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Abstract

Previous studies have explored resting-state functional connectivity (rs-FC) of the

amygdala in patients with autism spectrum disorder (ASD). However, it remains

unclear whether there are frequency-specific FC alterations of the amygdala in ASD

and whether FC in specific frequency bands can be used to distinguish patients with

ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-

matched and sex-matched TCs were collected from 28 sites in the Autism Brain

Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions,

was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4

frequency bands at each site. Image-based meta-analyses were used to obtain con-

sistent brain regions across 28 sites in the three frequency bands. By combining gen-

erative adversarial networks and deep neural networks, a deep learning approach

was applied to distinguish patients with ASD from TCs. The meta-analysis results

showed frequency band specificity of FC in ASD, which was reflected in the slow-5

frequency band instead of the conventional and slow-4 frequency bands. The deep

learning results showed that, compared with the conventional and slow-4 frequency

bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision

of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients

with ASD from TCs. These findings may help us to understand the pathological

mechanisms of ASD and provide preliminary guidance for the clinical diagnosis

of ASD.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder

characterized by impaired social symptoms that often hinder social

interaction and communication, as well as remarkable repetitive

behaviors (Geschwind & Levitt, 2007; Lord et al., 2018). With an

increasing prevalence, serious impairment of ASD has imposed a

major burden on health and finance worldwide (Chiarotti &

Venerosi, 2020; Fombonne, 2018). However, the neural mechanisms

underlying these dysfunctional social symptoms remain poorly under-

stood. Recent evidence has indicated that the deviant social brain net-

work may contribute to social deficiency in ASD (Misra, 2014; Sato

et al., 2012; Sato et al., 2017; Sato & Uono, 2019), which affects the

ability of patients with ASD to process social information, including

facial expression recognition (Lozier et al., 2014; Sato et al., 2012) and

social attention processing (Wang, Chen, et al., 2020). The amygdala is

a well-known brain region that plays a major role in the social brain

network, and its importance in the social brain is widely acknowledged

(Li et al., 2021; Skuse et al., 2003). Considering the significance of the

amygdala in the social brain, a deeper understanding of the abnormali-

ties in the amygdala might be valuable and constructive to understand

the pathological mechanisms of impaired social symptoms in ASD.

Resting-state functional magnetic resonance imaging (rs-fMRI) is

a noninvasive neuroimaging tool that has shown great potential to

explore the pathological mechanisms of ASD (Huang et al., 2020;

Wee et al., 2016; Zhao, Huang, et al., 2020). As one of the most com-

mon analytic methods of rs-fMRI, functional connectivity (FC) reflects

the interaction of two distinct brain regions (Biswal et al., 2015; Fox &

Raichle, 2007) and has presented enormous advantages in revealing

disrupted brain connectivity in ASD (Wang et al., 2021; Yao

et al., 2021; Zhao et al., 2021). Using the FC approach, researchers

have found that altered FC of the amygdala is related to social impair-

ment in patients with ASD. For example, Odriozola et al. (2019) found

that altered FC between the amygdala and frontal cortex leads to core

socio-emotional impairments in patients with ASD. Shou et al. (2017)

have shown that patients with ASD showed a lower FC between the

amygdala and supramarginal gyrus (SMG), and the altered FC values

were associated with the severity of social symptoms in ASD. These

findings support the amygdala theory of autism, indicating that abnor-

malities in the amygdala are associated with the underlying mecha-

nisms of social impairment in ASD (Baron-Cohen, 2000).

However, previous amygdala-based FC studies of ASD mainly

focused on the results of the conventional frequency band of 0.01–

0.08 Hz rather than those of the subfrequency bands. Researchers

have demonstrated that low-frequency oscillations, especially slow-5

(0.01–0.027 Hz) and slow-4 (0.027–0.073 Hz) subfrequency bands,

reflect brain activity from the perspective of gray matter (Zuo

et al., 2010). Neural oscillations in distinct frequency bands exhibit dif-

ferent properties and physiological functions (Buzsaki &

Draguhn, 2004; Penttonen & Buzsáki, 2003). By examining neural

oscillations in the slow-4 and slow-5 frequency bands, alterations in

frequency-dependent neural activity have been found to be associ-

ated with the pathological mechanisms of some neural diseases, such

as acute basal ganglia ischemic stroke (Li, Cheng, et al., 2022), depres-

sion (Wang, Kong, et al., 2016), mild cognitive impairment (Wang, Li,

et al., 2016), and Alzheimer's disease (AD; Yang, Yan, et al., 2020).

