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Abstract
The described application of granular computing is motivated because cardiovascular disease (CVD) remains a major 
killer globally. There is increasing evidence that abnormal respiratory patterns might contribute to the development and 
progression of CVD. Consequently, a method that would support a physician in respiratory pattern evaluation should be 
developed. Group decision-making, tri-way reasoning, and rough set–based analysis were applied to granular computing. 
Signal attributes and anthropomorphic parameters were explored to develop prediction models to determine the percentage 
contribution of periodic-like, intermediate, and normal breathing patterns in the analyzed signals. The proposed methodol-
ogy was validated employing k-nearest neighbor (k-NN) and UMAP (uniform manifold approximation and projection). The 
presented approach applied to respiratory pattern evaluation shows that median accuracies in a considerable number of cases 
exceeded 0.75. Overall, parameters related to signal analysis are indicated as more important than anthropomorphic features. 
It was also found that obesity characterized by a high WHR (waist-to-hip ratio) and male sex were predisposing factors for 
the occurrence of periodic-like or intermediate patterns of respiration. It may be among the essential findings derived from 
this study. Based on classification measures, it may be observed that a physician may use such a methodology as a respira-
tory pattern evaluation-aided method.

Keywords  Granular analysis · Rough sets · k-NN · UMAP · Respiratory pattern analysis · Wavelet analysis (DWT, discrete 
wavelet transform)

Introduction

The aim of this study is threefold. First, it aims to use group 
reasoning [1–3] to investigate how to handle data comprising 
health indicators and breathing signal characteristics and the 
machine learning approach that should be employed. There-
fore, in the pre-analytic stage, physicians, diagnosticians, 
and computer scientists were engaged to discuss several 

possible ways to manage the collected data. For example, 
as we deal with real-world data that contain uncertain or 
incomplete samples, deep learning was dismissed at the 
early stage of the analysis, as we needed to obtain a bet-
ter insight into the analysis beyond quantitative assessment. 
Simultaneously, group reasoning can be treated as a part of 
the tri-way conceptual reasoning model proposed by Yao 
[4] and adopted from Nanay [5]. Second, this study aims to 
follow Yao’s [4] three stages of reasoning: perception, cogni-
tion, and action (Fig. 1). Finally, after performing group rea-
soning, we found that there were many factors collected in 
diagnostics, which were cost- and time-intensive. Because of 
COVID-19, determining which should be retained is impera-
tive. Otherwise, data processing may be time-consuming, 
decisions may be too slow, or the diagnostic pathway may 
be affected by a specific component contributing to the over-
all medical context. Consequently, we decided to focus on 
tri-way reasoning [4], applying granular computing [6–10], 
and rough sets [6, 11–13] to knowledge mining. Moreover, 
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the approach proposed is validated by a baseline k-nearest 
neighbor algorithm and UMAP (uniform manifold approxi-
mation and projection) visualization.

In this study, we deal with data related to cardiovas-
cular disease (CVD). CVD remains a major killer in the 
world. Each year CVD causes 3.9 million deaths in Europe, 
including 1.8 million deaths in the European Union [14]. 
There is increasing evidence that altered respiration might 
contribute to the development and progression of CVD. 
Abnormal respiratory patterns are common in patients 
with severe conditions, including congestive heart failure 
(CHF) and obstructive sleep apnea (OSA). The so-called 
Cheyne–Stokes respiration (CSR) during sleep, presenting 
as repeating rises and falls in ventilation separated with peri-
ods of apnea (cessation of breathing), is a common finding in 
patients with CHF [15]. In these patients, a similar respira-
tion pattern with apnea (CSR) or without (periodic breath-
ing, PB) was also frequent during the day. Furthermore, it 
was shown that the cyclical pattern of breathing is a marker 
of poor outcomes [16]. Diagnosis of OSA is based on the 
investigation of respiratory patterns during sleep, but it is 
limited to apnea and hypopnea detection and focuses on the 
differentiation between obstructive and central apneas [15]. 
Therefore, the respiratory rate quantification and abnormal 
pattern prediction deviate from the fine-grained universe in 
which every bit of information is ordered adequately towards 
coarse-grained ones as “normal” and “disrupted” respiratory 
patterns could only roughly be discerned between each other 
category.

A concept of granularity in medicine has existed for 
decades. It already appeared among the studies dating 
back to 1998, when Tange et al. [17] referred to clini-
cal narratives containing free text as “high granularity” 
segments. Information retrieval from clinical narratives 
involves several steps: searching for a labeled segment, 
reading its content, and analyzing it. In the authors’ opin-
ion, physicians can retrieve information better when clini-
cal narratives written in the free text are divided into many 
small labeled segments, i.e., granules.

Qi et al. defined five types of granules, namely, those 
induced by objects and attributes, and the ones induced by 
both objects and attributes simultaneously are seen from 
different perspectives and levels. Pal discerns three com-
ponents of granular computing (GrC), i.e., granulation, 
granules, and computing with granules [6]. In this study, 
the granularity concept should be understood as a set of 
objects with descriptions derived from discretization. 
These granules involve a reduced number of relevant fea-
tures, resulting in dimensionality reduction. In this sense, 
clusters or segments formed by granulation are called 
granules. Therefore, a granule may be defined as a collec-
tion of indiscernible entities that are collected according 
to their similarity, proximity, or functionality regarding 
given attributes [6, 7, 18].

Biomedical signals are often analyzed with the use of  
Gabor transform and discrete wavelet transform (DWT) 
[19−21]. This study aimed to determine the relationship  
between phase coherence and instantaneous heart rate and 
respiration. One of the critical points of this study is that 
PB, in which slow periodic oscillations modulate the regu-
lar oscillations corresponding to rhythmic expiration and 
inspiration, evoked high altitude-induced hypoxia. Also, 
using signal processing based on wavelet analysis helped to 
analyze mechanisms underlying respiratory control during 
hypobaric hypoxia, which is related to genetics and cardio-
vascular dynamics [22].

Notably, the graphical results of wavelet analyses were 
treated as clouds and granules when they were first used. 
However, this concept was not further developed. Also, there 
were different directions of granularity concepts foreseen 
and applied to general medicine, medical informatics, cohort 
selection, risk prediction, and healthcare quality measure-
ment [23, 24]. Notions such as multi-granularity embed-
dings [23], coarse- or fine-grained objects, were discussed 
in medical data analysis through granularity principles [24].

Signal analysis employing wavelet analysis was per-
formed “behind-the-scenes” along with physicians’ sub-
jective evaluation, showing another level of granularity 
according to the adopted Yao’s model [4]. Also, this 
study gained knowledge from the data collected, pro-
cessed, and analyzed (ETL, extract–transform–load phase 
[25]). Roughly, we divided the signal analysis outcome as 

Ac�on 
outcome of the intelligent processing by means of the 

rough set-based analysis, supported by the expert’s 
knowledge and validated by baseline algorithms

Percep�on 
target and the measurement situa�on establishing; 

data gathering, and evalua�ng  

Cogni�on 
data transforming into knowledge by specifying a 

sequence of tasks to accomplish this process 

Fig. 1   Tri-stage conceptual model applied to respiratory pattern rec-
ognition
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granules of normal breathing signal patterns, periodic-like 
signals, pauses, or apneas.

