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A phenome-wide association study to discover pleiotropic
effects of PCSK9, APOB, and LDLR
Maya S. Safarova1, Benjamin A. Satterfield1, Xiao Fan1, Erin E. Austin1, Zhan Ye2, Lisa Bastarache3, Neil Zheng3, Marylyn D. Ritchie4,
Kenneth M. Borthwick5, Marc S. Williams6, Eric B. Larson7, Aaron Scrol7, Gail P. Jarvik8, David R. Crosslin8,9, Kathleen Leppig10,
Laura J. Rasmussen-Torvik11, Sarah A. Pendergrass5, Amy C. Sturm6, Bahram Namjou12, Amy Sanghavi Shah13, Robert J. Carroll3,
Wendy K. Chung14,15, Wei-Qi Wei3, QiPing Feng16, C. Michael Stein16, Dan M. Roden17, Teri A. Manolio 18, Daniel J. Schaid19,
Joshua C. Denny3, Scott J. Hebbring20, Mariza de Andrade19 and Iftikhar J. Kullo1

We conducted an electronic health record (EHR)-based phenome-wide association study (PheWAS) to discover pleiotropic effects of
variants in three lipoprotein metabolism genes PCSK9, APOB, and LDLR. Using high-density genotype data, we tested the
associations of variants in the three genes with 1232 EHR-derived binary phecodes in 51,700 European-ancestry (EA) individuals and
585 phecodes in 10,276 African-ancestry (AA) individuals; 457 PCSK9, 730 APOB, and 720 LDLR variants were filtered by imputation
quality (r2 > 0.4), minor allele frequency (>1%), linkage disequilibrium (r2 < 0.3), and association with LDL-C levels, yielding a set of
two PCSK9, three APOB, and five LDLR variants in EA but no variants in AA. Cases and controls were defined for each phecode using
the PheWAS package in R. Logistic regression assuming an additive genetic model was used with adjustment for age, sex, and the
first two principal components. Significant associations were tested in additional cohorts from Vanderbilt University (n= 29,713),
the Marshfield Clinic Personalized Medicine Research Project (n= 9562), and UK Biobank (n= 408,455). We identified one PCSK9,
two APOB, and two LDLR variants significantly associated with an examined phecode. Only one of the variants was associated with a
non-lipid disease phecode, (“myopia”) but this association was not significant in the replication cohorts. In this large-scale PheWAS
we did not find LDL-C-related variants in PCSK9, APOB, and LDLR to be associated with non-lipid-related phenotypes including
diabetes, neurocognitive disorders, or cataracts.
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INTRODUCTION
Genetic pleiotropy is widespread; ~5% of common variants and
~17% of genomic regions are associated with more than one
phenotype.1 Genes implicated in lipoprotein metabolism are no
exception and have been reported to be associated with type 2
diabetes.2–5 The National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) Genome-wide
Association Study (GWAS) catalog4 lists additional possible
associations of variants near these genes with diverse diseases
including Wilms’ tumor, allergic rhinitis, and bipolar disorder
among others. Drugs specifically targeting genes or gene products
involved in lipoprotein metabolism may therefore have unin-
tended effects.6,7 Pathogenic variants in proprotein convertase
subtilisin/kexin type 9 (PCSK9), apolipoprotein B (APOB), and low-

density lipoprotein receptor (LDLR) can lead to familial hyperch-
olesterolemia (FH). PCSK9 influences LDLR density on the
hepatocyte surface and thereby low-density lipoprotein-choles-
terol (LDL-C) levels through LDLR recycling.8 The gene product of
APOB is found on LDL particles and is the ligand for LDLR.9

Recent reports demonstrate links between LDLR variants that
lead to FH and decreased risk of diabetes.2 Conversely, statin
therapy, which increases LDLR expression, is associated with risk
of developing diabetes.10 Increased risk of diabetes was noted in
carriers of the LDL-C lowering variant in LDLR, rs6511720.11

