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Introduction

The review by Ben-Shlomo et al.1 highlights how life

course epidemiology is evolving and adapting to accommo-

date increasing access to data on novel dimensions and

over extended periods. This enriched framework raises

ever greater methodological challenges, leaving statisti-

cians like us daunted by the task of translating life course

enquiries into suitable analyses of the data at hand.

Take for example Figure 4 of Ben-Shlomo et al..1 This is

very useful for gaining a ‘big picture’ understanding of a

complex area such as ageing, and for establishing which

processes may benefit from a more detailed investigation.

However, the leap from such a diagram to a specific data

analysis should not be (and is not typically) made without

greater thought. We will argue in this commentary that

some recent developments from the field of modern causal

inference may be helpful in this regard. First, in order to

state unambiguously the question (or questions) of interest,

the potential outcomes framework, a cornerstone of mod-

ern causal inference thinking, is invaluable. Then, the con-

ceptual framework should be refined to a causal directed

acyclic graph (DAG) relevant to the question, and the

causal DAG should be formally interrogated to see if the

question can be addressed, and if so how. Indeed, depend-

ing on the question, the causal DAG and the data avail-

able, we may find that standard statistical methods

traditionally used in epidemiology are sufficient; in other

settings we may find that more novel techniques are

needed.

We will discuss each of these points next, mentioning

also the issues of missing data and measurement error, as

well as highlighting concerns about the difference between

the processes which are the focus of investigations and

their manifestations in observed data.

What is the question of interest?

For illustration, we take an example briefly discussed by

Ben-Shlomo et al.,1 namely the relationship between nutri-

tion and type II diabetes. Whereas the broad aim of a pro-

ject may be to understand the effect of nutrition across the

life course on the risk of developing adult type II diabetes,

a more specific question must be established before we can

proceed. In this section, we will highlight the range of dif-

ferent questions that may be of interest, and how they can

be unambiguously distinguished using the potential out-

comes notation.

Potential outcomes

Suppose for simplicity that nutrition is reliably measured

(e.g. via detailed food frequency questionnaires together

with analysis of urinary samples) twice during the life

course on a cohort of people: once in childhood and again

in early adulthood. Let X1 and X2 denote relevant summa-

ries of nutritional status in childhood and early adulthood,

respectively, and let the binary variable Y denote the devel-

opment of type II diabetes by age 70 years, say. Let Yðx1Þ
be the potential outcome, i.e. the value that Y would take

if we were hypothetically to intervene on X1 and set it

to the value x1. We can similarly define potential outcomes

Yðx Þ for hypothetical interventions on X2. We may also

define Yðx1;x2Þ, the value that Y would take were we to

intervene on both X1 and X2 and set them to x1 and x2, re-

spectively. We will now use this very simple example to
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illustrate how subtly different questions of interest can be

articulated using these potential outcomes.

Total and joint effects

The total causal effect (TCE) of X1 on Y (including both

its direct effect and its indirect effect via X2) can be ex-

pressed as a comparison of the distribution of Yðx1Þ for

different values of x1. Often the mean is compared, as in

TCE1ðx1Þ ¼ EfYðx1Þg � EfYðx�1Þg, where x�1 is a reference

(or baseline) value of X1; for binary X1, TCE1

¼ EfYð1Þg � EfYð0Þg. If Y were a time-to-event outcome,

such as time to onset of type II diabetes, we could compare

the survivor functions of the potential outcomes, for ex-

ample.2 The TCE of X1 would be of public health interest,

for example if primary school nutrition programmes were

being considered. If a public health nutrition initiative tar-

geted at adults would instead be considered, then the

causal effect of X2 on Y, TCE2 would more likely be of

interest, which would involve a comparison of the distribu-

tion, e.g. the mean, of Yðx2Þ for different values of x2.

Alternatively, the likely impact of a general intervention

such as increased taxation of unhealthy food would more

naturally lead to a comparison of the distribution of Yðx1;

x2Þ for different values of x1 and x2: this is the joint effect

of ðX1;X2Þ on Y:3,4

Controlled direct effects and conceptual models in

life course epidemiology

Another possible aim might be to gain a better biological

understanding of the timing and strength of the mechan-

isms linking nutrition to type II diabetes prevalence. In this

case we might compare the distribution of Yðx1;x2Þ for

different values of x1 but for a fixed value of x2, known as

a controlled direct effect, for example CDE1ðx2Þ
¼ EfYðx1;x2Þg � EfYðx�1;x2Þg.5 Evidence of variation in

CDE1ðx2Þ for different values of x2 would indicate that the

effect of nutrition in childhood on the risk of diabetes

varies according to the level at which adult nutrition is set.