Short-term daytime signal recordings are based on  
various respiratory belts designed to measure chest diam-
eter changes resulting from breathing. In contrast to the 
analysis of heart rate and blood pressure variability, res-
piration pattern assessment is not well developed, and 
comprehensive methods for full automatic detection of a 
periodic pattern of breathing are rare. In many previous 
studies, the main part of respiratory pattern assessment 
was mostly based on a visual inspection. There are a few 
examples of using the combination of visual assessment 
and computerized analysis of the breathing pattern [16,  
26, 27]. The outcome of the automatic classification of  
respiratory signals to detect abnormalities in breathing or 
breathing cessations is encouraging. Yet, this needs to be 
further developed.

Thus, there is a clear need to develop novel methods to 
measure and analyze respiratory variability, especially in 
healthy individuals and patients with early stages of CVD 
presenting a spectrum of respiratory pattern alterations, 
including cyclical behavior, that does not meet the crite-
ria for CSR. These novel methods, especially if combined 
with parallel assessment of heart rate and blood pressure 
variability, might provide better insights into cardiorespira-
tory regulation in health and in disease and induce better 
prevention and treatment of CVD. Therefore, we propose 
a new approach to respiratory pattern assessment, namely 
rough set–based processing of data [11, 12], relying, how-
ever, on Yao’s perception–cognition–action tri-level concep-
tual model [4] as the starting point (Fig. 1). This tri-level 
conceptual model explains how cognition is needed as an 
intermediate between perception and action to better apply 
intelligent data analytics and study human understanding 
[4]. Moreover, the model basis lies in the data–information– 
knowledge/wisdom (DIKW) hierarchy, another way of ration-
alizing in threes [28]. In fact, Yao builds the perception– 
cognition–action model around machine/system (collec-
tion, analysis, and decision), DIKW (data, information, and 
knowledge/wisdom), and human (perception, cognition, and 
action) layers.

Our understanding of this model is as follows: the percep-
tion layer established the target and the measurement situa-
tion — it gathered and evaluated the data. Moreover, at this 
stage, group reasoning was applied. Cognition is associated 
with mental processes that involve gaining knowledge and 
comprehension; that is, showing context and finding answers 
hidden in large volumes of information transforms data into 
knowledge by specifying a sequence of tasks to accomplish 
this process. Finally, action is the outcome of intelligent pro-
cessing through rough set–based analysis supported by the 
expert’s knowledge. Accordingly, all steps of the conceptual 
model are shown in Fig. 1.

Also, we considerably followed the approach proposed by 
Polkowski and Artiemjew [29], who developed a classifier 
for coronary heart disease, first using data pre-processing 
techniques in dealing with the missing values. Second, gran-
ular classifier is applied to discover the absence or presence 
of coronary disease. The flowchart of our performed experi-
ment is presented in Fig. 2.

Data Analysis

Study Group

This study complies with the Declaration of Helsinki, and 
the ethics committee of the Medical University of Gdansk 
approved its protocol (NKEBN/422/2011). All participants 
were informed about the merits of the study and signed writ-
ten consent forms.

The study group comprised 276 subjects (157 men) 
aged 51.4 ± 11 years. Among them, 151 had a history of 
hypertension, 28 experienced a transient ischemic attack, 21 
were diagnosed with obstructive sleep apnea, and there were 
11 diabetic patients. The mean body mass index (BMI) in 
this group was 28.8 ± 4.9 kg/m2, and the waist-to-hip ratio 
(WHR) was 0.92 ± 0.10.

In each subject, 20-min recordings of respiration were 
performed in the supine position. All patients were asked 
to relax, but not to fall asleep. The respiratory belt (Pneu-
motrace II™), based on a piezoelectric device connected 
to PowerLab with the LabChart software (ADInstruments, 
Australia), was used to derive breathing patterns. The sam-
pling rate was 1000 Hz. Using the LabChart software, respir-
atory tracings were visualized, and breathing patterns were 
classified by the physician as normal (for a respiratory sig-
nal with similar amplitudes), periodic-like (characterized by 
cyclical behavior of breathing pattern including waxing and 
waning of amplitude), or intermediate (including various 
types of the pattern). At this stage, no additional methods 
for detecting PB (for example, time-varying spectral density 
analysis) were used.

As in many subjects, breathing patterns changed during 
recording, and the percentage of a given type of breath in 
all patients was indicated. The intermediate type of pat-
tern included all cases when the percentage of normal or 
periodic-like pattern was rated as less than 70%. It should 
be stressed that all of these classifications were entirely sub-
jective. Among 276 studied subjects, 92 were classified as 
having a normal breathing pattern, 56 had a periodic-like 
pattern, and 128 had an intermediate pattern of breathing. 
Table 1 presents the data collected from the questionnaire 
forms based on a clinical assessment, which were subse-
quently completed by respiratory signal analysis and their 
further evaluation.
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Statistical Analysis of Data Acquired

For each parameter (age, weight, height, waist, HIP, BMI, 
and WHR), significant differences between the obtained 
results were calculated using the Kruskal–Wallis test. 
The Kruskal–Wallis test is an extension of the Wilcoxon 
rank sum test but opposite to it, and it is not limited to 
two populations [30]. The null hypothesis in this test is 
the assumption that medium ranks or the medians of the 
data series are the same. The statistical calculations were 
performed using MATLAB. The obtained results are pre-
sented in Table 2.

Groups with normal, intermediate, and periodic-like 
patterns of breathing did not differ according to age. Sub-
jects with the normal breathing pattern had lower values of 
weight, height, waist, BMI, and WHR than persons with 
periodic-like and intermediate patterns. Concurrently, the 
two latter groups were similar regarding the abovementioned 
anthropometric parameters.

Additionally, there were significant differences between 
groups according to sex (p = 0.0003, chi2 test). It indicates 
that obesity (especially the so-called central obesity char-
acterized by high WHR) and male sex were predisposing 
factors for the occurrence of periodic-like or intermediate 
patterns of respiration.

The obtained results for BMI and WHR are presented in 
boxplots in Fig. 3. A typical data presentation was adopted; 
i.e., the central mark indicates the median, and the top and 
bottom edges of the box denote the 75th and 25th percen-
tiles, respectively. Observations beyond the whisker length 
are marked as outliers using a red + symbol. Sex differences 
are presented in Fig. 4.

Wavelet Analysis of Signals

The respiratory signal composition in its nature is a dynamic 
and non-stationary process [31], with the alternation of 
peaks of different spectral ranges, which is why wavelet, 
i.e., time-frequency representation, is useful in detecting 
dynamic changes of signal components and eventually 
observing patterns of such signal behaviors [32]. By employ-
ing scaling and translation, wavelet analysis creates a set of 
orthogonal basis functions. Good localization characteristics 
in both time and frequency domains and selectivity in the 
time domain make wavelet analysis suitable for approximat-
ing non-stationary signals. One of the crucial features of 
wavelet analysis is that it captures signal elements at differ-
ent detail levels. Consequently, we call these detailed gran-
ules useful information.

Fig. 2   Flowchart of the experi-
ment

Outcome of the intelligent processing 

Decision making: Average accuracies for breathing pa�erns 

Data discre�za�on 
Data reduc�on/Reduct computa�on  
Training/tes�ng data division    
Rule genera�on and verifica�on  

Data verifica�on, 
Redundancy 
checking    

Data and signal 
collec�ng 

Signal filtering,   
Pa�ern detec�ng

Data pre-
processing 

Signal pre-
processing

Data and signal analyzing   

Sta�s�cal 
analysis 

DWT performing Rough set-based 
analysis   

Respira�on signal standardiza�on 
Calcula�ng the average of the input signal  
Calcula�ng the standard devia�on of the 
input signal 
Se�ng an interquar�le range 
(IQR) criterion 
“Best” mother wavelet choosing 

Percep�on stage/group 
reasoning performed 

Cogni�on stage 

Ac�on stage: 
decision making 
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Pre‑processing of Signals

The analysis of the respiratory signal using machine learn-
ing methods requires performing initial pre-processing and 
parameterization of the input data. In our approach, these 
data refer to a digital signal representing changes in the par-
ticipants’ chest circumferences caused by respiration. The 
signal has a sampling rate of 1000 Sa/s. Examples of a few 
seconds of such signals obtained from a healthy participant 
are shown in Fig. 5. Signals characterized by a “periodic-
like” structure of inhale–exhale events are shown in Fig. 5.

