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Abstract: Due to their unique tubular and spiral structure, graphene and graphene oxide nanoscrolls
(GONS) have shown extensive applications in various fields. However, it is still a challenge to
improve the optoelectronic application of graphene and GONS because of the zero bandgap of
graphene. Herein, ammonium tetrathiomolybdate ((NH4)2MoS4) was firstly wrapped into the
((NH4)2MoS4@GONS) by molecular combing the mixture of (NH4)2MoS4 and GO solution on
hydrophobic substrate. After thermal annealing, the (NH4)2MoS4 and GO were converted to MoS2

nanosheets and reduced GO (RGO) simultaneously, and, thus, the MoS2@RGONS was obtained.
Raman spectroscopy and high-resolution transmission electron microscopy were used to confirm
the formation of MoS2 nanosheets among the RGONS. The amount of MoS2 wrapped in RGONS
increased with the increasing height of GONS, which is confirmed by the atomic force microscopy
and Raman spectroscopy. The as-prepared MoS2@RGONS showed much better photoresponse
than the RGONS under visible light. The photocurrent-to-dark current ratios of photodetectors
based on MoS2@RGONS are ~570, 360 and 140 under blue, red and green lasers, respectively, which
are 81, 144 and 35 times of the photodetectors based on RGONS. Moreover, the MoS2@RGONS-
based photodetector exhibited good power-dependent photoresponse. Our work indicates that the
MoS2@RGONS is expected to be a promising material in the fields of optoelectronic devices and
flexible electronics.

Keywords: ammonium tetrathiomolybdate; thermal annealing; MoS2@reduced graphene oxide
nanoscroll; photosensitivity; photodetection

1. Introduction

By scrolling two-dimensional graphene nanosheet into a one-dimensional structure, a
graphene nanoscroll (GNS) is formed with a tubular, spiral structure and open ends [1].
Due to the excellent properties resulting from its unique structure, graphene nanoscroll has
attracted great attention in the fields of energy storage, sensors and flexible electronics [2–5].
In recent years, graphene oxide nanoscrolls (GONS) have been widely investigated in-
stead of GNS because of the facile mass production of graphene oxide [2,6–15]. In order
to further improve the performance of GONS, various functional nanomaterials were
wrapped into GONS to extend their applications in supercapacitors, batteries and photo-
catalysts [16–20]. By encapsulating sulfur into GONS during the freeze-casting process,
the as-prepared S/GONS was used as a good cathode material for a lithium-sulfur bat-
tery [21,22]. After Fe2O3 nanoparticles were wrapped into GONS as electrode materials by
ultrasonication, a high volumetric energy density supercapacitor with quite good cycling
stability was obtained [23]. Fe1−xS/Fe3O4 nanoparticles were also confined into GONSs
and GO nanosheets by cold quenching and freeze drying, and the as-obtained composites
were used as promising electrodes for a flexible lithium-ion battery [3].

It is well known that the application of graphene in high-performance photodetectors
has been seriously hindered due to its low optical absorption ability [24]. To improve
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the photoresponse of graphene-based devices, a large number of functional nanomateri-
als have been integrated with graphene, including quantum dots [24], transition metal
dichalcogenides [25–27], metallic nanostructures with plasmonic effects [28,29] and so on.
Although the GONS has shown promising applications in the fields of energy storage,
sensing and photocatalysis, it is still a challenge to apply the GONS as a high-performance
photodetector. Previously, we have embedded chemical vapor deposition (CVD)-grown
MoS2 nanoflakes into RGO nanoscrolls to improve the photodetection performance [25].
The photosensitivity of MoS2@RGO nanoscrolls increased by 20 times compared to the
RGO nanosheet. However, it is difficult to further increase the amount of MoS2 grown on
an RGO nanosheet by using the CVD method. Therefore, it is highly desirable to develop
an alternative method to wrap a large amount of MoS2 into GONS and thus further enhance
its photodetection performance.