These findings indicate that exploring abnormal neural activity in sub-

frequency bands may provide valuable information on the pathologi-

cal mechanisms of ASD. Therefore, combining the important role that

the amygdala plays in the social dysfunction of ASD, this study aimed

to investigate the abnormal FC of the amygdala in the conventional

(0.01–0.08 Hz), slow-5 (0.01–0.027 Hz), and slow-4 (0.027–0.073 Hz)

frequency bands to reveal the pathological mechanism of ASD.

Moreover, although a large number of rs-fMRI studies have been

conducted to reveal abnormal connections between different brain

regions in ASD (Di Martino et al., 2017; Duan et al., 2017; Guo

et al., 2016; Minshew & Keller, 2010; Tomasi & Volkow, 2019), the

results are controversial and inconsistent. As a solution, a meta-

analysis could effectively pool the findings of multiple independent rs-

fMRI studies to identify the most common results across studies

(Radua et al., 2014; Wang et al., 2021). Compared with coordinate-

based meta-analysis, image-based meta-analysis (IBMA), which draws

on all statistical information of the brain, has a great advantage in

revealing significantly consistent differential regions that show great

sensitivity and is recommended by researchers (Radua et al., 2012;

Salimi-Khorshidi et al., 2009). However, implementing IBMA is chal-

lenging because numerous rs-fMRI studies only reported peak statis-

tics and locations rather than the original whole-brain statistical maps.

Fortunately, with the establishment and development of neuroimag-

ing data-sharing projects in recent years, IBMA has gradually become

possible. As one of the widely used public databases, Autism Brain

Imaging Data Exchange (ABIDE; http://fcon_1000.projects.nitrc.org/

indi/abide/) has collected rs-fMRI data from multiple brain imaging

sites worldwide (Di Martino et al., 2014; Di Martino et al., 2017).

Therefore, based on the public dataset ABIDE, an IBMA was per-

formed to obtain reliable results in the conventional, slow-4, and

slow-5 frequency bands in this study.

Deep learning methods are a set of methods that allow computa-

tional models to be fed with data and can automatically discover the

sample features needed for detection or classification (LeCun et al.,

2015). They have been widely used in the classification of various dis-

eases, including Parkinson's disease (PD) (Bi et al., 2021), AD (Bi

et al., 2022; Ramzan et al., 2020), and ASD (Jiang et al., 2022; Li, Tang,

et al., 2022; Shahamiri et al., 2022). Deep neural networks (DNNs), a

supervised deep learning model, have been widely used in previous

rs-fMRI studies due to their ability to differentiate patients from TCs

(Epalle et al., 2021; Supekar et al., 2022; Yang, Schrader, &

Zhang, 2020). Furthermore, previous study has found that feature

complexity can enhance the effect of classification and robustness of

deep learning (Goodfellow et al., 2020). Generative adversarial net-

works (GANs) can increase feature complexity by generating features

(Goodfellow et al., 2020; Park et al., 2021; Yi et al., 2019). Previous

deep learning studies that adopted the GANs model have found that

the GANs model can improve the classification accuracy of some dis-

eases, including AD (Sinha et al., 2021; Zhou et al., 2021) and major

depressive disorder (Zhao, Chen, et al., 2020). Hence, the application
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of deep learning using GANs and DNN may provide a new measure to

examine whether frequency-specific FC alterations could be used as

neuromarkers for ASD.

In this study, based on multisite ABIDE datasets, we used the

bilateral amygdala as seed regions to explore whether patients with

ASD showed different abnormal FC within different frequency bands

(conventional, slow-4, and slow-5 frequency bands). Moreover, we

adopted deep learning methods to explore the classification ability of

different frequency bands. We hypothesized that the altered FC of

the amygdala would be frequency-specific, and that deep learning

methods would achieve relatively good classification accuracy, where

FC alterations could be used as potential neuromarkers for

classification.