As inspiration and expiration events may be separated by 
“pause” segments characterized by no significant changes in 
chest circumference, we have concluded that inhale–exhale 
events have a well-defined triangular shape of finite length, 
which is approximately consistent at least within a person-
specific recording session. Therefore, we employed an analy-
sis method to recognize the time of occurrence of certain 
inhale–exhale events in the acquired signal and frequency 
content analysis of those signals, namely, the analysis 
employing the wavelet transformation.

An important decision in designing a system for signal 
processing employing wavelet transformation is whether 
to use a continuous or discrete wavelet transformation 
algorithm and choose the appropriate mother wavelet 
for such processing. As we wanted to test some different 
wavelet scales, we decided to use discrete wavelet trans-
form (DWT), which allows the decomposition of signals 
into components of scales, with a power of 2. Due to this 
property of DWT, we were able to test the scales of wave-
lets that had various orders of magnitude. By employing 
DWT, we were also able to perform calculations relatively 
quickly, which is another advantage of DWT compared to 
continuous wavelet transformation. Computation speed is 
important in our case, as we had to process 111.42 h of 
acquired respiration signals associated with participants 
having both normal and abnormal breathing patterns. 
Additionally, before calculating DWT, we first standard-
ized the input data according to the following formula:

where

•	 n denotes a sample number.
•	 Signal[n] denotes an original, unstandardized respira-

tion signal.
•	 Signals[n] indicates a signal after the standardization 

process.
•	 Mean() represents an operation of calculating the aver-

age of the input signal.
•	 Std() denotes an operation of calculating the standard 

deviation of the input signal.

(1)signals[n] = signal[n] −mean(signal[n])std(signal[n]),

Ta
bl

e 
1  

In
fo

rm
at

io
n 

ab
ou

t s
ub

je
ct

s b
as

ed
 o

n 
cl

in
ic

al
 a

ss
es

sm
en

t

M
 m

al
e,

 F
 fe

m
al

e,
 B
M
I b

od
y 

m
as

s i
nd

ex
, W

H
R 

w
ai

st 
(c

irc
um

fe
re

nc
e)

-to
-h

ip
 (c

irc
um

fe
re

nc
e)

 ra
tio

*  Pa
tte

rn
 ty

pe
 b

y 
ex

pe
rt:

 1
, n

or
m

al
: 2

, i
nt

er
m

ed
ia

te
: 3

, p
er

io
di

c-
lik

e
**

 A
pn

ea
s w

er
e 

de
fin

ed
 w

he
n 

th
er

e 
w

as
 n

o 
re

sp
ira

to
ry

 a
ct

iv
ity

 la
sti

ng
 lo

ng
er

 th
an

 th
re

e 
br

ea
th

in
g 

cy
cl

es

Su
bj

ec
t n

um
be

r
A

ge
Se

x
A

nt
hr

op
om

et
ric

 d
at

a
Re

sp
ira

to
ry

 p
at

te
rn

 c
ha

ra
ct

er
ist

ic
s

W
ei

gh
t [

kg
]

H
ei

gh
t [

cm
]

W
ai

st 
[c

m
]

H
ip

 [c
m

]
B

M
I [

kg
/m

2 ]
W

H
R

A
pn

ea
s**

Pe
rc

en
ta

ge
 c

on
tri

bu
tio

n 
of

 p
at

te
rn

Pa
tte

rn
’s

 
ty

pe
 b

y 
ex

pe
rt*

N
um

be
r

N
um

be
r 

pe
r m

in
ut

e
M

ea
n 

du
ra

tio
n

Pe
rio

di
c-

lik
e

In
te

rm
ed

ia
te

N
or

m
al

1
31

M
93

.0
0

18
2

10
1

10
6.

0
28

.0
76

3
0.

95
28

0
0

0
30

0
70

2
2

20
F

87
.0

0
16

4
90

11
1.

0
32

.3
46

8
0.

81
08

0
0

0
0

10
90

1
3

27
M

67
.0

0
17

4
79

91
.0

22
.1

29
7

0.
86

81
0

0
0

0
10

90
1

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

27
3

31
M

12
7.

00
19

0
11

6
12

1.
0

35
.1

80
1

0.
95

87
8

0.
40

02
11

.4
68

8
70

30
0

3
27

4
36

M
10

5.
00

19
0

10
4

11
4.

0
29

.0
85

9
0.

91
23

0
0

0
50

40
10

2
27

5
60

F
11

5.
70

17
8

11
8

11
5.

0
36

.5
16

9
1.

02
61

2
0.

1
14

.6
95

50
40

10
2

27
6

45
F

80
.0

0
17

0
95

10
0.

0
27

.6
81

7
0.

95
00

0
0

0
0

20
80

1

Cognitive Computation (2022) 14:2120–21402124

1 3



	

Also, in the literature, one can find examples of DWT 
used for data parameterization before processing it by 
separate machine learning algorithms and other process-
ing methods [33, 34], and for signal denoising [35], which 
also encouraged us to choose DWT as the parameterization 
method.

Choosing Appropriate Wavelet Type

Another important decision regarding the pre-processing 
stage was the selection of the desired mother wavelet. As 
our signals were standardized, we assumed that scalograms 
generated using a better-suited mother wavelet would have 
a broader range of values. To perform the necessary calcu-
lations, we used the DWT by employing the PyWavelets 
Python library [36]. To test the wavelets from the PyWave-
lets library that maximized the criterion for the maximum 
range of scalogram values, we calculated the interquartile 
range (IQR) of those values that are observable in scalo-
grams associated with each possible mother wavelet. For 
each of the 106 discrete mother wavelets available in the 
library, we calculated the IQR parameter. We averaged it 
over the results obtained from 30 participants classified 
as people having a normal breathing pattern. A trained 
medical doctor performed the aforementioned respiratory 
pattern assessment. Furthermore, we plotted the results 
achieved with each mother wavelet as a boxplot illustrating 
how the IQR values varied for every tested mother wave-
let. The results of this evaluation are shown in Fig. 6. A 
detailed list of wavelets available in PyWavelets (we used 
the version 1.1.1 library) can be found in online documen-
tation [37].

The best mother wavelet, according to the criterion of the 
maximum span of the scalogram values, is rbio3.1 (Fig. 6). 
As DWT in the case of our analysis is intended to be the 
parameterization stage, we also had to reduce the input data 
size. To achieve this goal, we omitted seven decomposition 
components associated with the smallest wavelet scales. It 
resulted in the creation of components of approximately 
4500 samples-long that is comparable to the length of a rel-
atively high-resolution spectrogram, which machine learn-
ing algorithms can process in the next step of our analysis. 
Examples of final scalograms that passed the next stage of 
the calculations are shown in Figs. 7 and 8.

