletal muscle is a strong marker of regenerative failure.
As documented above, breast cancer patients exhibit an increase
in IMAT (Rier et al., 2018; Reding et al., 2019; Beaudry et al.,
2020), a result also found in other types of cancers [for a
systematic review see Aleixo et al. (2020b)]. However, we did
not find any study exploring the cellular mechanisms related
to IMAT development in preclinical models of breast cancer or
with the administration of commonly used chemotherapeutic
agents. In muscle disuse or pathological conditions, such as
Duchenne muscular dystrophy, FAPs proliferate and differentiate
into adipose and/or fibrous tissue (Uezumi et al., 2011, 2014a;
Ieronimakis et al., 2016) and are currently accepted to represent
the major population that appears to play a role in IMAT
development (Brioche et al., 2016; Biferali et al., 2019; Theret
et al., 2021). In the context of cancer cachexia, one study found
an increased presence of FAPs in the muscle environment of
pancreatic cancer patients (Judge et al., 2018) that might explain
the development of myosteatosis observed in overall cancer
patients. Considering the increase in IMAT development found
in breast cancer patients (Rier et al., 2018; Reding et al., 2019;
Beaudry et al., 2020), it thus appears essential to explore FAPs fate
in this specific context.

Other than their important role in muscle regeneration and
abnormal development of IMAT, FAPs have been recently shown
to promote skeletal muscle atrophy. Indeed, the study of Madaro
et al. (2018) demonstrated that FAPs progressively accumulate
and exhibit increased IL-6/STAT3 signaling, promoting muscle
atrophy in different mouse models. Interestingly, inactivation
of this pathway effectively countered the muscle atrophy and
fibrosis observed in these models, emphasizing a potential role of
FAPs secretome and paracrine effects on skeletal muscle fibers.
Considering the ambivalent role of FAPs in the development
of IMAT and muscle atrophy, further studies should focus
on these stem cells in order to elucidate their potential
role in both pre-clinical and clinical models of cancer-related
skeletal muscle wasting.

CONCLUSION

Breast cancer patients undergoing chemotherapy definitively
experience skeletal muscle deconditioning, mainly characterized
by both a decrease in muscle mass and function. Despite
the fact that mechanisms of muscle deconditioning are well
known in many other muscle wasting models, including in
other pre-clinical or clinical models of cancers, they still remain
relatively unknown in breast cancer patients. In fact, some
studies using muscle biopsies highlighted protein turnover
and mitochondrial alterations in breast cancer patients, but
other studies are clearly needed to obtain a more precise
understanding of the cellular processes implicated in breast
cancer-mediated muscle deconditioning. This lack of knowledge
inevitably leads to difficulties for the implementation of
efficient preventive strategies such as exercise, nutrition or
pharmacological treatments.
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