Monoclonal antibodies targeting PCSK9, and APOB antisense
inhibitors are effective in lowering LDL-C levels and appear to
lower the risk of atherosclerotic cardiovascular disease (ASCVD)
events.12–14 The drugs have been approved for clinical use,
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however long-term safety data are lacking. In particular, several
studies suggest that these drugs may increase risk of dia-
betes,11,15,16 neurocognitive impairment,17–21 and cataracts,22

although to date such associations have not been observed in
prospective randomized control trials. The current study
attempted to identify pleiotropic effects of variants in PCSK9,
APOB, and LDLR that influence LDL-C levels with a particular focus
on associations with diabetes, neurocognitive impairment, and
cataracts given the concern raised in prior reports.
We conducted a comprehensive agnostic investigation of

associations of PCSK9, APOB, and LDLR with non-lipid phenotypes
on a phenome-wide scale to complement previous Mendelian
randomization and post hoc analyses that raised concern of
putative adverse associations. The phenome-wide association
study (PheWAS) approach starts with genetic variants or genes of
interest and then a large number of phenotypes are tested for
association. Such an approach has revealed numerous previously
unreported genotype–phenotype associations23,24 and provided
insights into evolutionary genetics25 and drug repositioning.26 We
attempted to extend on prior studies by including individuals of
diverse ethnic backgrounds given the known differences in lipid
levels by race/ethnicity27–30 and by the use of real-world patient
electronic health record (EHR) data.
We leveraged high-density genotyping data linked to EHR-

derived phenotypes from the electronic MEdical Records and
GEnomics (eMERGE) Network31,32 to conduct a PheWAS to test the
association of variants in PCSK9, APOB, and LDLR with non-lipid
phenotypes, including diabetes, neurocognitive disorders, and
cataracts. Associations were validated by conducting a cross
validation in the eMERGE discovery cohort. Replication of
significant PCSK9-trait, APOB-trait, and LDLR-trait associations was
pursued in three independent cohorts: the Vanderbilt DNA
biobank (BioVU) comprising individuals of European-ancestry
(EA) and African-ancestry (AA), the Marshfield Personalized
Medicine Research Project (PMRP), and the UK Biobank33 both
comprised of EA individuals.

RESULTS
Discovery cohort study population
Clinical characteristics of study participants from the discovery and
three replication cohorts are shown in Table 1. Of the 83,985
individuals from the 12 eMERGE sites (Supplementary Table 1),
51,700 EA individuals (mean age 58 ± 16 years, 54% female) and
10,276 AA individuals (mean age 51 ± 16 years, 67% female)
passed our quality control filters and had high-density genotyping
data with imputed PCSK9, APOB, and LDLR variants, linked to the
EHR.

Selection of variants
Collectively, individuals in the discovery set had 457 PCSK9, 730
APOB, and 720 LDLR variants. After applying quality control filters
and other selection criteria including association with LDL-C, for
the primary analysis, two PCSK9, three APOB, and five LDLR
variants remained for PheWAS analysis in the EA cohort, but no
variants remained for PheWAS analysis for the AA cohort (Fig. 1
and Table 2). Eight of these 10 variants had been tested in the
Global Lipids Genetics Consortium (http://lipidgenetics.org/) and
found to be significantly associated with LDL-C (Table 2).
To determine whether variants not associated with LDL-C levels

in the three genes were associated with other phenotypes, a
secondary analysis was performed with a similar selection process
in the discovery cohort that included “missense” variants not
associated with LDL-C. This yielded four PCSK9 (three in EA cohort,
four in AA cohort), 15 APOB (5 in EA cohort, 12 in AA cohort), and
one LDLR (one in both the EA and AA cohorts) variants suitable for

PheWAS analysis (Supplementary Figure 1; Supplementary Table
2).

Selection of phecodes
Of the 1815 available phenotypes, 1232 and 585 passed quality
control filters for the EA and AA cohorts, respectively (Supple-
mentary Data 1). Phecodes representing diabetes, neurocognitive
disorders, and cataracts are listed in Supplementary Tables 3–5,
respectively. A summary of the selection strategy for participants,
variants, and phecodes, as well as the replication analysis and five-
fold cross validation is shown in Fig. 2.