Methods and Results

Rough Set–Based Analysis of Data

Rough set theory was created by Polish mathematician 
Zdzisław Pawlak [11, 12]. It is used to approximate a set 
by its upper and lower approximations: the first includes 
objects that may belong to the set, and the latter includes 
objects that surely belong to the set. Both approximations 
are expressed as unions of atomic sets containing indis-
cernible objects with the same values of attributes (Fig. 9).

Two objects x and y are characterized by attributes P ⊆ 
A (P is a subset of a set of all possible attributes A). These 
are in the indiscernibility relation if (x, y) ∈ IND(P), where 
IND(P) is an equivalence relation defined as a set of all pairs 
with exactly the same values for all considered attributes:

where p(x) is the value of attribute p of object x. In this 
study, P is a set of selected wavelet types and scales intro-
duced in the previous section, and objects x are particular 
cases of patients.

All objects in the indiscernibility relation with x produce 
an equivalence class [x]P, being a set of all objects identical 
with x on every attribute. If P contains attributes sufficient 
for distinguishing between objects with different decisions, 
then the class [x]P contains only objects with the same deci-
sion as the considered object x. A lack of distinction between 
objects inside the equivalence class is not harmful to clas-
sification accuracy. Thus, P’s considered set of attributes 
generates a partitioning of the universe of discourse U into 
atomic sets, which are the building blocks for representing a 
rough set. A set of objects with the desired decision is such 
a rough set, called a decision class.

A set of all objects with one of the possible decisions d = 
{d1,…, dn} is denoted as Xdi. Following the rough set theory, 
Xdi can be approximated by its lower and upper approxima-
tions, the former denoted as ��di:

The lower approximation is a set of all objects x, whose 
equivalence classes [x]P are included within the decision 
class of interest Xdi. It can also be interpreted as a set of 

(2)IND(�) = {(x, y) ∈ �
2 | ∀p ∈ �, p(x) = p(y)}

(3)��di = {x | [x]
�
⊆ �di}

Table 2   p-values from the Kruskal–Wallis test

All p--values highlighted in bold refer to statistically significant differences between the given breathing pattern and anthropometric parameters 
according to the Kruskal-Wallis test. They are less than the adopted significance level of 0.05

Comparison Age Weight Height Waist Hip BMI WHR

Normal pattern Intermediate pattern 0.6843 1.15E − 04 0.0078 6.41E − 05 0.0178 0.0138 0.0010
Normal pattern Periodic-like pattern 0.1708 8.63E − 06 1.57E − 04 1.80E − 06 0.1735 0.0157 1.52E − 06
Intermediate pattern Periodic-like pattern 0.4579 0.3204 0.1969 0.2229 0.9012 0.8565 0.0604
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objects whose attribute values allow for precise classifica-
tion of the decision class Xdi with a decision d = di.

Also, the set of objects PXdi is called upper approxima-
tion and is defined as:

The upper approximation includes all objects x, whose 
equivalence classes have a non-empty intersection with the 

(4)P�di =
{
x |

(
[x]

�
∩ �di

)
≠ ∅

}

Fig. 3   Boxplots depicting body 
mass index and waist-to-hip 
ratio values for groups with dif-
ferent types of breathing pattern
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considered decision class Xdi. It can be conveniently inter-
preted as a set of all objects x that have the values of their 
attributes pointing to similar objects, and at least one of 
these has the desired decision Xdi. Some object(s) equivalent 
to x can have other decisions as well (Fig. 9).

The given subset of attributes P can be sufficient enough 
to generate such a partitioning of the universe of x ∈ U that 
decision classes are approximated with high precision. The 
accuracy of the rough set approximation of a decision class 
Xdi is expressed as

and �P
(
�di

)
 ∈ [0,1], where �P

(
�di

)
 = 1 will be the case of a 

precisely defined crisp set.
Application of the rough set theory in a decision sys-

tem often requires a minimal (the shortest) subset of attrib-
utes RED ⊆ P, called reduct, resulting in the same quality 
of approximation as P. Numerous algorithms for calculating 

(5)�P

(
�di

)
=

||P�di
||

|||P�di
|||

reducts are available, and for this study, two methods are exam-
ined [38] (described in the “Experimental Procedure” section).

Usually, prior to reduct calculation for attributes with 
continuous values, discretization is performed. Discre-
tization algorithm analyses attribute domain, sorts values 
present in the training set, takes all midpoints between val-
ues, and finally returns the midpoint maximizing the num-
ber of correctly separated objects of different classes. It is 
repeated for every attribute. Three different methods were 
examined in this study. Discretization limits the number of 
possible values—for attributes in this study, there are 1, 2, 
or 3 cuts, splitting the values into 2, 3, or 4 discrete ranges, 
accordingly.

Once the reduct is obtained, the attributes useful for a 
particular classification task are known. The data are filtered, 
the attributes not present in the reduct are removed, and oth-
ers are discretized accordingly. Furthermore, all cases in the 
training set are analyzed, and decision rules are generated. 
Each object xi attributes pn ∈ RED are treated as an implica-
tion antecedent, and the decision di for the xi object is the 

Fig. 4   Sex structure in groups 
with various types of breathing 
pattern

Fig. 5   Respiratory signal 
obtained from a participant with 
a periodic-like breathing pat-
tern. All moments of inspiration 
and expiration can be identified 
as triangular “spikes” in a signal
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rule consequent. Rules in the form of logical sentences are 
obtained:

At the classification phase, these rules are applied for 
every object in the testing set, and subsequently, the deci-
sion is determined to be compared with the actual one and 
measure the accuracy.

The abovementioned treatment is initialized 10 times in 
a 10-fold cross-validation procedure, each time comprising 
determining the discretization cuts, the reduct, and generat-
ing the rules based on the training set, then applying the 
rules to classify the testing set, and measuring the accuracy. 
The process is automated by employing a script written in 
the R language [39].

Other Rough Set Approaches

The process described above assumes a crisp distinction 
between atomic sets. A rough set theory variant called 

(6)
IF p1

(
xi
)
= v1 AND … AND pn

(
xi
)
= vn THEN d

(
xi
)
= di

fuzzy rough sets applies fuzzy equivalence classes, making 
use of fuzzy indiscernibility [40, 41]. It allows for express-
ing imprecise knowledge about similarity and dissimilarity 
between objects by fuzzy membership functions. The pre-
sented study uses crisp atomic sets as a result of cut calcula-
tion; therefore, the fuzzy approach is unsuitable here.

Another interesting extension of rough sets is the dom-
inance-based approach. It requires all attributes to follow 
some preference order, where it is possible to determine 
the more and the less desired values [42]. In this study, the 
features extracted by wavelet analysis cannot be ordered by 
preference; therefore, this approach is not applicable.

Dataset Description

Decision features of periodic-like, irregular, and correct 
breathing patterns contain percentage measures deter-
mined by a medical expert, expressing how strongly a 
given pattern type is present in the signal (for simplifica-
tion of records and presentation of results, they are con-
verted to deciles 0, 1, 2, …, 10).

Fig. 6   Results of IQR calcu-
lations obtained for 20 best 
wavelets

Fig. 7   A scalogram of a par-
ticipant with normal breathing 
pattern obtained with rbio3.1 
wavelet
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There are significantly more cases with 0 values than 
others; therefore, a stratification—the bias reduction pro-
cedure—is introduced by purposefully sampling the data-
set to obtain as many cases with 0 values as the average 
number of cases with values 1, 2, ...,10.