In this work, a large amount of a precursor, ammonium tetrathiomolybdate ((NH4)2MoS4),
was successfully wrapped into GONSs with length up to hundreds of micrometers by using
the molecular combing method. After high temperature annealing, the (NH4)2MoS4 was in
situ decomposed to MoS2 nanosheets, which were well encapsulated into the GONS. Mean-
while, the GONSs were simultaneously converted to reduced GONSs (RGONS). By opti-
mizing precursor concentration and annealing temperature, high-quality MoS2@RGONS
was facilely obtained with mass production. The optical microscopy (OM), atomic force
microscopy (AFM), high-resolution transmission electron microscopy (HRTEM) and Raman
spectroscopy were employed to demonstrate the uniform distribution of MoS2 nanosheets
in RGONSs. The photodetectors based on MoS2@RGONSs showed photosensitivity two or-
ders of magnitude higher than that of the RGONS under visible light. The MoS2@RGONSs-
based photodetectors also exhibited good power dependent behavior. The improved
performance could be attributed to the formation of multiple graphene/MoS2 interfaces in
the scrolled structure of MoS2@RGONS, which increases the light absorption efficiency and
enables the ultrafast charge transfer, resulting in a much higher photocurrent and photosensitivity.

2. Experimental Section
2.1. Preparation of (NH4)2MoS4 Solution and Hydrophobic Substrate

Graphene oxide (GO) was synthesized by the modified Hummers method. A total of
0.038 g of (NH4)2MoS4 was ground to fine powder and dissolved in water to form aqueous
solutions with concentration of 5, 10, 20, 30 and 50 mM. Thereafter, the (NH4)2MoS4 solution
was treated by ultrasonication to ensure complete dissolution. Finally, the (NH4)2MoS4@GO
solution was prepared by mixing 0.2 mg/mL GO and (NH4)2MoS4 solution with a volume
ratio of 1:1.

The preparation of hydrophobic substrate is a key step to form GO nanoscrolls by
the molecular combing method [6,7,10,11]. Firstly, the cleaned 300 nm SiO2/Si substrate
was immersed into a glass bottle containing a mixture of 8 mL toluene and 200 µL OTS
(Octadecyltrimethoxysilane, purchased from Aladdin). Then, the glass bottle was sealed
and heated at 60 ◦C for 24 h. After that, the SiO2/Si substrate was washed with ethanol
and DI water three times. Therefore, the hydrophobic OTS-modified SiO2/Si substrate
(OTS-SiO2/Si) was obtained.

2.2. Preparation of (NH4)2MoS4@GONS and MoS2@RGONS

The (NH4)2MoS4@GO nanoscrolls ((NH4)2MoS4@GONSs) were prepared by the molec-
ular combing method [6], as shown in Scheme 1a,b. Firstly, 30 µL of the (NH4)2MoS4@GO
solution was dropped onto the hydrophobic OTS-SiO2/Si substrate. A glass coverslip
was then used to slowly drag the droplet from one end to the other end of the sub-
strate. In this way, the (NH4)2MoS4@GONSs were formed on the OTS-SiO2/Si substrate.
The MoS2@RGO nanoscrolls (MoS2@RGONSs) were prepared as shown in Scheme 1c,d.
After the (NH4)2MoS4@GONSs were put into a tube furnace, a mixture gas of N2/H2
(80/40 sccm) was introduced as a protective gas. Then, the temperature of the furnace
increased to 400 ◦C gradually, with a speed of 10 ◦C/min, and was kept for 60 min. During
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this period, (NH4)2MoS4 was decomposed to MoS2, while GO was reduced to RGO at the
same time. Therefore, the MoS2@RGONSs were successfully obtained.
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Scheme 1. Schematic diagram of the preparation of (NH4)2MoS4@GO and MoS2@RGO nanoscrolls.
(a) A drop of (NH4)2MoS4 and GO solution is dragged by the cover slip on the hydrophobic substrate.
(b) The (NH4)2MoS4@GO nanoscroll is formed by molecular combing. (c) After the as-prepared
(NH4)2MoS4@GO nanoscroll is treated at 400 ◦C in the N2/H2 environment, (NH4)2MoS4 is decom-
posed to MoS2 nanosheets and GO is reduced to RGO. (d) The as-obtained MoS2@RGO nanoscroll
after high temperature annealing. The inset in the top right shows the cross-section structure of the
MoS2@RGO nanoscroll.

