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Therapeutic blockade of granulocyte macrophage 
colony-stimulating factor in COVID-19-associated 
hyperinflammation: challenges and opportunities
Puja Mehta, Joanna C Porter, Jessica J Manson, John D Isaacs, Peter J M Openshaw, Iain B McInnes, Charlotte Summers, Rachel C Chambers

The COVID-19 pandemic is a global public health crisis, with considerable mortality and morbidity exerting pressure on 
health-care resources, including critical care. An excessive host inflammatory response in a subgroup of patients with 
severe COVID-19 might contribute to the development of acute respiratory distress syndrome (ARDS) and multiorgan 
failure. Timely therapeutic intervention with immuno modulation in patients with hyperinflammation could prevent 
disease progression to ARDS and obviate the need for invasive ventilation. Granulocyte macrophage colony-stimulating 
factor (GM-CSF) is an immunoregulatory cytokine with a pivotal role in initiation and perpetuation of inflammatory 
diseases. GM-CSF could link T-cell-driven acute pulmonary inflammation with an autocrine, self-amplifying cytokine 
loop leading to monocyte and macrophage activation. This axis has been targeted in cytokine storm syndromes and 
chronic inflammatory disorders. Here, we consider the scientific rationale for therapeutic targeting of GM-CSF in 
COVID-19-associated hyperinflammation. Since GM-CSF also has a key role in homoeostasis and host defence, we 
discuss potential risks associated with inhibition of GM-CSF in the context of viral infection and the challenges of doing 
clinical trials in this setting, highlighting in particular the need for a patient risk-stratification algorithm. 

Introduction
As of June 10, 2020, more than 7·1 million confirmed 
cases of COVID-19 have been reported worldwide, and 
408 025 people have died with the disease.1 Acute 
respiratory distress syndrome (ARDS) and multiorgan 
failure are major causes of mortality in patients with 
COVID-19.2

There are felt to be two distinct but overlapping phases 
for therapeutic targeting of patients with COVID-19: an 

initial viral response followed by a host hyper-
inflammatory response.3 We previously recom mended 
screening for virally driven hyperinflammation in 
patients with severe COVID-19 and proposed that 
immunomodulation might reduce the high mortality 
in this group.4 Therapeutic targets might include pro-
inflammatory cytokines that are expected to be increased 
in hyperinflammatory disorders, such as interleukin 
(IL)-6, IL-1, or granulocyte macro phage colony-
stimulating factor (GM-CSF). 

Clinical trials of existing approved immunomodulatory 
agents, including inhibitors of the IL-6 pathway (eg, with 
tocilizumab) and IL-1 pathway (eg, with anakinra), are 
ongoing or about to start in patients with COVID-19. 
Moreover, the US Food and Drug Administration 
has approved emergency compassionate use of an 
anti-GM-CSF monoclonal antibody for patients with 
COVID-19,5 despite no clinical trial evidence for the 
therapeutic approach in this setting. As of June, 2020, 
six companies were planning or seeking regulatory 
approval for clinical trials in COVID-19 using agents that 
either target GM-CSF or its receptor (table). 

Here, we present accumulating evidence to support 
the scientific rationale for therapeutic targeting of 
GM-CSF in patients with hyperinflammation, ARDS, 
and hence in COVID-19-associated hyperinflammation. 
We also discuss potential risks associated with targeting 
GM-CSF in the context of viral infection and challenges 
of conducting clinical trials in this disease setting, 
and we provide details of planned clinical trials in 
COVID-19 using agents which either target GM-CSF or 
its receptor.

Hyperinflammation and COVID-19
Hyperinflammation describes a spectrum of dis-
orders. The terminology related to these disorders is 
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hetero geneous; however, they are referred to collectively 
as cytokine storm syndromes, which are treated with 
immuno   modulatory agents to attenuate the excessive 
immunoinflammatory response. The hyperinflammatory 
condition haemophagocytic lymphohistiocytosis (HLH) 
is characterised by a fulminant and fatal hyper cyto kin-
aemia with multiorgan failure, usually manifesting with 
cytopenia and abnormal liver function. When caused 
by genetic abnormalities, this disorder is referred to 
as primary or familial HLH. Secondary HLH is a 
hyperinflam  matory syndrome triggered by infection, 
rheumatic disorders, and malignant disease (usually 
lympho      proliferative disorders). Cytokine storm syn-
dromes can be termed macrophage activation syn drome 
(when associated with rheumatic disease), macro phage 
activation-like syndrome (in sepsis), and cytokine release 
syndrome (after chimeric antigen receptor [CAR] T-cell 
therapy).3 A subset of patients with severe COVID-19 
shows evidence of hyperinflammation and might, 
therefore, potentially benefit from immuno modulation. 