PheWAS results
In the discovery cohort, the PheWAS identified one PCSK9, two
APOB, and two LDLR variants in the EA sample that were
significantly associated (p < 5.8 × 10−5) with an examined phecode
(Fig. 1 and Table 3). Only one of the variants, the LDLR variant
rs6511720, was associated with a non-lipid/non-ASCVD phecode,
that being “myopia.” These five variants underwent additional
analyses described below. Several of the variants trended towards
association with ischemic heart disease, with the strongest
association seen for rs639750 in PCSK9 (p= 0.0065, OR 0.96).
A secondary PheWAS analysis of additional missense variants

not associated with LDL-C was performed. None of these variants
were significantly associated with a phecode in the EA or AA
cohorts; therefore, no further tests with these variants were
performed.
Our analyses included EA and AA individuals. However, when

we included the remaining 2182 non-EA/non-AA individuals
(Supplementary Table 1) with the EA group, our inferences were
similar.
Two low-frequency PCSK9 variants, rs67608943 and rs28362286,

have been associated with lower LDL-C levels in AA individuals. As
no AA variants passed our selection criteria for PheWAS analysis,
we performed an additional analysis with these two variants, but
did not find these variants to have any significant associations.

Myopia association
There were 16 LDLR variants in LD (r2 > 0.3) with rs6511720 that
were also associated with myopia. Of these, rs2228671 had the
strongest association with “myopia” but a weaker association with
the lipid-related phecodes. Manhattan plots of phecode associa-
tions of the LDLR variants rs6511720 (Supplementary Figure 2a)
and rs2228671 (Supplementary Figure 2b) highlight that these
variants, although in LD, have varying strengths of association.
Supplementary Figure 3 presents the strength of association with
the phecode “hypercholesterolemia” or LDL-C levels, myopia, and
myopia adjusted for the phecode “hypercholesterolemia” or LDL-C
levels for the 16 variants in LD. The strength of association with
myopia was attenuated but remained significant after adjustment
for hypercholesterolemia or LDL-C levels. Based on LD the 16
variants associated with myopia could be placed into four groups
(Supplementary Figure 3). Variants in the same group had an r2 >
0.98. The variant rs6511720 (blue), relatively distant from the
remaining variants, had the strongest association with LDL-C level.
rs2228671 (green) along with another nine variants in its group
were most strongly associated with myopia.
When eMERGE consortium site was added as a covariate in the

analysis, the signal for myopia was no longer significant,
suggesting that one or a few sites were driving the association.

Cross validation and replication
Using five-fold cross validation, most of the lipid-related phecode
associations of the PCSK9, APOB, and LDLR variants remained
significant (p < 4.1 × 10−5). The association between the LDLR
variant rs6511720 and the phecode “myopia” was borderline
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significant (Table 3). Other variants in LD with rs6511720 also had
borderline significant associations with the phecode “myopia.”
When eMERGE consortium site was added as a covariate in the
cross validation analysis, the signal for myopia was no longer
significant, again, suggesting that one or a few sites were driving
the association. All lipid-related phecode associations from the
PCSK9, APOB, and LDLR variants were replicated in the Marshfield
PMRP, BioVU and/or UK cohorts; however, the non-lipid associa-
tion of rs6511720 with the phecode “myopia” was not confirmed
in any of the replication cohorts (Table 3).

Comparison to the GWAS catalog
We examined the NHGRI-EBI GWAS catalog4 for all reported
variants within the boundaries of PCSK9, APOB, and LDLR. We
found 27 variants (4 in PCSK9, 14 in APOB, and 9 in LDLR) with 86
reported associations. Six of these variants were protein-function
altering, either missense or stop-gain. Two variants were not
available in the eMERGE dataset; therefore, we tested the
remaining 70 associations in the eMERGE dataset. From those
70, 28 had significant lipid associations and no significant
pleiotropic effects (cross-phenotype associations) were present,
including lack of association with “myopia.” Eight variants were
not available in the UK Biobank dataset; therefore, we tested the
remaining 55 associations in the UK Biobank. All of these were
significant replicating previously reported associations with lipid
levels, ischemic heart disease, and disorders of lipoprotein
metabolism. There were no significant pleiotropic effects (includ-
ing lack of association with “myopia”). A list of reported
associations with the UK Biobank code descriptions and eMERGE
phecode equivalent is presented in Supplementary Data 2.