2.3. Characterizations

An optical microscope (ECLIPSE LV100ND, Nikon, Tokyo, Japan), AFM (Dimension
ICON with Nanoscope V controller, Bruker, Billerica, MA, USA) and TEM (JEM-2100F
JEOL, Tokyo, Japan) were used to characterize the as-prepared (NH4)2MoS4@GONS and
MoS2@RGONS. In addition, Raman spectroscopy and Raman mapping of the as-prepared
(NH4)2MoS4@GONS and MoS2@RGONS were tested on a LabRAM HR Evolution Raman
spectrometer (Horiba Jobin Yvon, Palaiseau, France) with a 532 nm laser focused through a
100× objective lens.

2.4. Device Fabrication and Photodetection

First, 30 nm thick gold and 5 nm thick chromium films were deposited on RGO and
MoS2@RGO nanoscrolls, respectively, by thermal evaporation with a TEM grid (200 mesh)
as a mask.

A probe station (model TTPX, Lake Shore Inc., Rhinelander, WI, USA) and Keithley
4200 semiconductor characterization system (Advanced Test Equipment Corp., San Diego,
CA, USA) were used to monitor the real-time current change of the as-prepared devices.
The photocurrent was collected from individual ROG and MoS2@RGO nanoscrolls with
Au pads as the source and drain electrodes, respectively, as shown in Figure S1. The
photo-detection test was recorded under blue (405 nm), green (532 nm) and red (633 nm)
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lasers. The power of the laser was measured with a laser power meter (Laser power meter
LP1, SanWa, Okayama, Japan).

3. Result and Discussion

Scheme 1 shows the preparation of MoS2@RGONSs by molecular combing and ther-
mal annealing. After the (NH4)2MoS4 was wrapped into GO nanoscrolls by molecular
combing, the (NH4)2MoS4 was decomposed to MoS2 at a high temperature under the
atmosphere of N2/H2 [30]. It was found that the (NH4)2MoS4 was decomposed to MoS3 as
the temperature increased from 120 to 260 ◦C under an inert atmosphere. The MoS3 was
further reduced to MoS2 as the temperature was higher than 230 ◦C under N2/H2 [30]. The
process can be described as the following chemical reactions,

(NH4)2MoS4 → 2NH3 + H2S + MoS3 (120–260 ◦C)
MoS3 + H2 →MoS2 + H2S (230–450 ◦C)

(1)

We heated the (NH4)2MoS4@GONSs in the temperature range of 300 to 500 ◦C. The
Raman spectroscopy was used to characterize the amount of MoS2 in GONSs by measuring
the peak intensity of A1g. As shown in Figure S2a, the peak intensity of A1g increased
as the temperature increased from 300 to 400 ◦C, while it decreased as the temperature
further increased to 500 ◦C. The flow ratio of N2 to H2 also affects the formation of MoS2
during the thermal annealing process. As shown in Figure S2b, the A1g peak of the
(NH4)2MoS4@GONS annealed with a gas stream of 80 sccm N2 and 40 sccm H2 showed
the highest intensity. Therefore, a mixture gas of N2/H2 (80/40 sccm) was introduced as a
protective gas during the experiment. The concentration of the (NH4)2MoS4 solution also
has an important effect on the formation of (NH4)2MoS4@GONSs and MoS2@RGONSs.
The peak intensity of A1g increased as the concentration of (NH4)2MoS4 solution increased
from 5 mM to 30 mM, while it decreased when 50 mM (NH4)2MoS4 solution was used
(Figure S2c). In addition, the diameter of the (NH4)2MoS4@GONSs increased as the con-
centration of (NH4)2MoS4 increased from 5 mM to 50 mM (Figure S3). Meanwhile, the
long and straight nanoscrolls were changed to irregular and thick aggregations. In order
to wrap more MoS2 and maintain the good scroll structure, (NH4)2MoS4 solution with a
concentration of 30 mM was used as the optimal concentration and annealed at 400 ◦C.