ARDS is a heterogeneous clinical disorder char-
acterised by refractory hypoxaemia, with mortality 
of 35–55% despite supportive standard of care, including 
low tidal volume ventilation. ARDS is defined by the 
development or worsening of hypoxaemia in the 
presence of bilateral pulmonary infiltrates and develops 
most commonly in response to community-acquired 
pneumonia. Cohort data from Wuhan, China,12 show 
that ARDS occurs in approximately 30% of hospitalised 
patients with COVID-19 and is associated with high 
mortality. Clinical trials of pharmacological agents in 
ARDS have been met with limited treatment successes, 
but unbiased latent class analysis of clinical and 
biomarker characteristics from randomised trial data 
has identified two distinct ARDS subphenotypes—a 
hypoinflammatory endotype and a hyperinflammatory 
endotype—with distinct clinical characteristics, bio-
marker profiles, clinical outcomes, and treatment 
responses.13 Therefore, it is increasingly recognised that 
a tailored therapeutic approach to individual ARDS 
patients will be needed to improve clinical outcomes.

The clinical presentation of severe COVID-19 seems to 
be unique and has been the subject of much discussion in 
the community. Emerging experience suggests that the 
hyperinflammatory response in COVID-19 does not fit the 
classic profile of secondary HLH or cytokine release 
syndrome. Although ferritin levels predict mortality in 
COVID-19,2 ranges are lower than those reported in 
patients with secondary HLH, and the clinical syndrome 
is lung dominant, typically without substantial cytopenia. 
Of note, lympho penia is almost universal in patients with 
severe COVID-19,14 but the lymphocyte lineage is not 
classically affected in secondary HLH; in the context of 
COVID-19, therefore, lymphopenia might be the out-
come of a viral driver. Whether patients with COVID-19 
pneumonia present an atypical form of ARDS has also 
been debated,15 but it is increasingly felt that ARDS 

associated with COVID-19 might not be dissimilar to the 
phenotype associated with other viral drivers. A manage-
ment approach for COVID-19-associated ARDS has been 
proposed and is continuously evolving as clinical 
experience accumulates.16

The proinflammatory cytokine GM-CSF
GM-CSF was originally defined as a haematopoietic 
growth factor because of its ability to form colonies of 
granulocytes and macrophages in vitro by promoting 
proliferation and differentiation of bone marrow 
progenitor cells.17 Later, GM-CSF was found to act on 
mature myeloid cells, such as macrophages and neutro-
phils, as a prosurvival or activating factor with a role in 
inflammation. Unlike other members of the colony-
stimulating factor superfamily of pleiotropic growth 
factors (eg, macrophage colony-stimulating factor, granu-
lo cyte colony-stimulating factor [G-CSF]), GM-CSF does 
not seem to have a role in steady-state myelopoiesis.17 
Instead, GM-CSF plays a key role in tissue inflammation, 
with mounting evidence that it contributes to develop ment 
of autoimmune and inflammatory diseases, including 
T-helper (Th)17-driven diseases such as ankylosing 
spondylitis.18

Study type (trial 
identification)

Study design, aims, and outcomes

Targeting GM-CSF receptor alpha

Mavrilimumab (Kiniska, 
Lexington, MA, USA)

Pilot study 
(phase 2 trial 
planned; 
NCT04397497)

Single-centre pilot study in six patients with worsening 
pulmonary involvement and COVID-19 with biological 
markers of systemic hyperinflammation treated with 
one intravenous dose of mavrilimumab;6 all six patients 
showed early resolution of fever and improvement in 
oxygenation within 1–3 days and three of six patients were 
discharged within 5 days6

Targeting GM-CSF

Otilimab 
(GlaxoSmithKline)