This would support the so-called pathways model dis-

cussed in life course epidemiology6,7 according to which

sensitive periods of exposure interact in their impact on

risk (see below for further discussion of this). In the ab-

sence of such effect heterogeneity, we could compare the

common CDE1, which represents the effect of X1 that is

not mediated by X2, with the total causal effect of X2,

TCE2. A similarity between them would support the cumu-

lative exposure model. This is because the similarity (in

addition to the lack of interaction) implies that experienc-

ing the exposure during each of these two periods (directly)

influences the risk of type 2 diabetes by the same amount,

and hence it is the cumulative exposure, rather than the

timing of it, that matters. If instead one or other effect

were much smaller than the other, there would be support

for the sensitive period model, and one or other effect

being zero would support the critical period model.6,8

Interaction versus effect modification

Returning again to the pathways model, there are two sub-

tly different possible questions even here, which can clearly

be articulated using potential outcomes, namely the differ-

ence between interaction and effect modification.9 For ease

of explanation, suppose that X1 and X2 are both binary,

and that we are interested in comparing the means of the

potential outcomes. An interaction is said to be present if

the two CDEs differ, i.e. if EfYð1;1Þg� EfYð0;1Þg
6¼ EfYð1; 0Þg � EfYð0;0Þg. This is the same as saying

that: EfYð1;1Þg � EfYð1;0Þg 6¼ EfYð0; 1Þg � EfYð0;0Þg,
i.e. the causal effect of changing adult nutrition on the risk

of type II diabetes differs according to the level at which

we set childhood nutrition. Conversely effect modification,

as defined by VanderWeele,9 would be present if the causal

effect of changing adult nutrition on the risk of type II dia-

betes differs between those who in reality have different

childhood nutrition statuses, i.e. if EfYðx2 ¼ 1Þ � Y ðx2 ¼
0Þ jX1 ¼ 1g 6¼ EfY ðx2 ¼ 1Þ � Yð x2 ¼ 0Þj X1 ¼ 0g. (We

explicitly write Yðx2 ¼ 1Þ instead of Y(1) here, to clarify

that the hypothetical intervention being considered is on

X2 rather than X1.)

In this literature, interaction has a causal connotation

with respect to both exposures, whereas effect modifica-

tion is causal only with respect to (in this case) the later ex-

posure X2. Which of these questions is of interest will

depend on the broader aim of the investigation, and will

have an impact on how the data are analysed.

Effect decomposition

Alternatively, we might be interested in effect decompos-

ition, i.e. in asking what proportion of the effect of child-

hood nutrition on type II diabetes is mediated by early-

adult nutrition. For these questions, so-called natural direct

and indirect effects are relevant,10,11 and can again be un-

ambiguously stated as a counterfactual comparison; the

natural direct effect, for example, is a comparison of

the distribution of Yfx1;X2ðx�1Þg for different values of x1

where X2ðx�1Þ is the potential value of X2 were we to

set X1 to x�1. More specifically, the natural effect of

X1, expressed as a mean difference, is defined as NDE1 ¼
EfYfx1 ;X2 ðx�1Þgg � EfYfx�1;X2ðx�1Þgg. These effects and

their estimation have received much attention in the recent

causal inference literature.5 Since these effects involve
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nested counterfactuals, they require very strong untestable

assumptions for identification, assumptions that could not

even be hypothetically verified in an experimental setting.

For this reason, attention is currently being diverted to

more policy-relevant effects known as interventional direct

and indirect effects identifiable under weaker conditions.12

We expect that these effects will soon be estimated in ap-

plications in life course epidemiology.

Multiple exposures/mediators

Suppose we had an additional exposure time point, such as

nutrition during infancy; we would then be in a setting in

which we could potentially be interested in the joint effects

of more than two exposures,3,4 or we might be interested

in effect decomposition with multiple mediators.13,14

Comment

In any particular study, it is unlikely that all of the above

would be relevant. Our main message, however, is that life

course investigations are causal enquiries. Familiarity with

the modern causal inference literature—and with the sub-

tly different flavours of causal effects defined therein—has

the potential to aid researchers in formulating and commu-

nicating the question(s) of interest.

What is the appropriate causal DAG and
what can it tell us?

Once the question of interest has been stated, establishing

whether it can be answered under plausible assumptions

using the data at hand, and if so how, can be aided by

drawing a causal diagram [more precisely, a causal directed

acyclic graph (DAG)].15 Such a causal DAG should reflect

a priori subject-matter knowledge regarding the likely

causal structure of the variables being studied. Unlike con-

ceptual frameworks, causal DAGs are well-defined math-

ematical objects that can be interrogated using procedures

such as d-separation;16 as such, care must be taken to draw

them correctly, otherwise the resulting conclusions will be

unreliable. Further, although a unique causal DAG can

never be determined from the data and hence subject-mat-

ter knowledge is crucial, some candidate causal DAGs may

be incompatible with the data, and thus compatibility

should be investigated. There exists some recent technical

literature on the various possible causal interpretations of

DAGs,17,18 but one shared feature is that to be causal, any

common (measured or unmeasured) cause of two or more

variables in the diagram must itself be in the diagram.