Figure 1a,b show the OM images of an (NH4)2MoS4@GO nanoscroll before and after
thermal annealing, respectively. It can be seen that the color of the nanoscroll changed
from cyan to gray blue after thermal annealing. In addition, the height of the MoS2@RGO
nanoscroll is quite smaller than that of the (NH4)2MoS4@GO nanoscrolls. As shown in
Figure S4, the height of the (NH4)2MoS4@GO is 201.4 nm, while it decreases largely to
112.5 nm after high temperature annealing, which could be attributed to the evaporation of
water molecules trapped in the nanoscroll and the decomposition of (NH4)2MoS4. In order
to confirm the formation of the MoS2@RGO nanoscroll, Raman spectroscopy was conducted
at the same position of the nanoscroll before and after annealing. As shown in Figure 1c,
there are only two Raman peaks located at 1359 and 1587 cm−1 for the (NH4)2MoS4@GO
nanoscroll, which are assigned to the D and G peaks of GO. After thermal annealing,
there are two more peaks located at 384.4 and 404.2 cm−1 besides the D and G peaks,
which are characteristics of MoS2 nanosheets [31,32]. In addition, the intensity ratio of
the D to G peak decreased from 1.24 to 0.72 for the (NH4)2MoS4@GO nanoscroll after
thermal annealing, indicating the formation of reduced GO (RGO). The D band originates
from the lattice destruction of sp2-hybridized carbon, and the G band arises from the
first-order scattering of the E1

2g mode. The intensity ratio (ID/IG) reflects the disorder of the
carbon structure, and the higher intensity ratio of ID/IG means more defective graphitic
structures. Therefore, the Raman characterization confirms the successful conversion of
the (NH4)2MoS4@GO nanoscroll to the MoS2@RGO nanoscroll after thermal annealing at
400 ◦C for 60 min. In order to investigate whether the MoS2 was uniformly wrapped into
the RGO nanoscroll, the as-obtained MoS2@RGO nanoscroll was characterized by Raman
mapping. As shown in Figure 1d,e, the G peak of GO nanoscroll was unchanged after
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thermal annealing. Meanwhile, the Raman mapping of the A1g peak of MoS2 showed a
homogeneous signal (Figure 1f), indicating that the MoS2 was uniformly distributed in the
RGO nanoscroll.
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Figure 1. The OM images of the (NH4)2MoS4@GO nanoscroll (a) before and (b) after thermal
annealing. (c) Raman spectra of the (NH4)2MoS4@GO and MoS2@RGO nanoscrolls. The Raman
mapping images of (d) the (NH4)2MoS4@GO nanoscroll and (e) the RGO at peak G (1587 cm−1), and
the MoS2@RGO nanoscroll at peak (f) A1g (404.2 cm−1) of MoS2.

We found that the Raman peak intensity of MoS2 in the MoS2@RGO nanoscrolls
varied with the height of the nanoscrolls. To investigate the relationship between the height
of the MoS2@RGO nanoscroll and the amount of trapped MoS2 in it, the MoS2@RGO
nanoscrolls with various heights were characterized using AFM and Raman spectroscopy,
respectively. Figure 2a shows the OM image of the MoS2@RGO nanoscroll, where the
boxes marked by d, e and f are three nanoscrolls with different heights. Figure 2d–f show
the corresponding AFM images, and the measured heights of the three nanoscrolls are
137.4 nm, 83.5 nm and 35.4 nm, respectively. As shown in Figure 2b, the nanoscroll with a
height of 137.4 nm presents a stronger Raman signal (box d), while the nanoscroll with a
height of 35.4 nm has a weaker Raman signal. To further reveal the influence of the height of
the MoS2@RGO nanoscrolls on the Raman peak intensity of MoS2, a lot of nanoscrolls were
measured to plot the Raman peak intensity as a function of the height of the nanoscrolls. As
shown in Figure 2c, with the increasing height of the MoS2@RGO nanoscrolls, the Raman
peak intensity of MoS2 gradually increases, indicating that more MoS2 was trapped in a
higher nanoscroll.