Goal  Therefore, the goal was to explore a rough set–based [11, 
12] highly granularized approach for data mining of a breath-
ing pattern database. It was shown here how signal attributes 
and anthropomorphic parameters could be exploited to create 
prediction models to determine the percentage contribution of 
periodic-like, intermediate, and normal breathing patterns in 
the analyzed signals. The output class values are quantized, and 
many possible quantization ranges are verified during the auto-
matic search of optimal model hyperparameters aimed at maxi-
mizing the resulting model accuracy. As already mentioned, the 
R programming environment [39] with the RoughSets package 
[38, 43−45] was used for the rough set–based processing.

The model hyperparameters considered in this study 
are as follows: (1) the number of quantization cuts for the 
input data discretization and (2) the ranges defining output 
classes that had been provided with a 10-value scale but 
were quantized into three ranges in the process.

Data Granularization  For knowledge extraction and mod-
eling, two initial assumptions were made:

•	 The input signal wavelet parameters that have continu-
ous values and varying lengths, dependent on the signal 
length and wavelet scale, were quantized for the process-
ing and reduced to a fixed number of only four descrip-
tors for each wavelet scale, based on quartile ranges.

•	 The output classes with 10 values of percentage con-
tribution are quantized into three ranges: low, medium, 
and high (coded as “A,” “B,” “C”), defined by discre-
tization cuts.

Consequently, a separate fine-tuned model was cre-
ated for each breathing pattern that outputs one label (low, 
medium, and high) easily for interpretation. These classifi-
ers are suitable for operation on input signals of any length.

Discretization of Wavelet Parameters  Only three wavelet 
scales were selected: 5, 6, and 7, which were the compromise 
between matching the time resolution to a breathing period 
and choosing some samples that would be low enough to 
assure fast processing. It may be observed in Figs. 7 and 8 
that scales higher than 7 are too coarse and do not exhibit 
the breathing cycles inherent periodicity. Scales lower than 
5 are too detailed and appear to contain the same informa-
tion as 5, 6, and 7.

From each wavelet scale, the following four descriptors 
are extracted: first, second, and third quartiles (Q1, Q2, and 

Fig. 8   A scalogram of a 
participant with periodic-like 
breathing pattern obtained with 
rbio3.1 wavelet

Fig. 9   Partition of the universe 
based on attributes p1 and p2 
into atomic sets, and approxi-
mation of the decision set Xd
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Q3) and interquartile range (IQR = Q3–Q1), serving as a 
summary of the signals regardless of their lengths and dis-
regarding the various wavelet scales (Table 3).

Therefore, the general signal characteristics are obtained, 
are robust to noise, and are suitable for further processing in 
a rule-based decision system. Those real-valued descriptors 
are further quantized during the rough set–based knowledge 
modeling process, employing one of the selected discretiza-
tion algorithms (global discernibility, unsupervised inter-
vals, or unsupervised quantiles), with a set number of cuts 
c. The discretization method and c were considered as argu-
ments for exploration during the automatic search for model 
hyperparameters.

Discretization of Output Classes  The output was initially 
defined on a 10-valued decile scale, describing the intensity 
of a particular breathing pattern in the analyzed recording. 
For this study, it was transformed into only three ranges, 
automatically during the model search, by setting a set 
D = {d, d2}, where d1 = {1, 2, 3, 4, 5} is a lower decile 
boundary, and d2 = d1 + width is a higher decile bound-
ary, where width = {2, 3, 4, 5}, with a condition d2 < 9 
fulfilled. During the discretization, the pair of cuts D = {d, 
d2} were implemented as ranges [0, d1), [d1, d2), [d2, 10), 
and replaced with labels “A,” “B,” and “C,” respectively. 
The structure of the resulting decision table exploited in the 
following experiments is presented in Table 4.

Experimental Procedure

Each experimental run comprises several key steps, 
including selecting the modeled pattern, data filtration for 
bias reduction, splitting into training and testing cases (in 
a ratio of 85:15), and training the model with given hyper-
parameters, verifying the accuracy. For each combination 
of hyperparameters, 10 such runs were conducted, each 
with different random data filtration and splits, acting as a 
cross-validation method and coping with a relatively low 
number of cases in the database. A detailed description of 
the procedure is as follows:

•	 From normal, intermediate, and periodic-like, choose the 
breathing pattern to be modeled:

◦ Set the hyperparameters of the model to be trained.
◦ Set the number of attribute value discretization cuts 
c = {1, 2, 3}.
◦ Set the discretization method (global discernibility, 
unsupervised intervals, or unsupervised quantiles).
◦ Set the reduct computation method (DAAR heuristic 
or greedy heuristic).
◦ Set the rule induction methods (LEM2, CN2, AQ, or 
rule induction from indiscernibility classes).
◦ Set the output class discretization ranges D = {d1, d2}.

•	 Filter the data: Reduce the risk of bias by randomly sub-
sampling the cases where the decile value is equal to 0.

◦ Calculate the average number of cases where the 
decile value is equal to 1, 2, …, 10.
◦ Count all cases where the decile value is equal to 0.
◦ Calculate how many 0 cases should be removed to 
match their number to the average.

•	 Divide randomly into training and testing sets in 85:15 
ratios.

•	 Apply one of the selected discretization methods for 
attribute values, using the c cuts.

•	 Calculate the reduct and rules.
•	 Apply the rules to the test cases.
•	 Measure and report the accuracy of the results and the 

number of rules.
•	 Repeat 10 times for the same hyperparameters, and create 

statistics for accuracies and numbers of rules.

To summarize, the whole process explores hyperparam-
eters: c, discretize method, reduct algorithm, rule algorithm, 
decision ranges d1 and d2, to automatically find the model 
configuration that maximizes resulting prediction accuracy 
for the decision classes of the breathing pattern. It can be 
formalized as follows:

(7)argmax
{c,discretise,rule,reduct,d1,d2}

mean(accu
(
model

(
Xc,discretise, rule, reduct

)
, decisiond1,d2

)
)

Table 3   Sample values of 
descriptors calculated for two 
different breathing patterns 
(high IQR values can be 
observed for periodic patterns)

Sample descriptors of a normal pattern Sample descriptors of a periodic-like pattern

Scale 5 Scale 6 Scale 7 Scale 5 Scale 6 Scale 7

Q1  −2.54  −6.70  −6.06 Q1  −11.17  −19.93  −50.13
Q2  −0.21 0.00 1.20 Q2 4.51 13.05 13.69
Q3 12.15 5.84 5.01 Q3 15.38 30.95 53.19
IQR 24.70 12.55 11.07 IQR 26.56 50.88 103.33
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Model Exploration Results

The results of 60 best model exploration runs are presented 
in Figs. 10, 11, and 12, sorted by decreasing median accu-
racy. Accuracies and the number of rules in the generated 
models were collected and presented as boxplots (with 
quartiles and medians). On the x-axis, the labels denote the 
model configuration, where

•	 {d1–d3}, e.g., {1–3}, is a definition of modeled decile 
range cuts.

•	 d or g is an abbreviation for reduct computation method: 
DAAR heuristic, or greedy heuristic.

•	 q, i, or n is an abbreviation for the discretization method: 
unsupervised quantiles, unsupervised intervals, or global 
discernibility.

•	 LEM2, CN2, AQ, and IND are rule-induction methods.
•	 cn is the number of desired cuts for attribute discretiza-

tion.

Accuracy and Rule Analysis

A process of rule filtration was performed based on a few 
criteria. First, models with less than two rules were removed 
because to perform a decision regarding three classes, at 
least two rules should be employed (for example, if the 1st 
rule is true—the class can be “A”; if the 2nd rule is true—the 
class can be “B”; and if neither is true—the class can be 
“C”). Then, models with a mean Laplace confidence calcu-
lated over all the model rules less than 0.6 were removed. 
Laplace confidence is a metric reflecting rule accuracy over 
the considered class and all objects matching the rule:

where RK is the rule related to the class K, nK(RK) is the 
number of objects of the class K correctly classified by the 
rule, n(RK) is the number of all objects matching the rule 
(regardless of their class), and k is the number of classes in 
the model.