Phase 2 
(NCT04376684)

Multicentre, double-blind, randomised, placebo-controlled 
trial of single-dose otilimab in 800 patients (primary 
endpoint: proportion of participants alive and free of 
respiratory failure at day 28)

Lenzilumab (Humanigen, 
Burlingame, CA, USA)

Phase 3 
(NCT04351152)

FDA approval for phase 3 study (primary endpoint: 
incidence of invasive mechanical ventilation or mortality)7 
and for emergency compassionate use5

Namilumab (Izana 
Bioscience, Oxford, UK)

Phase 2 planned 
(EudraCT 2020-
001684-89; 
ISRCTN 
40580903) 

Two-centre compassionate-use study planned in Italy;8 

multicentre randomised trial of namilumab in COVID-19 
planned in the UK platform study CATALYST9

Gimsilumab (Roivant, 
Basel, Switzerland)

Phase 2 
(NCT04351243)

Adaptive, randomised, double-blind, placebo-controlled 
multicentre trial expected to enrol up to 270 patients with 
acute lung injury or ARDS (primary endpoint: mortality at 
day 43)10

TJ003234 (I-Mab, 
Shanghai, China)

Phase 1b/2 
(NCT04341116)

FDA investigational new drug application clearance 
approved;11 proposed multicentre, randomised, 
double-blind, placebo-controlled, three-arm study (primary 
endpoint: proportion of participants with deterioration in 
clinical status, on an eight-category ordinal scale)

ARDS=acute respiratory distress syndrome. FDA=US Food and Drug Administration. GM-CSF=granulocyte macrophage 
colony-stimulating factor. 

Table: Drugs targeting GM-CSF or its receptor in clinical studies in patients with COVID-19
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GM-CSF is expressed locally in tissues such as the lung, 
gut, and skin, but it is virtually undetectable in the sys-
temic circulation.19 Multiple cellular sources of GM-CSF 
have been described. In the healthy lung, GM-CSF is 
secreted by alveolar type II epithelial cells (figure 1) and has 
a key role in maturation and function of alveolar 
macrophages, including surfactant catabolism. Congenital 
or acquired GM-CSF deficiency can lead to pulmonary 
alveolar proteinosis because of dysregulated surfactant 
clearance.18 GM-CSF has an important host-defence 
function in maintenance of the integrity of the alveolar 
capillary barrier;20,21 moreover, it has an immuno stimulatory 
protective role in pathogenic clearance in the context of 
bacterial and virally triggered pneumonia or ARDS.22–24

Growing evidence suggests that GM-CSF is produced 
and acts locally at sites of tissue inflammation.18 T cells 
seem to be the most prominent producers of GM-CSF in 
tissue inflammation, but epithelial cells, endothelial cells, 
fibroblasts, stromal cells, and haematopoietic cells can 
also all produce GM-CSF, commensurate with a role for 
this cytokine in integrating tissue-regulated inflammatory 
cell infiltration, even before T-cell migration. Local 

production of GM-CSF increases with inflammation,18 
and the level of this cytokine is increased in synovial fluid 
and serum from patients with rheumatoid arthritis, in 
cerebrospinal fluid from patients with multiple sclerosis,18 
and in bronchoalveolar lavage fluid from patients with 
ARDS.25 GM-CSF is pivotal to proinflammatory cytokine 
networks,17 including the cytokine cascade in HLH,26 and 
it not only induces expression of tumour necrosis factor 
(TNF), IL-6, and IL-23, but also promotes differentiation 
of Th1 or Th17 cells and polarisation of macrophages to an 
M1-like phenotype.18

GM-CSF and neutrophils in hyperinflammation
Similar to GM-CSF, the cytokine G-CSF has a role in 
macrophage and antigen-presenting-cell activation and 
can increase neutrophil chemotaxis and migration, but 
response kinetics of GM-CSF and G-CSF can differ.27 
GM-CSF is considered to be more proinflammatory than 
is G-CSF.27 G-CSF is postulated to interact with G-CSF 
receptors on monocytes, providing continuous stimu-
lation with pharmacological rather than lower physio-
logical concentrations of growth factor.28 A feedback 