2 | MATERIALS AND METHODS

2.1 | Participants and image acquisition

This study obtained data from the ABIDE project (http://fcon_1000.

projects.nitrc.org/indi/abide/), which collects functional and structural

images of ASD from a number of laboratories worldwide and includes

two datasets: ABIDE I (Di Martino et al., 2014) and ABIDE II

(Di Martino et al., 2017). In ABIDE I, 1112 participants (539 patients

with ASD and 573 TCs) from 17 sites were included. In ABIDE II,

1114 participants (521 patients with ASD and 593 TCs) from 19 sites

were included. Written informed consent was obtained from each

participant, and all experimental protocols were approved by the local

Institutional Review Boards of each institution.

The time points and slice numbers of all rs-fMRI data were

checked. Additionally, ABIDE I and ABIDE II were combined based on

time points and slice numbers. The exclusion criteria for all partici-

pants were the following: (1) inconsistent time points or slice num-

bers; (2) not right-handed; (3) poor data quality; (4) head motion

exceeding 1 mm or 1�; (5) bad spatial normalization; (6) age or sex

mismatch with others at the same site; (7) sites with few participants

or lack of TCs.

2.2 | Data preprocessing

All fMRI data preprocessing was performed using the resting-state

fMRI Data Analysis Toolkit (RESTplus V1.25, http://restfmri.net/

forum/restplus) (Jia et al., 2019) based on statistical parametric map-

ping (SPM12, https://www.fil.ion.ucl.ac.uk/spm) running on MATLAB

2017b. The preprocessing steps proceeded as follows: (1) discarding

the first 10 time points; (2) slice timing correction; (3) head motion

correction; (4) spatial normalization to the Montreal Neurological

Institute (MNI) space via the deformation field originating from the

new segmentation of the structural images and resampled to

3 � 3 � 3 mm3; (5) spatial smoothing with a 6 mm full width at half

maximum (FWHM); (6) linear detrending; (7) nuisance signal regres-

sion with the Friston-24 head motion parameters as covariate (Friston

et al., 1996); (8) bandpass filtering in the conventional frequency band

(0.01–0.08 Hz), the slow-5 band (0.01–0.027 Hz), and the slow-4

band (0.027–0.073 Hz).

2.3 | FC analysis

After data preprocessing, FC analysis was performed using the fMRI

Data Analysis Toolkit RESTplus V1.25 with the bilateral amygdala as

seeds (Jia et al., 2019). In accordance with the previous studies

(Ambrosi et al., 2017; Guo et al., 2016; Wang, Lyu, et al., 2020), the

two seed regions of the bilateral amygdala used in this research were

defined based on the anatomical automatic labeling (AAL) template,

which was provided by RESTplus V1.25 toolbox (Jia et al., 2019). For

the conventional, slow-5, and slow-4 frequency bands, the whole FC

maps (r-value) of each seed region were generated by calculating

Pearson's correlation coefficient between the average time series of

the seed region and every voxel of the whole brain. To improve nor-

mality, the r-value was converted into the z-value using Fisher's r to

z translation.

2.4 | Statistical analysis

All statistical analyses of demographic information (age and sex) were

performed using statistical product and service solutions version

(SPSS 26.0, IBM, Armonk, New York). The significance level was set at

p < .05. For each site, the age and sex of patients with ASD and TCs

were compared. The χ2 test was performed to calculate p-values for

sex and the two-sample t-test for age.

To investigate the difference in FC values between the ASD and

TC groups, a two-sample t-test was performed at each site using

RESTplus V1.25 software (Jia et al., 2019). For each site, a t statistical

map without correction was generated.

2.5 | Image-based meta-analysis

In this study, image-based meta-analyses were performed to explore

the consistent deviant FC patterns of ASD across all sites in the con-

ventional, slow-5, and slow-4 frequency bands via anisotropic effect-

size signed differential mapping (AES-SDM) (Radua et al., 2014). First,

each voxel was assigned a measure of effect size, known as the stan-

dardized mean difference. Second, an uncorrected t map was used to

derive the effect size map and its variance map for each site. Third,

weighted by the sample size of each site, the effect size map and vari-

ance maps of all sites were integrated using the random-effects

model. Finally, the mean effect size map created using the results of

the third step was converted into a z-map. Furthermore, an uncor-

rected p < .0001 (Wang et al., 2022) was chosen to optimize false-

positive results in this study. Other parameters (full anisotropy = 1.0,

FWHM = 20 mm, Monte Carlo randomization = 20, Z > 1, and cluster

size >10 voxels) were also used in this study.
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2.6 | Classification using a deep learning approach