If the number of rules with Lc > 0.6 was larger than 100, 
the threshold was decreased to leave at most 100 rules in the 
rule base for each examined model. It was assumed that such 
a high number of rules for classification into three classes is 
excessive and impractical.

Notably, other rule selection methods were examined as 
well: support and confidence, and the results were confirmed 
to be similar (the result accuracies reported in this section 
are similar with a significance of 0.05).

It can be observed from Table 5 that the percentage 
of contributions of the periodic-like pattern is the most 

(8)Lc(RK) =
nK(RK) + 1

n(RK) + k
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problematic relation to the model, and no approach resulted 
in an accuracy higher than 0.65 (Fig. 10). Then, the relation-
ship between signal attributes, anthropometric features, and 
the resulting percentage of intermediate and normal patterns 
is more clearly defined, and median accuracies in a consider-
able number of cases exceed 0.75 (Figs. 11 and 12).

Table  6 reports the average F1 scores. It can be 
observed that values fall below 0.74 for the considered 
problem of three classes with imbalanced sizes, which is 
a very common problem. The best cases are as follows: 
for the periodic type for D = {d1, d2} = {3, 8}, when the 
average accuracy is 0.71, the average precision is 0.72, 
the average recall is 0.75, and average F1 = 0.72; for the 
intermediate type for D = {d1, d2} = {1,6}, when the 

average accuracy is 0.94, the average precision is 0.71, the 
average recall is 0.8, and average F1 = 0.72; and for the 
normal type for D = {d1, d2} = {4,8}, when the average 
accuracy is 0.77, the average precision is 0.77, the average 
recall is 0.73, and average F1 = 0.74. Therefore, in these 
cases, a dedicated classifier based on considered models 
can be implemented and used in practice for a screen-
ing procedure and automatic coarse determination of the 
breathing pattern.

Rule Analysis

All signal attributes (wavelet scales and quartile ranges) 
were present in the models. In very few cases, the rules 
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incorporated anthropomorphic features, namely age, and 
WHR.

Figures 10, 11, and 12 show that a considerable number 
of possible approaches can result in similar classification  
accuracy, and some of the tested decile ranges produce 
higher results than others (Table 5). Regardless of attempts 
to reduce bias in the dataset, the procedure remained flawed 
in this regard. In many models, the extracted knowledge is 
oriented towards a single class with high accuracy instead 
of all. Notably, many rules describe only one class, the one 
with the highest number of cases, resulting in low overall 
accuracy. It occurs for wide decile ranges, i.e., when one 
range covers a significantly larger number of cases than any 
other range. Then, the model tends to favor this particular 
class, deriving more rules supporting these cases.

Non‑biased Rules  For d1 = 3 and d2 = 6, the results are 
not biased, as the resulting discretization ranges contain an 
approximately equal number of cases and have a similar 
width.

An example of a model comprising four rules describing 
the percentage of the normal pattern contribution is as fol-
lows (number of training cases supporting the rule is pro-
vided in the brackets at the end of each rule):

1.	 IF scale5_q2 is [0.921, Inf] and scale7_iqr is [18.1, Inf] 
THEN Normal is A (72).

2.	 IF scale5_q2 is [− Inf, 0.921) and scale7_iqr is [18.1, 
Inf] THEN Normal is B (38).

3.	 IF scale5_q2 is [− Inf, 0.921) and scale7_iqr is [− Inf, 
18.1) THEN Normal is C (71).

4.	 IF scale5_q2 is [0.921, Inf] and scale7_iqr is [− Inf, 
18.1) THEN Normal is C (38).

The resulting accuracy is 0.72. The above rule set is con-
sistent (no two rules contradict each other) and can be used 
in further experiments.

Incomplete Rule Set  The same target ranges (d1 = 3, d2 = 6) 
for periodic type produced only two rules:
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Fig. 12   Length of rules (top) and accuracy (bottom) for classification of normal pattern cases to target decile ranges (sorted by decreasing 
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Table 5   Average accuracies for breathing patterns and decision discretization ranges: d1, d2

Periodic-like Intermediate Normal

d2 d2 d2

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

d1 1 0.79 0.82 0.68 0.79 d1 1 0.65 0.74 0.85 0.94 d1 1 0.9 0.92 0.85 0.8
2 0.82 0.68 0.71 0.68 2 0.65 0.68 0.71 0.73 2 0.8 0.8 0.77 0.64
3 0.71 0.68 0.68 0.71 3 0.71 0.68 0.71 0.74 3 0.77 0.72 0.74 0.77
4 0.75 0.75 0.71 4 0.83 0.79 0.79 4 0.77 0.72 0.77
5 0.75 0.71 5 0.91 0.85 5 0.74 0.72
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1.	 IF scale7_q1 is [−9.69, Inf] THEN Periodic is A (79).
2.	 IF scale7_q1 is [− Inf, −9.69) THEN Periodic is C (79).

The classification accuracy for the test cases is 0.75. It can 
be observed that such a model does not detect range B of the 
periodic pattern contribution, and it tends to make a bimodal 
decision, either to class A (contribution less than 30%, as the 
decile margin is d1 = 3) or to class C (contribution higher than 
60%, decile d2 = 6).

Contradicting Rules  Example rules for determining the 
percentage contribution of the normal pattern to the centile 
ranges defined by d1 = 1 and d2 = 3 are as follows:

1.	 IF scale5_q2 is [−3.82,13.1) and scale6_q2 is 
[−3.37,9.08) THEN Normal is C.

2.	 IF scale5_q2 is [−3.82,13.1) THEN Normal is A.
3.	 IF scale5_q1 is [−41, −2.22) THEN Normal is B.

The above rules were derived by applying DAAR heuristics 
for reduct calculation, unsupervised quantiles for discretiza-
tion, and the CN2 algorithm for rule generation.

It can be observed that rule no. 2 is in contradiction with 
rule no. 1, but during the inference, it is interpreted that all 
cases matching the more specific rule no. 1 (two attributes 
checked in the antecedent) are classified as a class C (the con-
tribution of normal pattern in centile d2 = 3 or higher). Then, 
cases not covered by rule no. 1 but are covered by rule no. 
2 are classified as A. The accuracy here is 0.795 and can be 
considered appropriate for screening applications.

Data Analysis Based on the k‑Nearest Neighbor 
Algorithm

Discretized data used for training of the rough set–based sys-
tem were also subject to the analysis employing a relatively 
simple classification method—the k-nearest neighbor algo-
rithm. It can be a baseline approach that is useful in assessing 
the robustness of a solution employing rough sets. Despite 
being simple in principle, the k-nearest neighbor algorithm 

also has some hyperparameters that can be optimized. We used 
a grid search approach to select the best values for

•	 Discretization level d.
•	 Normalization method of data after discretization.
•	 Number of neighboring points considered in the classifica-

tion process, which is denoted as k.
•	 Type of Minkowski distance metric is used for finding the 

nearest neighbors.

For the distance metric, the Minkowski distance was 
employed. It is a convenient choice for optimization, as the 
type of Minkowski distance can be controlled with a param-
eter, as the formula for calculating such a metric is as follows:

where DMinkowski(x, y) denotes the Minkowski distance 
between points x and y , n is the number of dimensions, and 
p is a parameter that can be optimized in the grid search 
procedure.

