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Abstract. Substantial investment has been made into the once “neglected” tropical disease, soil-transmitted helmin-
thiasis, and into control programs that operate within a framework of mapping baseline disease distribution, measuring
the effectiveness of applied interventions, establishing when to cease drug administration, and for posttreatment evalu-
ations. However, critical to each of these stages is the determination of helminth infection. The limitations of traditional
microscope-based fecal egg diagnostics have not provided quality assurance in the monitoring of parasite disease and
suboptimal treatment regimes provide for the potential development of parasite resistance to anthelmintic drugs.
Improved diagnostic and surveillance tools are required to protect therapeutic effectiveness and to maintain funder
confidence. Such tools may be on the horizon with emergent technologies that offer potential for enhanced visualiza-
tion and quality-assured quantitation of helminth eggs.

INVESTMENT INTO THE PROBLEM
OF SOIL-TRANSMITTED HELMINTHIASIS

Soil-transmitted helminths (STHs) are parasitic nematodes
of the gastrointestinal tract of humans and contribute to the
group of neglected tropical diseases (NTD). Infection occurs
via contact with fecal-contaminated soil in typically tropical
and subtropical geographical areas, and is exacerbated by
poor sanitation.1,2 Parasite entry into the host is via penetra-
tion of the skin or ingestion of the infective larvae and pre-
dominately affects deprived people from low socioeconomic
communities of the developing world. STHs are a leading
cause of stunted growth and retardation, with significant
morbidity in school-aged children, the primary targets
of anthelminthic control.1,2 Various estimates suggest over
1 billion people are infected with one or more STHs, whereas
a further 4.5 billion people are at risk, with the most common
STHs being roundworm (Ascaris lumbricoides), whipworm
(Trichuris trichiura), and hookworms (Necator americanus
and Ancylostoma duodenale).1,2 Significant investments from
the Bill & Melinda Gates Foundation, the Wellcome Trust,
the Uniting to Combat NTD coalition, and a number of gov-
ernmental and private sector organizations have been com-
mitted to the problem of STH. We estimate that approximately
US$400 million over the period 2007–2016 (Table 1) has been
received or pledged for STH basic science, drug and vaccine
research, and STH control programs. A further investment
of US$720 million to $1.03 billion will be required for mass
drug administration (MDA) until 2020.3 It is our perspective
that quality-assured STH monitoring is going to be increas-
ingly necessary to provide funder confidence, particularly as
any substantial new investment in STH requires the assur-
ance that anthelmintic management will limit the potential
for drug resistance.4,5

THE NEED FOR QUALITY-ASSURED STH
MONITORING

STH control programs rely on diagnostic methods to deter-
mine the baseline infection rate, the effectiveness, and impact

of the applied interventions, when to cease drug interven-
tions, and for posttreatment evaluations.6 Monitoring gastro-
intestinal parasites in both human and veterinary health is
most often by fecal egg counting (FEC) of stool material by
trained technicians capable of sample collection, prepara-
tion, optical microscopy, and microscope image interpreta-
tion. The Kato-Katz method has been the World Health
Organization (WHO) standard for diagnosing STHs in humans
for nearly two decades due to its low cost and minimal equip-
ment requirement, but many of the FEC methods developed
for the veterinary field also hold promise for human applica-
tion.5–9 Veterinary techniques being adapted for human use
include the McMaster method, common in agricultural parasi-
tology, and the FLOtation TrAnslation Cringoli (FLOTAC)
and Mini-FLOTAC, which have higher sensitivities than Kato-
Katz and McMaster.7,8

A major limitation of traditional fecal egg microscopy is
the requirement for a localized “expert” in parasite egg iden-
tification at the point of sample analysis to distinguish
between a range of different microscopic image features such
as pollen, air bubbles, and other confounding debris from
different parasite ova, which range in size from 20 to 200 μm.
In the Kato-Katz method, a volumetric semisolid stool speci-
men is spread thinly over an area of approximately 490 mm2,
which equates to approximately 31 and 197 nonoverlapping
fields of view (FOV) at 40× and 100× magnification, respec-
tively.10 For the McMaster and FLOTAC methods, the areas
of fluidized stool to be imaged range from 100 to 324 mm2.10