Power
We calculated power using the R package “powerMediation”. For
logistic regression analyses with phecode as the binary outcome
and genotypes as discrete predictors, power was calculated for
each pair of variant and phecode, based on sample size, allele
frequency for each variant, odds ratio (OR) and type I error α=
4.1 × 10−5. We had more than 80% power to detect 30% of
associations in EA individuals. However power for individual
variants was low (Supplementary Figure 4); for higher frequency
variants, power for the phecodes “ischemic heart disease” and
“type 2 diabetes”, was 0.175 and 0.143, respectively.

DISCUSSION
In a large PheWAS we confirmed the association of PCSK9, APOB,
and LDLR with disorders of lipid metabolism (hypercholesterole-
mia) at the variant level. We found no evidence that variation in
PCSK9, APOB, and LDLR is associated with diabetes or any non-lipid
phenotypes including neurocognitive disorders or cataract. This
includes the PCSK9 variant rs11591147 and the LDLR variant
rs6511720 for which prior studies have reported borderline
significant associations with increased risk of diabetes.11,34 In the
NHGRI-EBI GWAS catalog, no associations of PCSK9, APOB, or LDLR
variants with diabetes, neurocognitive disorders, or cataract have
been reported. Additionally, an examination of the UK Biobank all-
by-all PheWAS browser (http://pheweb.sph.umich.edu) did not
demonstrate pleiotropic effects for any tested variants in PCSK9,
APOB, or LDLR.
In our discovery cohort we identified an association of several

variants in LDLR with “myopia”, but none of these were confirmed
in the replication cohorts and only the association between some
LDLR variants including rs2228671 and “myopia” was present on
five-fold cross validation. We were unable to find any physiological
basis in the literature for an association between lipid level or lipid
genes and myopia, and given the lack of replication, this could be
a false positive association.Ta
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Long-term safety data on PCSK9 inhibitors are not available
given the limited follow up of clinical trials that have been
conducted so far.35 In particular, there is a theoretical concern for
increased risk of diabetes, neurocognitive disorders, and cataracts.
The U.S. Food and Drug Administration issued a directive to
monitor for adverse neurocognitive events in patients treated with
PCSK9 inhibitors,36 and ongoing pharmacovigilance programs are
in place. In our analysis, we did not find a significant association
between PCSK9 variation and neurocognitive disorders apart from
the borderline association with “myopia”.
In the NHGRI-EBI GWAS catalog4 common variants at the PCSK9

and APOB loci were associated with non-lipid/non-ASCVD traits.37–
45 Most of these variants were intergenic and were therefore
excluded from our study which only included variants within the
gene borders. Three variants (rs6006893, rs219553, and
rs2495478) were intronic and therefore of uncertain functional
significance. The association of variant rs2495478 with Wilms’
tumor was not replicated and the other two variants were not
present in the eMERGE dataset to compare. The UK Biobank
PheWAS browser also did not list any of these associations
reported in the GWAS catalog (Supplementary Data 2). Therefore,
we did not confirm the associations reported in the NHGRI-EBI
GWAS catalog for variants available in our analyses.
Two recent studies reported differing results regarding the

association between the LDL-C lowering variant rs11591147 and
risk of diabetes.11,34 In a Mendelian randomization study PCSK9
variants associated with low LDL-C levels (rs11583680, rs11591147,
rs2479409, and rs11206510) modestly increased risk of diabetes
(OR 1.29; 1.11–1.50).15 A meta-analysis encompassing 50,775

individuals with type 2 diabetes and 270,269 control subjects
revealed an OR of 1.09 for rs11591147, a cholesterol-lowering
variant11 matching an OR of 1.11 (1.04–1.19) for each 10mg
PCSK9-mediated decrease in LDL-C levels.16 Circulating PCSK9
levels are increased in patients with diabetes and metabolic
syndrome.46 On the other hand, a recent report found no
association between rs11591147 and markers of glucose home-
ostasis or diabetes34 and no evidence of increased risk of new-
onset diabetes was found in a pooled analysis of 10 phase III trials
of PCSK9 inhibitors with a follow-up period of 6–18 months.47