2.6.1 | FC-matrix construction

By conducting bilateral amygdala-based whole-brain FC analyses, two

whole-brain FC maps (r-values) of each participant were generated in

each frequency band. The original r-value of the FC was then con-

verted to the normally distributed z-value using Fisher's r to

z transformation. Based on the whole-brain FC maps (z-value) of each

participant, we extracted the averaged z-value of all voxels in the

region of interest (ROI) identified from the AAL atlas, which comprises

90 ROIs (Tzourio-Mazoyer et al., 2002). Since there were both left

and right amygdala-based whole-brain z-maps, a 2 � 90 FC matrix

was constructed for each participant in the conventional, slow-4, and

slow-5 frequency bands.

2.6.2 | Feature generation using GANs

To enhance the classification ability of the DNN, the GANs model

was used to generate features based on the original FC matrices of

this study (Goodfellow et al., 2020). The GANs model contains one

generative network and one discriminated network. The generative

network has four fully connected layers that employ a hyperbolic tan-

gent (tanh) function as the activation function. The discriminant net-

work also consisted of four fully connected layers: the first three

layers used tanh activation functions, and the fourth layer used the

sigmoid activation function. To improve the generalization of the

model, we added a dropout layer after each fully connected layer to

reduce overfitting; the dropout size was set to 0.3. In the training pro-

cess, Adam optimizer was applied to minimize the loss of the GANs

model. The learning rates for both the generative and discriminate

networks were set at 0.0002. The batch size was set at 32, and the

maximum number of iterations was set at 8000.

Based on the original 2 � 90 FC matrices of 306 patients with

ASD and 314 TCs, the 2 � 90 FC matrices of 150 patients with ASD

and 150 TCs were generated using GANs. Finally, 2 � 90 FC matrices

of 456 patients with ASD and 464 TCs were constructed and used as

the input for subsequent DNN classification.

2.6.3 | Classification using DNN

In this study, a DNN algorithm was implemented to evaluate

whether amygdala-based whole-brain FC values in different fre-

quency bands have different diagnostic abilities for ASD (Shahamiri

et al., 2022). The 2 � 90 FC matrices of 456 patients with ASD and

464 TCs were defined as input features for deep learning. Moreover,

to present the improvement of the GANs in the classification ability

of deep learning, deep learning without applying the GANs was per-

formed based on the 2 � 90 FC matrices of 306 patients with ASD

and 314 TCs.

In the training process, a binary classification task was involved;

therefore, we applied binary cross-entropy to examine the effect of

the loss function. All training processes were performed under the

deep learning framework TensorFlow with the Adadelta optimization

algorithm. To reduce overfitting, the L1-norm and L2-norm regulation

parameters were applied. In the training process, the learning rate was

set to 0.0025, the batch size was set to 256, and the maximum num-

ber of iterations was set to 7000. The neural network consisted of

five fully connected layers, the first four layers using tanh activation

functions, and the last layer using sigmoid activation functions. To fur-

ther reduce overfit susceptibility, we used three dropout layers after

applying three medium fully connected layers, the value of which was

set to 0.3.

3 | RESULTS

3.1 | Demographic and clinical information

In this study, 28 patients with ASD and 30 TCs were excluded due to

inconsistent time points or slice numbers. After merging the sites,

2168 participants (1032 patients with ASD and 1136 TCs) from

34 sites were collected. Furthermore, 131 patients with ASD and

105 with TCs were ruled out because they were not right-handed.

Due to impaired functional or structural imaging, 17 patients with

ASD and 7 TCs were excluded. Due to excessive head movement

(>1 mm or 1�), 460 patients with ASD and 481 TCs were excluded.

Bad spatial normalization led to the exclusion of 40 patients with ASD

and 49 TCs. In addition, 20 patients with ASD and 167 TCs were

excluded due to a mismatch in age or sex. Moreover, four sites that

included 58 patients with ASD and 13 TCs were excluded because

they had few participants or lacked TCs. Based on the above exclu-

sion criteria, this study collected data from 28 sites, including

306 patients with ASD and 314 TCs. Detailed information on the

exclusion criteria is described in Table S1.