Figure 1: Role of GM-CSF in homoeostasis, viral response, and inflammation
GM-CSF has an important homoeostatic role in the maturation and function of alveolar macrophages, which clear and catabolise surfactant, and in host defence. In 
response to viral insults (eg, with SARS-CoV-2), alveolar type II epithelial cells secrete GM-CSF, improving the innate immune response of myeloid cells, particularly 
alveolar macrophages. In severe inflammatory states, GM-CSF production is upregulated by alveolar type II epithelial cells and monocyte-derived M1-like 
macrophages, thereby stimulating IL-6 production from CD14+ and CD16+ inflammatory monocytes, increasing Th1 and Th17 T cells and driving the recruitment and 
priming of neutrophils. The resulting autocrine, positive feedback loop of GM-CSF production further perpetuates the inflammatory milieu. GM-CSF=granulocyte 
macrophage colony-stimulating factor. IL=interleukin. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. Th=T helper.
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mechanism might enhance the process with monokines, 
causing subsequent clonal expansion and activation of 
T lymphocytes. Activated T cells synthesise and secrete 
interferon (IFN)γ, GM-CSF, and TNF. These factors 
interact with the GM-CSF receptor and other receptors on 
the monocyte, providing additional and continuing 
stimulation of monocytes.

Emerging evidence suggests a role for GM-CSF in HLH, 
based on admin istration of recombinant G-CSF in patients 
with this disorder. In clinical practice, there are concerns 
that administration of G-CSF might worsen HLH; indeed, 
the observation that administration of recombinant G-CSF  
(eg, lenograstim) exacerbated syno vitis supported the 
rationale to target the GM-CSF pathway in rheumatoid 
arthritis.29 To the best of our knowledge, five cases have 
been reported of exacerbation of existing or de-novo 
provocation of HLH after admin istration of recombinant 
G-CSF or GM-CSF (appendix pp 1–2).30–33 This experience 
warrants cautious use of recombinant G-CSF in critically 
ill patients with neutro penia and evidence of HLH. 

Further evidence of a role for GM-CSF in HLH comes 
from murine models of both the primary and secondary 
disorder, in which GM-CSF has been shown to be elevated 
in untreated, active disease and significantly reduced with 
treatment aimed at JAK inhibition.34 Moreover, a HLH-
like disease was observed in lymphocytic choriomeningitis 
virus-infected IFNγ and Prf1 double knockout mice, with 
a cytokine milieu dominated by IL-6 and GM-CSF, similar 
to human HLH, challenging the dogma that IFNγ is 
mandatory for pathogenesis of HLH.35 A humanised 
mouse model of post-allogeneic stem-cell transplant 
HLH showed increased GM-CSF levels, in parallel with 
other cytokines expected to be increased in patients with 
this hyperinflammatory disorder, including IL-6, TNF, 
IFNγ, and IL-18.36

Experimental evidence for neutrophil-mediated tissue 
injury in the pathobiology of HLH is also emerging. 
Splenic neutrophils from a mouse model of HLH 
upregulated the TREM1 protein and increased production 
of intracellular TNF, macrophage inflammatory protein 
(MIP)-1α (CCL3), MIP-1β (CCL4), and IL-1β. This pheno-
type was ameliorated with JAK1 and JAK2 inhibition 
(using ruxolitinib), but not IFNγ inhibition. Poorer survival 
of mice treated with IFNγ inhibition (compared with 
ruxolitinib) was rescued by the addition of neutrophil-
depleting antibodies, but not anti-IL-6 or anti-TNF 
antibodies.34,37 These data support a role for neutro phil 
activation in the pathobiology of HLH and highlight 
possible similarities between HLH-mediated organ injury 
and severe organ injury seen in other critical illnesses, 
such as sepsis and ARDS.38,39