Additional studies and longer-term follow-up of PCSK9 inhibitors
may be needed to confirm/refute an association with diabetes.
Individuals with FH have been reported to have decreased risk

of diabetes and there are also links between the use of statins and
an increased risk from diabetes. However, no studies have
identified an association between specific APOB or LDLR variants
and diabetes. We also did not find any association with specific
variants in these genes with any of the 19 phecodes associated
with diabetes. Of note, a recent GWAS report described that only a
very small fraction of LDL-C lowering genetic variants (only 5 out
of 113 variants from 90 distinct loci) were associated with type 2
diabetes.48 None of these were in PCSK9, APOB, or LDLR. However,
a lack of pleiotropic effects in a subset of variants does not
exclude the possibility of pleiotropic effects for other variants in
the studied genes or in other ethnic backgrounds.
We evaluated the previously reported association between

lipid-lowering drugs and the risk of cataracts17,18 but observed no
significant signal for PCSK9, APOB, or LDLR and any of the six
tested phecodes pertinent to cataracts. We did not find the loss-
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Fig. 1 Selection of variants in the discovery cohort for the primary analysis. Collectively, individuals in the discovery cohort contained the
number of variants shown for PCSK9, APOB, and LDLR. These variants were passed through various quality control filters and other selection
measures including imputation quality (r2 > 0.4), minor allele frequency (MAF) > 1%, LDL-C association at the given thresholds for EA and AA,
and linkage disequilibrium (r2 < 0.3). The variants passing these filters were used in the primary analysis. The rsID for each variant is shown
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of-function rs11591147 (R46L) variant to be associated with
hemorrhagic stroke, although low LDL-C levels on lipid-lowering
drugs have been associated with the risk of intracerebral
hemorrhage.49

While this manuscript was being reviewed, two sets of PheWAS
results were published for PCSK9 variants. In the first,50 a gene-
centric score derived from four PCKS9 variants (rs11583680,
rs11591147, rs2479409, and rs11206510) that were associated
with LDL-C in the Global Lipids Genetics Consortium (http://
lipidgenetics.org/) was associated with myocardial infarction and
type 2 diabetes. Associations for individual variants were not
reported. The second of these studies51 examined only a single
PCSK9 variant, rs11591147, in 337,536 individuals of predomi-
nantly European ancestry in the UK Biobank and demonstrated it
to be associated with hyperlipidemia and coronary heart disease,
which is similar to our results which trended toward association
with ischemic heart disease but not with type 2 diabetes. Neither
of these studies found any associations for PCSK9 variants with
neurocognitive disorders and cataracts, nor did these examine
variants in APOB or LDLR.
In summary, our primary analysis identified only one pleiotropic

effect, “myopia” in the discovery cohort for LDLR, which remained
borderline significant on five-fold cross validation and was not
replicated in any of the three replication cohorts. A PheWAS for
missense variants not associated with LDL-C also did not identify
any pleiotropic effects. Lastly, we did not replicate the associations
reported in the NHGRI-EBI GWAS catalog for PCSK9, APOB, and
LDLR variants.

Strengths and limitations
The present study included a larger sample size of AA individuals
than previous PheWAS analyses. Also, in addition to correcting for
multiple testing, we evaluated significant results in a large
discovery cohort, three large independent replication cohorts,
and conducted five-fold cross validation. Replication of the known
associations with LDL-C52 in directions consistent with previous
epidemiologic and genetic studies provided an internal validation
of our PheWAS approach. Our primary analysis was restricted to
only functional PCSK9, APOB, and LDLR variants but we did
perform a secondary analysis including only “missense” mutations
with similar results.
Several limitations are worth noting. First, EHRs are a repository

of longitudinal data that capture phenotypes with varying
resolution, thus their use for research may be subject to