In order to clearly observe the detailed structure and confirm the formation of MoS2 in
the as-prepared MoS2@RGO nanoscroll, high-resolution transmission electron microscopy
(HRTEM) was used for characterization. Figure 3a shows the low-resolution TEM image
of the MoS2@RGO nanoscroll. We can see that the MoS2@RGO nanoscroll exhibits a
multilayer scrolled structure with a dark, dense inner layer. Figure 3b shows the HRTEM
characterization result of the red dashed box shown in Figure 3a. The well resolved
lattice stripes with spacing of 0.63 nm are clearly presented, which is consistent with the
interlayer spacing of layered MoS2 [33]. Moreover, the energy dispersive X-ray (EDX)
elemental mapping analysis of the MoS2@RGO nanoscroll shown in Figure 3c provides
strong evidence for the homogeneous distribution of C, O, Mo and S elements in the
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MoS2@RGO nanoscroll. The HRTEM and EDX results confirm the uniform existence of the
MoS2 nanosheet in the RGO nanoscroll.
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Graphene and its derivatives are severely limited in optoelectronic applications due
to their zero band gap and poor absorption of visible light. In order to improve the
optoelectronic performance of graphene, MoS2, as a typical transition metal dichalcogenides
(TMDCs) material, has been widely used to combine graphene for photodetection [34]. By
wrapping MoS2 into the RGO nanoscrolls, we found that the MoS2@RGO nanoscroll also
showed promising photodetection performance. Photodetectors based on RGO nanoscrolls
and MoS2@RGO nanoscrolls were fabricated to investigate the effect of wrapped MoS2. It
is well known that photosensitivity is an important parameter to evaluate the performance
of photodetectors [35–37], which is usually defined by the ratio of photocurrent to dark
current (PDR), as follows:

PDR = Iphoto/Idark (Iphoto: photocurrent; Idark: dark current) (2)

The photocurrent and dark current of the RGO nanoscrolls and MoS2@RGO nanoscrolls-
based photodetectors were firstly measured under the dark and the illumination of blue,
red and green lasers with different laser power densities, respectively. Because of the
low light absorption of RGO, we found that the RGO-based photodetectors exhibited
photosensitivity of ~7, ~2.4 and ~4 under blue, red and green lasers (Figure S5). Figure 4a–c
show the PDRs of photodetectors based on RGO nanoscrolls and MoS2@RGO nanoscrolls
under blue (405 nm), red (633 nm) and green (532 nm) lasers. The PDRs of photodetectors
based on the MoS2@RGO nanoscrolls were 570, 360 and 140 under blue, red and green
lasers, which are almost 81, 144 and 35 times those of the photodetectors based on the
RGO nanoscrolls measured under the same conditions. In addition, the photocurrent
of the MoS2@RGO nanoscroll is highly dependent on the power density of the incident
light. As shown in Figure 4d–f, the PDRs increased as the incident laser power density
increased. The different photoresponse of MoS2@RGONS to blue, green and red light could
be explained as follows. In our experiment, the power intensity of green light is the lowest.
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However, the PDR of MoS2@RGONS is around 140 at a power density of 0.56 mW/mm2