For all sites included in this study, there were no significant differ-

ences in age or sex between the ASD and TCs groups (p > .05).

Table 1 presents the statistical results.

3.2 | The meta-analysis results in
multifrequency band

3.2.1 | Altered FC results of the left amygdala in
different frequency bands

In the conventional frequency band (0.01–0.08 Hz), patients with

ASD showed lower FC values between the left amygdala and left fusi-

form gyrus (FG). In the slow-4 frequency band (0.027–0.073 Hz),

patients with ASD showed higher FC values between the left amyg-

dala and left middle occipital gyrus (MOG). In the slow-5 frequency

band (0.01–0.027 Hz), patients with ASD displayed lower FC values
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between the left amygdala and left FG, as did the left amygdala and

bilateral inferior temporal gyrus (ITG; Table 2 and Figure. 1).

3.2.2 | Altered FC results of the right amygdala in
different frequency bands

When compared with TCs, patients with ASD showed lower FC

values between the right amygdala and the orbital part of the left

middle frontal gyrus (MFG) in the conventional frequency band

(0.01–0.08 Hz). In the slow-4 frequency band (0.027–0.073 Hz),

patients with ASD displayed higher FC values between the right

amygdala and right middle temporal gyrus (MTG). In the slow-5 fre-

quency band (0.01–0.027 Hz), patients with ASD showed lower FC

values between the right amygdala and the right SMG (Table 3 and

Figure. 2).

3.3 | Classification accuracy in multifrequency
bands

By taking the bilateral amygdala-based FC matrices as input, deep

learning was used to distinguish patients with ASD from TCs using

GANs and DNN models. As shown in Table 4, the frequency band of

TABLE 1 Demographic information of patients with ASD and TCs

Site_ID

Participants Sex (M/F) Age(years)

ASD TCs

ASD TCs

p-value

Mean (SD)