misclassification; some control subjects may have limited contact
with the health care system possibly leading to misclassification in
those individuals. Second, although the sample size of AA
individuals was larger than previous studies, it was relatively small
compared to the EA cohort and may not be sensitive in detecting
pleiotropic associations. Given that genetic structure varies across
populations of different ancestry backgrounds, there is a need to
assess phenotype–genotype associations in diverse ethnic groups,
including individuals of African, Asian, and Hispanic/Latino
ancestry. Third, the phecodes in UK Biobank did not correspond
exactly to the phecodes in the eMERGE cohort so best
approximations had to be applied. Fourth, although the associa-
tions between the LDL-C-related variants and ischemic heart
disease trended towards significance, these did not reach the
Bonferroni threshold, highlighting that there could be pleiotropic
associations that were simply below the threshold of detection in
our dataset. Fifth, general limitations of the PheWAS approach
that are not specific to our study include low power to detect
weaker pleiotropic effects and inability to directly address
potential off-target side effects of pharmacologic manipulation
of the examined genes.

Conclusion
In this large-scale PheWAS we did not find LDL-C associated or
missense variants in PCSK9, APOB, and LDLR to be associated with
non-lipid phenotypes; specifically no association was seen with
neurocognitive disorders, diabetes, or cataracts. These data
suggest a lack of major pleiotropic effects of the tested PCSK9,
APOB, and LDLR variants.

METHODS
Genotyping, quality control, and selection criteria
High-density genotype data were available for 83,985 participants of the
eMERGE network. To unify the genotype data processed on 78 different
chips from 12 contributing sites, each genotype array batch was imputed
via the Michigan Imputation Server (MIS; https://imputationserver.sph.
umich.edu/) and all imputed batches of data were combined into a unified
dataset. The imputation was based on minimac3 algorithm53 and the
genotype reference panel was from Haplotype Reference Consortium.54 All
research activities were reviewed and approved by the Institutional Review
Board (IRB) at each eMERGE site and all research subjects gave written
informed consent.
Medications were extracted from prescription databases and/or clinic

notes for each institution. Lipid lowering medications (LLMs) included:

Table 2. Variants that passed quality control filters in the primary analysis compared with the Global Lipids Genetics Consortium

Gene Chr Positiona rsID Ref Alt Annotation eMERGE cohort GLGC metabochip

MAF EA (%) Beta p- value LDL-C MAF in 1kGP (%) Betab p-value

PCSK9 1 55505647 rs11591147 G T issense 1.4 −12.97 1.3 × 10−27 1.7 −0.50 1.6 × 10−142

55519015 rs639750 T G Intron 32.7 −1.82 1.0 × 10−9
– – –

APOB 2 21233972 rs533617 T C Missense 3.8 −4.40 1.3 × 10−9 4.9 −0.14 1.7 × 10−27

21263639 rs531819 G T Intron 15.5 −4.07 2.6 × 10−26 19.1 −0.12 1.3 × 10−57

21263900 rs1367117 G A Missense 31.6 3.52 6.4 × 10−32 71.2 −0.11 1.4 × 10−75

LDLR 19 11202306 rs6511720 G T Regulatory intron 11.4 −5.79 4.2 × 10−39 9.8 −0.23 2.8 × 10−151

11206575 rs6511721 A G Retained intron 48.3 1.73 5.6 × 10−10 48.8 −0.06 1.5 × 10−29

11227480 rs2738447 C A Nonsense mediated decay 41.5 −1.67 4.0 × 10−9 42.9 −0.05 8.4 × 10−13