(Figure 4f), while the PDRs of MoS2@RGONS are around 100 and 70 for blue and red
lasers at power densities of 1.05 mW/mm2 and 1.41 mW/mm2 (Figure 4d,e), respectively.
The MoS2 nanosheets synthesized in GONS could be multilayer, which can be confirmed
by the HRTEM images shown in Figure 3b. Therefore, the multilayer MoS2 trapped into
RGONS should be more suitable for detecting green lasers than blue and red lasers given
that they are at the same power intensity. A similar phenomenon has also been reported in
a multilayer MoS2@glassy-graphene heterostructure [38]. In addition, the MoS2@RGONS
shows higher PDR under the blue laser than under the red laser at similar power intensities.
This could be attributed the higher photon energy of the blue laser compared to the red
laser, which can generate more photoinduced carriers at the same power [39].
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Figure 3. (a) The TEM image of the MoS2@RGO nanoscroll. (b) HRTEM image of the MoS2 nanosheets
marked by the dashed box shown in (a). (c) The STEM image and EDX elemental mapping of the
MoS2@RGO nanoscroll.

The excellent photodetection performance of the MoS2@RGO nanoscroll could be
attributed to the formation of multiple heterojunction interfaces between the RGO and
MoS2 nanosheets. It is known that the ultrafast separation and transfer of photogenerated
carriers can be achieved at the heterojunction interface of graphene and MoS2, resulting
in a substantial increase in photocurrent and photoresponse. Due to the roll-up structure
of the MoS2@RGO nanoscroll, the MoS2 nanosheets are wrapped between adjacent RGO
layers spirally, forming multiple heterojunction interfaces. When light was shined on
the MoS2@RGO nanoscroll, the MoS2 nanosheets in each heterojunction interface could
absorb light, and charge carriers were generated simultaneously. Meanwhile, the photo-
generated charge carriers can be separated and transferred in an ultrafast way. Therefore,
the photocurrent of the MoS2@RGO nanoscroll can be greatly enhanced due to the syn-
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ergetic enhancement of photocurrent at each heterojunction interface. As a consequence,
the photosensitivity of the MoS2@RGO nanoscroll is much higher than that of the RGO
nanoscroll.
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4. Conclusions

In summary, (NH4)2MoS4 was encapsulated into the GO nanoscrolls by the molecular
combing method on hydrophobic substrate. By optimizing the precursor concentration and
annealing temperature, the (NH4)2MoS4 and GO nanoscrolls were successfully converted
to MoS2 and RGO nanoscrolls, forming the MoS2@RGO nanoscroll. The OM and AFM char-
acterization results showed that the high-density MoS2@RGO nanoscrolls were successfully
prepared. The uniform distribution of the MoS2 nanosheets in the RGO nanoscrolls was
confirmed by the Raman spectroscopy and HRTEM characterization. Compared to the RGO
nanoscroll, the MoS2@RGO nanoscroll showed much better photodetection performance.
The PDRs of photodetectors based on the MoS2@RGO nanoscrolls were about two orders of
magnitude higher than those of photodetectors based on the RGO nanoscrolls under blue,
red and green lasers. The formation of multiple graphene/MoS2 heterojunction interfaces
in a scrolled structure can not only enhance the light absorption of MoS2 but also accelerate
the electron-hole separation. Our work indicates that the MoS2@RGO nanoscrolls could be
promising materials for high-performance graphene-based photodetectors.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano12091581/s1: Figure S1. The optical images of photodetec-
tors based on individual (a) RGO nanoscroll and (b) MoS2@RGO nanoscroll with Au pads as source
and drain electrodes. Figure S2. Plots of Raman peak intensity of A1g as function of (a) annealing tem-
perature, (b) the flow ratio of N2 to H2, and (c) concentration of (NH4)2MoS4. Figure S3. OM images
of (NH4)2MoS4@GONS prepared by molecular combing (NH4)2MoS4 solution with concentration of
(a,e) 0.005 M, (b,f) 0.01 M, (c,g) 0.03 M, and (d,h) 0.05 M before and after thermal annealing. Figure S4.
AFM height images of the same (NH4)2MoS4@GONS (a) before and (b) after thermal annealing.
Figure S5. PDR plots of RGO nanoscrolls measured under (a) blue, (b) red, and (c) green lasers.

https://www.mdpi.com/article/10.3390/nano12091581/s1
https://www.mdpi.com/article/10.3390/nano12091581/s1
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