The lack of routine quality assurance in STH monitoring is
complicated by the technical challenge of accurately counting
helminth eggs.11 Stool specimens are inherently unstable and
prone to rapid deterioration, which limit their storage and
transport for off-site evaluation,12 and any putative reeval-
uation. Kato-Katz preparations of hookworm ova clear rapidly
such that it is impractical to store slides and virtually impossible
to assess technician error rates.11 Egg count errors can have a
significant impact on reporting anthelmintic drug efficacy
when reports are based on cure rate.13 Error is not uncom-
mon in diagnostic microscopy and digital slide recording per-
mits images of samples to be easily reexamined to provide
quality assurance.14 However, the acquisition of digital micro-
scope images from traditional FEC methods with many FOV
cannot easily be achieved and there are impracticalities with
recording and storing large numbers of images per sample.
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Calls have been made for WHO to review current diag-
nostic guidelines given the present challenges of FEC.11 The
need for localized expertise and the lack of quality assurance
in FEC have resulted in poor monitoring of STHs.11 Diag-
nostic sensitivity in drug intervention programs needs to be
consistent across the program phases and precise quanti-
tative assessment is only required when dealing with low
occurrences of low infection intensity.6 Molecular techniques
applied to STHs reportedly have high specificity and sensi-
tivity, providing putative diagnostic tools for species-specific
identification. The polymerase chain reaction has enabled
nucleic acid amplification–based identification and quantita-
tion of roundworm, whipworm, and hookworm.15 However,
the challenges of sample preparation and the presence of
enzyme-inhibitory substances in fecal matter require sophis-
ticated laboratory resources and trained personnel, which
make the present molecular techniques difficult to deploy
in the field. Although FEC only reflects the pattern of egg
shedding,15 it still remains a practical solution for widespread
STH monitoring. The limitations of STH monitoring inevita-
bly exacerbate suboptimal treatment regimes and the poten-
tial development of resistance to anthelmintic drugs, as
exemplified by localized hookworm resistance in humans16

and widespread anthelmintic resistance in sheep and cattle
parasites.17 Drug resistance in animals reduces the therapeu-
tic tools available to effectively manage helminths.17

EMERGING STH MONITORING TECHNOLOGIES

An ideal test for STH would be inexpensive, simple to
use, require minimal or no training, and provide quality-
assured quantitative diagnosis. Large-scale MDA programs
often work in remote areas with little infrastructure,1,2 and
would benefit from field-deployable diagnostic tools to work
in parallel with drug administration regimes, within school
settings and at the community volunteer level. There is a
need to mitigate the logistical challenges and the constraints
of collecting, transporting, and storing clinical specimens and
associated equipment.12

Prototype devices that integrate mobile phone technology
with various portable microscopy attachments have demon-
strated fecal egg imaging capability.18–20 The notion of digi-
tizing and transmitting single FOV images could eliminate
the need for trained parasitology microscopists from the
field and aid in quality-assured monitoring of STHs by pro-
viding storable images for reexamination.10,19 Additional
features could inform precise geographical distribution of
STH infection via global positioning systems and provide
rapid transmission of relevant data to cloud-based ser-
vices for widespread dissemination and geospatial mapping.5