11231203 rs72658867 G A Splice regions 1.1 −10.20 2.8 × 10−14
– – –

11243445 rs5742911 A G 3′ UTR 30.7 −1.79 3.7 × 10−9 26.8 −0.06 5.3 × 10−24

Selection criteria: Imputation quality r2 > 0.4; MAF > 1%; LCL-C association (threshold of 5.0 × 10−8); LD r2 < 0.3
GLGC Global Lipids Genetics Consortium, Chr chromosome number, Ref reference allele, Alt alternate allele, MAF minor allele frequency, LDL-C low-density
lipoprotein cholesterol, 1kGP 1000 Genomes program
aPosition in human genome assembly hg19
bThe difference in Beta between eMERGE and GLGC is primarily due to differences in units of measurements. eMERGE used mg/dL while GLGC used mmol/L
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cerivastatin, rosuvastatin, simvastatin, fluvastatin, pravastatin, lovastatin,
atorvastatin, and pitavastatin. For the majority (76.3%) of participants, we
used median LDL-C levels prior to the use of any LLM. For the remaining
23.7% of participants with LDL-C levels while on LLM, the median LDL-C
level was divided by 0.75 to impute LDL-C levels prior to initiating LLM55

assuming a 25% reduction in LDL-C on therapy. To assess association with
LDL-C, we used an additive genetic model with age, sex, LLM status, and
the first two principal components as covariants.
For the primary analysis we tested variants meeting the following

criteria: within the PCSK9, APOB, or LDLR gene boundary (using NCBI gene
reference; PCSK9, chromosome 1: 55505149–55530526; APOB, chromo-
some 2: 21224301–21266945, LDLR, chromosome 19:
11200037–11244506), minor allele frequency (MAF) > 1%, high imputation
quality (r2 > 0.4), associated with LDL-C level, and not in linkage
disequilibrium (r2 < 0.3). For a group of variants in LD, we picked the one
with strongest association with LDL-C. The standard GWAS genome-wide
threshold of significance of <5.0 × 10−8 was used for both the EA and AA
cohorts to determine association with LDL-C.
For the secondary analysis we tested all variants meeting the following

criteria: within the PCSK9, APOB, or LDLR gene boundary, MAF > 1%,
missense variants that were not associated with LDL-C level, high
imputation quality (r2 > 0.4), and not in linkage disequilibrium (r2 < 0.3).
SeattleSeq (http://snp.gs.washington.edu/SeattleSeqAnnotation138/) was
used to annotate variant function including identifying missense
mutations.
We randomly removed one from each related pair of participants (first

degree of relatives) using identity-by-descent (IBD) measures p̂ � 0:5.56 We
performed principal component analysis in the eMERGE cohort and
2504 samples from the 1000 Genomes Project phase 357 to infer genetic
ancestry. We also stratified analyses for AA individuals and EA individuals.
We restricted our analyses to adults (age > 18 years). If any participant had
only one instance or encounter for any of the component ICD codes, he/
she was excluded from the analysis of the corresponding phecode.

Phenotyping
We converted International Classification of Diseases, Ninth Revision (ICD-
9) codes from EHRs to 1815 phecodes58 using PheWAS package.59 A ‘case’
for a given phecode was defined as having a minimum of two ICD-9 codes
on different dates. Controls did not have any related phecodes according
to the exclusion criteria embedded in the PheWAS package. To retain
statistical power, we only analyzed phecodes with ≥200 cases.60

Statistical analysis
Associations between single variants in PCSK9, APOB, and LDLR and
individual phecodes were performed in the eMERGE discovery cohort
stratified by genetically inferred ancestry (AA and EA individuals) as
described above. In an effort to include all participants regardless of
ancestry, we performed an additional analysis where we grouped all non-
AA ancestries with EA. Logistic regression assuming an additive genetic
model was utilized with adjustment for median age at which ICD-9 codes
were recorded, sex, and the first two principal components from our
evaluation of genetic ancestry described above. A scree plot showed that
the first two principal components captured 79% of the variates
(Supplementary Figure 5). A Bonferroni threshold of significance was
defined as 0.05/(number of tested phecodes). PheWAS analyses were
repeated with site added as a covariate.

Myopia association
The discovery cohort contained 15 additional variants that were in LD (r2 >
0.3) with rs6511720 and tested against hypercholesterolemia code/LDL-C
levels, myopia code and myopia code adjusted for hypercholesterolemia
code/LDL-C levels.