The grid search was conducted for all discretization 
ranges considered in the rough set–based experiment. For 
data normalization, five possibilities were considered:

1.	 No normalization.
2.	 Normalization by division of parameters (which can also 

be called dimensions, columns of the dataset) by the 
maximum absolute value of such parameter.

3.	 Normalization by scaling parameters to the range of 
< −1;1 >.

4.	 Standardization, which is performed by performing cal-
culations according to the following formula:

where xstandardized is a dimension after normalization, x 
is a vector before normalization, x is the mean value of 
x , and std(x) is a standard deviation of x.

(9)DMinkowski(x, y) =

(
n∑

i=1

||xi − yi
||
p

) 1

p

,

(10)xstandardized =
x − x

std(x)
,

Table 6   Average F1 scores for breathing patterns and decision discretization ranges: d1, d2

Periodic-like Intermediate Normal

d2 d2 d2

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

d1 1 0.54 0.58 0.62 0.59 d1 1 0.55 0.42 0.45 0.72 d1 1 0.60 0.64 0.50 0.51
2 0.59 0.60 0.52 0.44 2 0.55 0.43 0.57 0.59 2 0.58 0.54 0.72 0.60
3 0.49 0.64 0.54 0.72 3 0.65 0.40 0.47 0.43 3 0.63 0.48 0.71 0.72
4 0.43 0.61 0.53 4 0.50 0.64 0.46 4 0.41 0.62 0.74
5 0.54 0.71 5 0.63 0.47 5 0.54 0.67
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5.	 Normalization of data points (which correspond to rows 
of the dataset) by treating them as vectors and normaliz-
ing the length of such vectors to 1, which can be defined 
as follows:

where ud.p.norm. is a vector representing given data point 
after normalization, u is a vector representing data point 
before the normalization, and |u| is the length of the 
aforementioned vector.

Notably, the last type of normalization is applied to 
data points, not parameters themselves. For the number 
of neighbors ( k ), values from 2 to 50 were considered. 
For the Minkowski distance, there were five values of p 
used, namely 1 (for which the metric becomes a so-called 
Manhattan distance), 1.25, 1.5, 1.75, and 2 (for which 
the metric becomes the Euclidean distance). The results 
obtained in a grid search are shown in Table 7. Overall, 
20,825 combinations of hyperparameters were evaluated. 
For the evaluation of the performance, an approach based 
on twofold cross-validation repeated five times (5 × 2CV) 
was employed [46]. As classes for each discretization range 
were not balanced, only the F1 score was used for evalua-
tion of the performance. A resulting performance estimate 
in the form of descriptive statistic parameters was provided. 
The aforementioned statistical parameters are minimum and 

(11)ud.p.norm. =
u

|u|
,

maximum values of the F1 score, the mean F1 score, its 
standard deviation, and the confidence interval for the F1 
score with the 95% significance level. Gaussian distribution 
of the performance metric was assumed and used in the 
calculation of the confidence intervals. Implementations of 
k-nearest neighbors and cross-validation are from the scikit-
learn Python library (version 0.24.1). For all parameters not 
specified in this study, a default value was used.

In Table 7, one can find that the most commonly occur-
ring type of discretization is {4,8} and the maximum 
obtained F1 score is 0.676, which is a worse result than the 
one obtained by the rough set–based approach. However, 
it also should be stressed that the higher boundary of the 
confidence interval is just slightly lower than the accuracy of 
the rough set–based approach, which is equal to 0.74. Also, 
it is clear that in most cases, it is beneficial to not use the 
Euclidean distance in measuring distances and choose values 
of p between 1 and 2. The most common values of p are 
1.75 and 1.5. Both of them occurred five times throughout 
the ranking list. From all investigated normalization types, 
only standardization was found to be present among the 20 
best sets of hyperparameters.

To visualize the structure of the data classified by the 
k-nearest neighbor algorithm, a visualization was prepared 
for the four most effective discretization ranges and pre-
processing types. The results of such visualization prepared 
by employing the UMAP dimensionality reduction algo-
rithms are shown in Fig. 13 [47]. An implementation of 

Table 7   A ranking list of 
20 best-performing sets of 
hyperparameters (regarding the 
largest F1 score value obtained) 
used to perform the 5 × 2CV 
procedure using the k-nearest 
neighbor classifier. Sets of 
hyperparameters are shown on 
the left side of the table, and 
statistical measures describing 
the level and variation of 
performance measured by the 
F1 score are shown in the right 
part of the table

Pre-processing type and hyperparameters Achieved F1 score statistics

d Normalization type k p Min Mean Max Std. dev Conf. int. (95%)

{4,8} None 41 1.5 0.557 0.617 0.676 0.059 (0.500; 0.733)
{4,8} None 41 1.75 0.526 0.590 0.654 0.064 (0.464; 0.716)
{4,8} None 28 1.25 0.569 0.609 0.648 0.040 (0.531; 0.687)
{4,8} None 41 1.25 0.560 0.602 0.645 0.043 (0.519; 0.686)
{4,8} None 41 2 0.509 0.575 0.641 0.066 (0.446; 0.704)
{4,8} Standardization 28 1 0.598 0.617 0.637 0.020 (0.579; 0.656)
{4,8} None 41 1 0.594 0.615 0.636 0.021 (0.574; 0.656)
{2,6} None 16 2 0.562 0.598 0.635 0.036 (0.528; 0.669)
{4,8} Standardization 28 1.25 0.605 0.617 0.630 0.012 (0.593; 0.642)
{4,8} Standardization 41 1.75 0.570 0.600 0.629 0.029 (0.542; 0.657)
{3,8} None 16 1.25 0.602 0.615 0.628 0.013 (0.589; 0.640)
{4,8} Standardization 41 1.5 0.556 0.589 0.622 0.033 (0.524; 0.654)
{3,8} Standardization 16 1.75 0.539 0.580 0.622 0.041 (0.499; 0.661)
{4,8} None 28 1.5 0.583 0.602 0.621 0.019 (0.565; 0.640)
{3,8} None 28 1.25 0.578 0.599 0.619 0.020 (0.559; 0.639)
{3,8} None 16 1 0.597 0.608 0.619 0.011 (0.587; 0.630)
{4,8} Standardization 28 1.5 0.572 0.595 0.617 0.022 (0.551; 0.638)
{4,8} None 28 1.75 0.568 0.592 0.616 0.024 (0.545; 0.639)
{3,8} Standardization 16 1 0.559 0.587 0.615 0.028 (0.532; 0.642)
{2,7} None 16 1.5 0.560 0.587 0.615 0.028 (0.533; 0.641)
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UMAP available in the umap-learn Python library (version 
0.5.1) was used.

All the visualizations presented in Fig. 13 show clusters 
having the property that different classes tend to be most 
prominent in just one specific region of the cluster. However, 

despite scenario b where standardization was used, there are 
no separate clusters present. In scenario b, those clusters are 
likeliest to correspond to two sexes of participants and have 
no evident association with classes A, B, or C. This implies 
that even for the data pre-processing types, which were the 

Fig. 13   Visualizations of the points in the decision space generated 
with the UMAP algorithm. For a, the scenario of {4,8} discretization 
range and no data normalization is shown. For b, there was a {4,8} 
discretization range and standardization was employed as the nor-

malization method. For c, a {2,6} discretization range was used with 
no normalization. Lastly, for d, a {3,8} discretization range with no 
normalization was used
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most beneficial for the k-nearest neighbors, there was no 
obvious way to separate examples of at least some classes. 
There is always some overlap between them. However, one 
can identify situations, such as one visible in the subplot c, 
where classes A and B are separated by a significant amount 
of margin for most of the data points belonging to one of 
them.