See, for example, our Figure 1 for the nutrition-diabetes

example. The most naive causal DAG would assume no

common causes of any pair of X1;X2;Y and, under this as-

sumption, finding a causally interpretable statistical analysis

of the data would be straight-forward. More realistically,

however, the nutrition-diabetes relationship will be con-

founded by a number of factors that we denote by C [e.g.

socioeconomic position, physical activity and body mass

index (BMI)]. In most life course settings, many of these

confounders themselves will change over time (hence C1

and C2 in the figure), and to make progress, reliable re-

peated measures on these confounders would be needed. In

particular, note that we have allowed the later confounders

C2 to be affected by the earlier exposure X1 (as would be

expected, particularly with say physical activity and BMI).

This dependence of C2 on X1 introduces a potentially prob-

lematic feature common in life course studies, namely time-

dependent (or intermediate) confounding.

If Figure 1(b) were correct, standard regression methods

could be used to make inferences about the total effect of

X2 (by adjusting for X1;C1;C2), and also about effect

modification by X1 of the total effect of X2 on Y.19 In the

unlikely event that we could additionally assume no un-

measured common causes U of X1 and X2, then inference

about the total effect of X1 could also be made using stand-

ard methods upon adjustment for C1. If, however, we

wished to make inference about the joint effects of X1;X2,

or the controlled direct effect of X1 on Y fixing X2 to a

particular value, or to learn about interaction between X1

and X2 in their effect on Y, then so-called g-methods that

deal with time-dependent confounding would be needed.3,4

(a) (b)

Figure 1. (a) A naı̈ve causal DAG. (b) A more realistic causal DAG, with the unmeasured variables circled.

1008 International Journal of Epidemiology, 2016, Vol. 45, No. 4



Effect decomposition using natural direct and indirect ef-

fects would not be possible in the presence of U, and would

anyway require additional strong parametric assumptions

(due to the presence of intermediate confounding).20,21

However, progress could be possible using interventional

mediation effects12 using the observed (rather than coun-

terfactual) distribution of X2 given X1 and C1; see a related

discussion by VanderWeele and Robinson.22

Figure 2 is an expanded version of Figure 1(b) specific

to the nutrition-diabetes example. It highlights how con-

trolling for adult physical activity and BMI (C2Þ would re-

move part of the effect of childhood nutrition, the part that

they mediate (thicker arrows in the DAG), whereas not

controlling for adult physical activity and BMI would con-

found the effect of adult nutrition. Hence a traditional re-

gression approach would not achieve the estimation of the

joint effects of childhood and adult nutrition (including

their interaction), nor of the controlled direct effect of

childhood nutrition.

Missing data and measurement error

As well as confounding, other challenges facing those

attempting to estimate causal effects in life course studies

are: the likely depletion of participation during the

course of follow-up, with the resulting missing data; and

measurement error in particular when it affects a

mediator in the considered analysis. The first challenge is

a particularly relevant problem in studies of ageing, as

also discussed by Ben-Shlomo et al.,1 where data missing

due to death or other competing events present an espe-

cially difficult problem.23 Measurement error is ubiqui-

tous in observational epidemiology and is arguably of

even greater concern when it affects a mediator, with

induced biases in opposite directions for direct and indir-

ect effects.24,25 Inevitably when faced with incomplete

and/or mismeasured data, as with confounding, assump-

tions have to be made and then sensitivity to these as-

sumptions assessed. Causal diagrams present an

opportunity to represent these assumptions, for example

by including missingness indicators (see for example

Daniel et al.26 and the extensions by Mohan, Pearl and

others)27 or measurement error mechanisms in the

DAG.28 The implications of different assumptions can

then be formally assessed, and appropriate analyses, if

they exist, identified.

Processes versus snapshots

We end our commentary by drawing attention to a recent

important cautionary note on the use of causal DAGs, by

Aalen et al.,29 particularly relevant to studies in life course

epidemiology. Conceptual frameworks, e.g. Figure 4 in ref-

erence 1, rightly concern processes, usually latent, such as

the continuous-time evolution of an individual’s reproduct-

ive function or nutritional trajectory over the life course.

However, when we draw causal DAGs that are to be useful

for informing data analysis, we naturally focus on the

‘snapshot’ observations of this latent process that are avail-

able in our data. As long as the translation from process to

snapshot is done knowingly and carefully, this is wise; how-

ever, if we treat the snapshots in our causal DAGs as if they

actually represented the whole process, then mistakes can

be made and conclusions adversely affected. For example,

one reasonable hypothesis may be that the effect of nutri-

tion on type II diabetes risk is entirely mediated by BMI.

However, the mediation in this instance would be through

the entire BMI process. If BMI is measured only on a rela-

tively small number of occasions, then we would expect

only a proportion of the effect of nutrition on type II dia-

betes risk to be mediated by the observed measures of BMI.

Summary

In this commentary we have highlighted concepts and

methods from the field of causal inference, many of them

recent contributions, which we believe to be relevant in life

course studies. We have discussed how the language of po-

tential outcomes can help to articulate the precise ques-

tion(s) being asked and how causal DAGs—distinct from

conceptual frameworks—should be carefully drawn and

interrogated and missing data and measurement error

mechanisms included.
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