Stage I. Discovery Analysis Stage IIa. Replication Analysis

Stage IIb. 5-fold Cross Validation

n = 83,985 participants with 1,815 EHR-based
phecodes from 12 eMERGE sites:

Subject QC: 
3,894 removed due to no ICD9 codes
15,502 removed due to age <18 years 
431 removed due to relation to another subject 
2,182 removed due to race other than EA or AA

Variant QC: 
n = 457 (PCSK9), 730 (APOB), 720 (LDLR) 

Imputation quality r2>0.4, 
MAF>1%, LDL-C, LD<0.3

n = 2 (PCSK9), 3 (APOB), 5 (LDLR)

Subjects: n = 51,700 EA; 10,276 AA
Phecodes: n = 1,232 EA, 585 AA 
Variants: n = 3 (PCSK9), 5 (LDLR), 3 (APOB)

Phecode QC: 
583 phecodes removed in EA and 1,230
removed in AA due to <200 individual records
containing the phecode

-Boston
-Columbia University
Medical Center

 Hospital of
Philadelphia 
-Cincinnati
Hospital Medical Center
-Geisinger
-Harvard Medical Center

-Kaiser Permanente Wash-
ington Health Research
Institute/University of 
Washington
-Marshfield Clinic
Research Foundation 
-Mayo Clinic
-Mount Sinai Hospital 
-Northwestern University
-Vanderbilt University

BioVU 
n = 26,582 EA, 3,131 AA 

Marshfield PMRP 
n = 9,562 EA 

UK Biobank
n = 408,455 EA 

51,700 EA subjects
10,340
test set

10,340
test set

10,340
test set

10,340
test set

10,340
test set

iteration 1/5:

iteration 2/5:

iteration 3/5:

iteration 4/5:

iteration 5/5:

Fig. 2 Study outline for primary analysis. AA African-ancestry, EA European-ancestry, EHR electronic health record, eMERGE electronic MEdical
Records and GEnomics Network, LD linkage disequilibrium, PMRP Personalized Medicine Research Project, QC quality control
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Cross validation
We used cross validation in the discovery cohort dataset for associated
phenotypes. This methodology simulates tests on the independent test
dataset and aims to prevent over-fitting.61 In cross validation, we
partitioned at random a given dataset into five equally sized subsets/
folds. Then, one of the subsets was used to detect association, and this was
repeated four times so that each subset was used once to perform the test.
We combined the results from the five tested folds together using Fisher’s
method,62 which corresponds to performing tests on all samples. Cross-
validation analysis was repeated with site included as a covariate.

Replication
Significant variant-phecode associations were evaluated in three separate
cohorts. The BioVU,63 Marshfield Clinic Biobank,64 and the UK Biobank33

included 29,713, 9562, and 408,455 participants, respectively. To avoid
overlap between the discovery and the replication cohorts, the BioVU and
Marshfield Clinic Biobank replication cohorts only included individuals who
were not eMERGE participants.
All UK Biobank participants for whom PheWAS results were available

were included in the number above. Replication in the available datasets
was defined as p-value < 0.05/number of replicated variants.

Testing association reported in the GWAS catalog
We tested whether the previously reported associations for variants in the
three lipid metabolism genes were present in the eMERGE dataset and UK
Biobank. We collected all the variants within the boundaries of the three
genes that were listed in the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS catalog.4 A physician
mapped the phenotypes from the GWAS catalog to the closest codes used
in the PheWAS package and UK Biobank. Mapping is available in
Supplementary Data 2. Unmapped phenotypes were not further analyzed.
We tested the association pairs in the eMERGE dataset and extracted the
statistical values from the Gene ATLAS PheWAS website from UK Biobank.
We used p-value 0.05 as the threshold for replication.

Power calculation
Power for a given sample size, MAF, OR, and type I error= significance
level= 0.05/# of tested phecodes (α= 4.1 × 10−5) was calculated for each
variant-phecode pair.65 We summarized the power to detect associations
in the EA dataset. Additionally, we calculated the post-hoc power for the
phecode “ischemic heart disease” (by grouping all ICD 9 codes 411–414),
type 2 diabetes, and the 10 tested genetic variants.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets analyzed during the current study are available in the database of
Genotypes and Phenotypes (dbGaP); dbGaP Study Accession: phs000888.v1.p1.
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