Discussion

The accuracy and F1 scores obtained by the tri-way rea-
soning employing rough set–based approach was relatively 
high and amounted to 0.795 (accuracy) and 0.74 (F1 score), 
respectively, so it already aided respiratory pattern evalua-
tion. Yet, implementing the rule set is not straightforward, 
and further expansion with new knowledge can be problem-
atic. The approach in modeling various percentage contribu-
tion ranges should be further explored to reduce the bias and 
achieve possible higher accuracy for narrow centile ranges. 
It was shown that for evenly spread ranges <0,3>, <3,6>, 
<6,10> defined by d1 = 3, d2 = 6 results in lower accuracy 
but more appropriate rule sets (complete rule sets without 
bias). Therefore, this issue will be studied in the future. 
When comparing the results of the rough set–based analysis 
with a baseline algorithm (k-NN), it occurs that rough sets 
return higher values. On the other hand, employing k-NN 
and UMAP visualization brought new insights into the data 
gathered. The UMAP-based approach shows that different 
classes tend to be most prominent in just one specific region 
of the decision space. However, despite various standardiza-
tion scenarios used, there are no separate clusters present.

Moreover, the database will be extended with new cases, 
allowing the research to focus on a lower number of models 
but potentially contain more accurate and usable knowledge, 
automatically extracted from a larger number of training 
samples.

Our study indicates that the granularity concept applied 
to respiratory rate quantification and abnormal pattern pre-
diction might provide novel insights into cardiorespiratory  
regulation beyond those offered by a simple analysis of res-
piratory rate, inspiration and expiration times, tidal volume  
assessment, or their variability [48, 49]. Many previous stud-
ies concerning respiratory variability have been performed  
in animals and cannot be directly translated to humans 
[50, 51]. Analysis of the pattern of respiratory signals in 
humans is much more challenging. The variability of fre-
quency and amplitude, the impact of artifacts (related to 
body movement, speech, etc.), and the individuality of pat-
terns in different subjects should be considered [52]. Tra-
ditionally, visual assessment by an expert physician has 
often been used to identify PB appearance. However, this 
approach is mainly subjective and might be misleading. 

Previous efforts to develop better methods were either lim-
ited to the investigation of respiratory patterns during sleep 
from polysomnographic recordings [14] or performed in 
homogeneous groups of subjects: healthy individuals [22, 
53], neonates [26], or patients with CHF [16, 54]. Further-
more, these studies aimed to detect patients with clear-cut 
periodic patterns of breathing.

Conclusion

This study was conceived as a tri-way approach to evaluate 
breathing patterns automatically. We started by observing 
how a medical expert performs measurement, collects the 
data and signals, and evaluates and interprets them to form 
knowledge. Followed by that, group reasoning was executed 
by physicians, diagnosticians, and computer scientists. Col-
lectively, a sequence of tasks was envisioned concerning 
the methodology regarding structuring the collected data, 
deciding on the signal analysis, and the processing method. 
This stage outcome used wavelet-based signal analysis and 
data and signal processing by rough sets. We incorporated 
these data processed into granules representing knowledge 
related to a particular patient. An important decision was to 
select an appropriate type of wavelet analysis, i.e., continu-
ous (CWT) or discrete (DWT). The outcome of the discus-
sion related to this end was the use of DWT.

Furthermore, we formulated a criterion upon which the 
desired mother wavelet was chosen. Concerning the results 
obtained, interestingly, all signal attributes were present 
in the models. Contrarily, the rules rarely incorporated 
anthropomorphic features. It should be further explored 
since some of these data are regarded by a medical expert 
as substantial. However, obesity (especially the so-called 
central obesity characterized by high WHR) and male sex 
were predisposing factors for the occurrence of periodic-
like or intermediate patterns of respiration. It may be one of 
the essential findings derived from this study. Even though 
BMI is used as a primary assessment tool in numerous fields 
in medicine linked to poor health outcomes, WHR, waist 
(circumference)-to-hip (circumference) ratio, may be a better 
indicator related to faulty breathing patterns, as it considers 
different body types, sex, and age. This finding confirms the 
work by Ross et al. who posited that WHR is a more critical 
factor than BMI in medical assessment [55].

To reassume, in this study, we considered three patterns 
of breathing—normal, intermediate, and periodic-like—in 
a group of subjects of different ages, sex, body constitu-
tion, and medical records (healthy, hypertensives, patients 
with a history of TIA, etc.). It is an important distinction 
that our approach, based on wavelet analysis along with 
rough set–based processing, was effective in non-invasive 
and short-term (20-min) recordings during wakefulness. 
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Analyses performed by employing k-NN validated to some 
extent the results obtained in the rough set–based approach, 
though the obtained F1 score values were smaller. Also, it 
seems that the UMAP visualization allows for evaluating the 
data gathered, showing that clusters tend to form themselves 
in various parts of the decision space; however, they are not 
fully separated.

Our results indicate that the proposed method can support 
the visual assessment of respiratory patterns by an expert. 
Automatic characterization of breathing patterns, based on 
our approach, can be applied in future studies focusing on 
cardiorespiratory coupling in health and disease. Finally, 
it can enable the online analysis of the respiratory pattern 
changes in the monitored patients, which might be vital in 
patients with COVID or other life-threatening conditions.

Unfortunately, studies have not considered such a com-
plex analysis of breathing patterns and their relationship 
with anthropomorphic health indicators. Although reports 
concerning lung/asthmatic breath classification exist [56, 
57], they identify respiratory patterns employing recorded 
signals and machine learning following conventional chest 
auscultation with a stethoscope rather than taking a plethora 
of health indicators in the analysis. In their study, Göğüş 
et al. classified inhalation and exhalation sound signals of 
11 persons based on features derived from DWT and wave-
let packet transform (WPT) signals along with an artificial 
neural network (ANN). ANN was used to classify respira-
tory sounds into four classes: normal, mild asthma, moderate 
asthma, and severe asthma [56]. The obtained classification 
accuracies are high; however, the number of signals used is 
too small to provide meaningful observation. Kandaswamy 
et al. [57] classified 126 signal samples. Still, their focus was 
on several lung sound categories: normal, wheeze, crackle, 
squawk, stridor, or rhonchus, so it is difficult to estimate 
whether these results would be held when applied to a larger 
dataset. Consequently, a direct comparison of the results 
obtained is not possible.

Future studies will be directed towards a twofold aim. 
First, we would like to improve the process of detecting 
pauses and apneas. This approach will help the expert assess 
the breathing pattern. Furthermore, it might be treated as 
a pre-processing stage supporting further analyses. One of 
the planned approaches will comprise modified VAD (voice 
activity detection) algorithms. VAD algorithms are a critical 
part of speech processing, recognition, and coding systems. 
Their operation principle is to detect and separate fragments 
of silence (pauses) and regions containing speech. Attempts 
at respiratory pattern assessment using such algorithms can 
be found in the literature; however, the experiments were 
limited to signals recorded using a microphone [28, 58, 59]. 
We believe that modifying the VAD algorithms will allow 
their application to analyze the signals coming from the res-
piratory belt. Moreover, in future studies, we would like to 

follow the second aim by employing other techniques, such 
as the rough-fuzzy approach, to identify the best way to ana-
lyze the gathered data, as some of the parameters acquired 
need creating membership functions and fuzzification.
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