p-valueM/F M/F ASD TCs

001_BNI 19 18 19/0 18/0 — 37.84 (15.10) 38.39 (15.13) .913

002_Caltech 3 3 3/0 3/0 — 20.77 (0.51) 20.87 (3.44) .963

005_EMC 6 4 5/1 3/1 0.747 8.14 (0.93) 8.05 (0.96) .878

006_ETH 4 4 4/0 4/0 — 20.94 (5.20) 21.35 (4.67) .909

007_GU 9 9 9/0 9/0 — 11.64 (1.42) 11.45 (1.46) .783

008_IP 10 10 6/4 5/5 0.653 22.99 (8.32) 20.74 (7.99) .544

009_IU 8 8 7/1 7/1 1 21.88 (6.42) 23.13 (4.67) .663

010_KKI1 2 2 2/0 2/0 — 9.41 (1.08) 9.91 (0.25) .593

011_KKI2 6 18 5/1 13/5 0.586 10.18 (1.57) 10.17 (1.27) .992

013_Leuven 16 15 14/2 12/3 0.570 17.64 (4.79) 17.99 (4.66) .839

014_MaxMun1 6 6 5/1 5/1 1 29.83 (7.63) 30.50 (8.96) .892

017_NYU1 45 56 38/7 49/7 0.659 15.75 (7.99) 15.72 (6.56) .987

019_OHSU1 11 5 11/0 5/0 — 11.09 (1.91) 10.80 (0.67) .670

020_OHSU2 22 22 16/6 16/6 1 10.86 (2.17) 11.00 (1.95) .828

021_Olin1 3 3 3/0 3/0 — 17.00 (2.65) 17.00 (3.61) .999

022_Olin2 5 5 4/1 4/1 1 21.00 (1.87) 21.20 (1.92) .872

023_Pitt 11 8 9/2 6/2 0.719 18.68 (5.80) 18.80 (5.41) .964

024_SBL 7 7 7/0 7/0 — 36.71 (7.54) 34.71 (5.38) .578

025_SDSU 24 18 19/5 15/3 0.734 13.20 (3.04) 13.65 (1.44) .527

026_Stanford1 4 4 2/2 2/2 1 9.55 (2.29) 9.60 (1.29) .975

027_Stanford2 6 5 5/1 4/1 0.887 10.73 (1.85) 10.81 (1.69) .943

028_Trinity1 10 15 10/0 15/0 — 17.24 (2.90) 17.29 (2.61) .971

029_Trinity2 5 4 5/0 4/0 — 13.35 (3.77) 13.69 (1.28) .870

030_UMIA 4 2 4/0 2/0 — 11.30 (2.22) 10.70 (0.85) .742

031_UCD 4 5 3/1 4/1 0.858 15.54 (1.88) 15.52 (1.59) .983

032_UCLA 25 24 21/4 20/4 0.950 12.44 (2.70) 12.42 (1.76) .969

033_UM 17 18 12/5 13/5 0.915 14.07 (2.77) 14.06 (4.31) .990

034_USM 14 16 14/0 16/0 — 22.34 (6.90) 22.28 (7.38) .983

Note: There were no significant group differences for age and sex at each site (p-values > .05). There were no p-values for sex in 001_BNI, 002_Caltech,

006_ETH, 007_GU, 010_KKI1, 019_OHSU1, 021_Olin1, 024_SBL, 028_Trinity1, 029_Trinity2, 030_UMIA, and 034_USM due to the lack of female

participants. The 003 and 004 sites were excluded due to poor normalization, whereas sites 012 and 018 were excluded due to the lack of TCs.

Abbreviations: ASD, autism spectrum disorder; F, female; M, male; TC, typical control.
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slow-5 (0.01–0.027 Hz) showed a higher area under the receiver

operating characteristic curve (AUC) value of 0.811 than 0.639 in the

slow-4 band (0.027–0.073 Hz) and 0.804 in the conventional band

(0.01–0.08 Hz).

Moreover, compared with deep learning, which involves GANs,

the results of deep learning without adopting GANs for feature gener-

ation showed a relatively poor classification effect. Detailed results

are available in Figure S1 and Table S2.

TABLE 2 Altered functional
connectivity results in the left amygdala
in three frequency bands Brain regions (AAL) Number of voxels

MNI coordinate

Peak z-value Effect sizex y z

Conventional frequency band (0.01–0.08 Hz)

Fusiform_L 23 �40 �12 �44 �2.8739 �0.2419

Slow-4 frequency band (0.027–0.073 Hz)

Occipital_Mid_L 25 �42 �84 0 3.9230 0.3258

Slow-5 frequency band (0.01–0.027 Hz)

Fusiform_L 30 �36 �12 �42 �3.1048 �0.3024

Temporal_Inf_R 15 44 �10 �42 �3.2404 �0.2676

Temporal_Inf_L 10 �54 �18 �40 �3.0092 �0.2492

Note: z < 0 indicates that the FC value of the ASD group was lower than that of the TC group (p < .0001).

Abbreviations: Fusiform_L, left fusiform gyrus; AAL, anatomical automatic labeling; ASD, autism spectrum

disorder; FC, functional connectivity; L, left; MNI, Montreal Neurological Institute; Occipital_Mid_L, left

middle occipital gyrus; R, right; TCs, typical control; Temporal_Inf_L, left inferior temporal gyrus;

Temporal_Inf_R, right inferior temporal gyrus.

F IGURE 1 Altered functional connectivity (FC) of the left amygdala in three frequency bands. Altered FC results of the left amygdala in the
conventional, slow-4, and slow-5 frequency bands in patients with autism spectrum disorder (ASD) compared with typical controls. The warm
color represents the significantly increased FC value of patients with ASD, whereas the cold color represents the significantly decreased FC
values of patients with ASD. The color bar represents z-value (p < .0001)

TABLE 3 Altered functional
connectivity results in the right amygdala
in three frequency bands Brain regions (AAL) Number of voxels

MNI coordinate

Peak z-value Effect sizex y z

Conventional frequency band (0.01–0.08 Hz)

Frontal_Mid_Orb_L 12 �30 40 �8 �2.5954 �0.2147

Slow-4 frequency band (0.027–0.073 Hz)

Temporal_Mid_R 24 52 �2 �28 3.4887 0.2877

Slow-5 frequency band (0.01–0.027 Hz)

SupraMarginal_R 10 62 �26 46 �2.8606 �0.2365

Note: z < 0 indicates that the FC value of the ASD group was lower than that of the TC group (p < .0001).