This capability would enable remote access to parasitology
expertise and the rapid communication of information to
relevant health-care service providers and government sub-
sidiaries. Near real-time technologies have the potential to
integrate STH disease surveillance systems with an audit-
able record for quality-assured diagnosis and potential high
specimen throughput.
Two new commercially available helminth parasite moni-

toring systems have recently emerged from the veterinary
field: The FECPAKG2™ developed by Techion Group Limited
(www.techiongroup.co.nz), is a remote location FEC system
enabling quality-assured diagnosis of gastrointestinal nema-
tode infection. In this system, single FOV images, of parasite
ova accumulated by an innovative fluidic system are acquired
at the site of analysis via a purpose built portable, autono-
mously operated digital photo microscope and transmitted to
“experts” via the Microsoft Azure Cloud system (Microsoft
Corp., Redmond, WA). A smartphone version of this tech-
nology has been developed.19 MEP Equine Solutions LLC
(www.theparasightsystem.com) also offer mobile phone-based
FEC microscopy for specific parasite ova. Their product,
Parasight System™, detects fluorescently labeled eggs in the
stool of animals.20 Originally developed to service agricultural
parasitology, these two technology platforms are likely to be
useful for human parasite assessment given the transferability
of the McMaster and FLOTAC methods, and are adapted to
provide quality-assured human parasite monitoring in STH
control programs.

TABLE 1
Funding into STH basic science, drugs and vaccines research, and STH control programs

Sector Funder US$

STH coalition* Uniting To Combat NTD‡ 120,000,000‡‡
Philanthropic Bill & Melinda Gates Foundation§∥ 98,498,000§§

The Wellcome Trust†§ 26,264,000§§
Others†§** 5,574,000§§

Public† Government organizations§†† 118,808,000§§
Private† Aggregate pharmaceutical and biotechnology companies§ 28,182,000§§

Total 399,660,000∥∥
STH = soil-transmitted helminths; NTD = neglected tropical diseases.
*Initiated in 2014.
†2007–2014.
‡http://www.childrenwithoutworms.org/sth-coalition (Accessed March 3, 2016).
§http://gfinder.policycures.org/PublicSearchTool/ (Accessed March 3, 2016).
∥http://www.gatesfoundation.org/How-We-Work/Quick-Links/Grants-Database (Accessed March 3, 2016).
**Anonymous donor, Commission for Research Partnership with Developing Countries, FAIRMED–Health for the Poorest, Fondazione Cariplo, Gary K Michelson, Charitable Foundation,

Inc., KFPE, Medicor Foundation, SPRIM, Stanley Thomas Johnson Foundation, UBS Optimus Foundation.
††Argentinian Ministry of Science, Technology and Productive Innovation (MINCYT); Australian Department of Industry; Australian National Health and Medical Research Council

(NHMRC); Brazilian Foundation of Research of the State of Para, Fundavao de Amparo a Pesquisa do Estado do Para (FAPESPA); Brazilian Ministry of Health: Department of Science and
Technology (DECIT); Broad Institute; Colombian Department for Science, Technology and Innovation (Colciencias); Dutch Ministry of Foreign Affairs–Directorate General of Development
Cooperation (DGIS); Engineering and Physical Sciences Research Council (UK); European Commission (including the Directorate-General for Research and Innovation, and the Directorate-
General for Development and Cooperation–EuropeAid); Swedish International Development Agency (SIDA); German Federal Ministry of Education and Research (BMBF); German
Research Foundation (DFG); Health Research Council of New Zealand (HRC); New York University School of Medicine; US Centers for Disease Control (CDC); Swiss National Science
Foundation (SNSF); US National Institutes of Health (NIH); University of California, San Diego; University of Malaya (including the Tropical Infectious Diseases Research and Education Cen-
ter, TIDREC); UK Medical Research Council (MRC); Texas Children’s Hospital; Washington University.
‡‡Pledged amount.
§§Expended amount.
∥∥Provisional total.
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CONCLUSIONS

Continued investment into the management of STHs will
require the implementation of improved diagnostic and sur-
veillance tools to safeguard therapeutic effectiveness and to
provide confidence to the funders of STH research and con-
trol programs. Emerging microscope-based fecal egg methods
developed for the veterinary sector should be evaluated for
human application with the goal to better inform control pro-
grams with quality-assured monitoring of STH.
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