Abbreviations: Frontal_Mid_Orb_L, orbital part of the left middle frontal gyrus; AAL, anatomical

automatic labeling; ASD, autism spectrum disorder; FC, functional connectivity; L, left; MNI, Montreal

Neurological Institute; R, right; SupraMarginal_R, right supramarginal gyrus; TCs, typical controls;

Temporal_Mid_R, right middle temporal gyrus.
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4 | DISCUSSION

In this study, we first adopted image-based meta-analyses to investi-

gate altered FC of the bilateral amygdala in patients with ASD in three

frequency bands, based on data collected from 28 sites in the ABIDE

dataset. We then adopted a deep learning approach by combining

GANs and DNN models to explore the classification ability of deep

learning in different frequency bands. There are three main results:

(1) The meta-analysis results revealed that in the conventional fre-

quency band, patients with ASD showed lower FC values between

the left amygdala and the left FG and between the right amygdala and

the orbital part of the MFG; (2) The altered FC of the left amygdala

showed frequency band specificity; (3) The deep learning results

showed that, compared with the conventional and slow-4 frequency

bands, the slow-5 frequency band showed the highest classification

ability. These results revealed that the altered FC of the left amygdala

was frequency specific, which may provide a deeper understanding of

the pathological mechanism of ASD.

In this study, patients with ASD showed lower FC values between

the left amygdala and left FG and between the right amygdala and the

orbital part of the MFG. The FG and amygdala are part of the facial

perception network and play critical roles in face processing (Dziobek

et al., 2010). Previous studies have found that patients with ASD

show activation in the amygdala and FG when presented with faces

(Hadjikhani et al., 2004; Kuno-Fujita et al., 2020). Researchers have

found that the neural activity of the FG is regulated by the amygdala

(Sato et al., 2019), and impaired connectivity between the FG and

amygdala in patients with ASD has greatly impacted emotional face

recognition (Schultz, 2005). Moreover, previous studies have indicated

that, in addition to significant facial perception regions, facial percep-

tion has a connection with other cortical areas that belong to execu-

tive functions, such as attention control. The MFG, which is located in

the middle part of the frontal cortex, plays an important role in atten-

tion reorientation in ASD (Japee et al., 2015). During the processing

of facial recognition tasks, patients with ASD focus mainly on the

mouth and pay very little attention to the eye region (Guillon

et al., 2014). A previous rs-fMRI study found that patients with ASD

showed lower FC values between the left amygdala and the frontal

cortex (Christian et al., 2022), which was consistent with the findings

of this study. Therefore, combining the previous findings and the pre-

sent research, we assumed that the lower FC between the amygdala

and the FG and MFG might provide novel insights into facial percep-

tion dysfunction in ASD.

In addition, compared with TCs, patients with ASD also showed a

lower FC between the left amygdala and bilateral ITG and between

the right amygdala and right SMG, and a higher FC between the right

amygdala and right MTG. Situated in the temporal cortex, the ITG and

MTG are associated with social and emotional information processing,

including audiovisual sensory processing and multimodal emotional

integration (Liu et al., 2021; Wright et al., 2003). Previous rs-FC

F IGURE 2 Altered functional connectivity (FC) results of the right amygdala in three frequency bands. Altered FC results of the right
amygdala in the conventional, slow-4, and slow-5 frequency bands in patients with ASD compared with typical controls. The significantly
increased FC values of patients with ASD are indicated in warm colors, whereas the decreased values are indicated in blue. The color bar
represents the z-value with p < .0001

TABLE 4 The results of classification
in three frequency bands

Frequency bands (Hz)

AUC Accuracy Precision Recall

Mean (±SD) Mean (±SD) Mean (±SD) Mean (±SD)

Conventional frequency band 0.804 (±0.0183) 73.39 (±2.83) 73.55 (±2.85) 73.06 (±2.94)

Slow-4 frequency band 0.639 (±0.0204) 60.03 (±2.38) 59.89 (±2.34) 60.70 (±2.57)

Slow-5 frequency band 0.811 (±0.0242) 74.73 (±2.78) 74.58 (±2.84) 75.05 (±2.77)

Note: The mean and SD values of the accuracy, precision, and recall metrics were reported as

percentages (%), whereas the AUC was reported as decimals. Conventional frequency band: 0.01–
0.08 Hz; Slow-4 frequency band: 0.027–0.073 Hz; Slow-5 frequency band: 0.01–0.027 Hz.

Abbreviations: AUC, area under the receiver operating characteristic curve; SD, standard deviation.
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studies have shown that weaker connectivity between the amygdala

and temporal lobe is correlated with increased autism severity (Shen

et al., 2016), which could partly explain the results of this study.

Located in the Wernicke area, the SMG is involved in auditory proces-

sing and plays a role in social communication (Wada et al., 2021;

Wilson et al., 2022). Reduced FC of the SMG indicates deficient sen-

sory integration in ASD (Wilson et al., 2022). Therefore, combining

the role of the amygdala in emotional processing, we inferred that

altered FC of the amygdala with the temporal regions and SMG might

indicate an underlying deficient processing of social–emotional infor-

mation in ASD.

Among the subfrequency bands, the FC of the left amygdala

showed frequency band specificity. Regarding the left amygdala,

patients with ASD exhibited lower FC in the left FG in the slow-5 and

conventional frequency bands, higher FC in the left MOG in the

slow-4 band, and lower FC in the bilateral ITG in the slow-5 band. The

FC of the left amygdala and left FG were more sensitive to the slow-5

and conventional frequency bands. This result is consistent with pre-

vious studies showing frequency-dependent pathological mechanisms

of patients with ASD (Chen et al., 2016; Duan et al., 2017). An rs-fMRI

study of ASD investigating FC within and between large-scale cortical

networks in multiple frequency bands found that weaker connectivity

within and between specific networks in the slow-5 band was related

to poorer social interaction and communication skills (Duan

et al., 2017). Frequency band specificity has also been observed in

other neuropsychiatric diseases. Yang, Yan, et al. (2020) observed a

more varied fractional amplitude of low-frequency fluctuation (fALFF)

values in the slow-5 band than in the slow-4 band in AD. Ren et al.

(2022) explored the effect of transcranial direct current stimulation

(tDCS) by assessing frequency-dependent alterations of fALFF and FC

and found that the effect of tDCS on fALFF was significantly greater

in the slow-5 band than in the slow-4 band. Evidence supported this

study that the slow-5 frequency band can sensitively detect abnormal

FC of the amygdala in patients with ASD and provides novel findings

for the pathological mechanisms of ASD.

In this study, a deep learning approach that combines GANs and

DNN methods was used to explore the diagnostic potential of differ-

ent frequency bands in ASD. The deep learning results showed a

frequency-dependent classification effect, indicating a better classifi-

cation effect for the slow-5 band (AUC = 0.8110, accuracy = 0.7473)

than for the conventional frequency band (AUC = 0.8040, accu-

racy = 0.7339) and slow-4 band (AUC = 0.6390, accuracy = 0.6063).

This result was consistent with the findings of rs-FC in this study, sug-

gesting the sensitivity of slow-5 and its importance in revealing the

pathological mechanism of ASD. Furthermore, previous studies have

shown that fMRI signals in subfrequency bands have a good classifica-

tion effect in diagnosing patients with AD (Zhang et al., 2017), PD

(Tian et al., 2020), and ASD (Chen et al., 2016). Therefore, we inferred

that fMRI signals in the slow-5 frequency band might provide valuable

information for the clinical diagnosis of ASD.

Despite these findings, this study has some limitations. In this

study, although we obtained public data from the ABIDE database,

the number of included participants was still not very large due to

strict head motion exclusion standards. In future studies, we will

consider including more participants from other autism databases and

validating the results of this study. In addition, the data used in this

study were obtained from the ABIDE public database, in which some

sites or participant scales were not provided. Therefore, it is difficult

to analyze the correlation between the FC values of regions that show

group differences and scale scores, which leads to the failure to reveal

the frequency specificity of the relationship between abnormal con-

nectivity and the severity of autism symptoms.

5 | CONCLUSION

The altered FC in the left amygdala showed frequency specificity,

which was sensitive to the slow-5 band. The deep learning results also

showed frequency-specific classification ability. Specifically, the classi-

fication effect of the slow-5 band was better than that of the slow-4

and conventional bands. These findings could provide more insightful

information on the pathological mechanism of ASD and are expected

to provide insightful information for the treatment and diagnosis of

ASD in future clinical practice.
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