Targeting GM-CSF in ARDS
The scientific rationale for targeting GM-CSF in patients 
with ARDS is gaining strength. The initial injury response 
or exudative phase of ARDS is characterised by release of 
potent proinflammatory mediators, including GM-CSF, 

monocyte chemoattractant protein 1 (CCL2), IL-1α, IL-8, 
and TNF secreted by resident alveolar macrophages, 
leading to recruitment of neutrophils and monocytes. 
Neutrophils have been strongly implicated in the develop-
ment of ARDS40 by acting as primary effector cells of 
bystander tissue injury through release of proteinases, 
reactive oxygen species, and neutrophil extracellular traps; 
recent reports have also highlighted the role of neutrophil 
extracellular traps in COVID-19.41,42 Moreover, the extent, 
duration, and priming status of neutrophils in alveolar 
airspaces are strong predictors of outcome in ARDS.25 
Alveolar GM-CSF contributes to acute and persistent 
neutrophilic inflammation by affecting neutrophil 
function, including promoting upregulation of the IgA 
Fc receptor, formyl peptide receptor (FPR1), CD11b, and 
expression of the leukotriene B4 receptor; chemotaxis, 
phagocytosis, release of leukotriene B4 and arachidonic 
acid, NADPH oxidase 2 (CYBB)-mediated superoxide 
anion generation; and by exerting a pronounced pro-
survival effect mediated by phosphoinositide 3-kinase 
(PI3K)-dependent inhibition of neutrophil apoptosis.25,43–46 
Recent study findings suggest that GM-CSF receptor 
alpha blockade can inhibit inflammation in response to 
inhaled lipopolysaccharide in a mouse model of acute 
lung injury.47

GM-CSF and COVID-19
The case for GM-CSF as a potential therapeutic target in 
patients with COVID-19-associated hyperinflammation 
and ARDS is also gaining strength, and several clinical 
trials are planned in patients with COVID-19, using 
agents that either target GM-CSF or its receptor (table). 
In COVID-19, a cytokine signature res emb ling secondary 
HLH (including increased G-CSF, IL-2, IL-7, IFNγ-
inducible protein 10 [CXCL10], CCL2, CCL3, and TNF) is 
associated with disease severity.14 Although, to the best 
of our knowledge, no data in bronchoalveolar lavage 
fluid have been published, serum levels of GM-CSF 
and G-CSF are upregulated in patients with COVID-19 
compared with healthy volunteers, independent of 
intensive care status.14 Evidence is also emerging that 
expansion of GM-CSF-expressing immune cells 
correlates with disease severity in COVID-19.48 The 
percentages of GM-CSF-expressing CD4+ T cells (Th1), 
CD8+ T cells, natural killer cells, and B cells are 
significantly higher in the serum of patients with 
COVID-19 compared with healthy controls and patients 
with COVID-19 without critical illness.48 CD14+ CD16+ 
inflammatory monocytes (rarely found in healthy 
controls) are raised in the peripheral blood of patients 
with COVID-19 and correlate with the extent of a severe 
pulmonary syndrome in the intensive care unit.48 It 
seems plausible that GM-CSF potentially links the 
severe pulmonary syndrome-initiating capacity of patho-
genic CD4+ Th1 cells (GM-CSF-positive IFNγ-positive) 
with the inflammatory signature of monocytes (CD14+ 
CD16+ with high expression of IL-6) and their progeny in 

See Online for appendix
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patients with COVID-19.48 GM-CSF could, therefore, 
serve as the integral link between Th1-driven acute lung 
injury and an autocrine loop of monocytes that further 
secrete GM-CSF and IL-6.48 An alternative perspective is 
that rather than being pathogenic and causative of 
immunopathology, GM-CSF-positive lymphocytes could 
be responding to persistent viral replication and might 
indicate a potential protective role of GM-CSF in antiviral 
immunity in this disease context.

Inhibition of GM-CSF in COVID-19-associated 
hyperinflammation 
Indirect evidence for a role for anti-GM-CSF therapeutic 
targeting in COVID-19-associated hyperinflammation 
comes from cytokine release syndrome following CAR 
T-cell therapy. The immunomodulatory agent tocilizumab 
(anti-IL-6-receptor monoclonal anti body) is licensed for 
treatment of cytokine release syndrome, a disorder that 
might be associated with neurotoxicity. Cytokine release 
syndrome is directly related to in-vivo T-cell expansion and 
striking production of the T-cell effector cytokines IL-6, 
TNF, CCL2, and GM-CSF. Current evidence suggests that 
serum levels of GM-CSF, ferritin, and IL-2 are associated 
with neurotoxicity.49 Amounts of GM-CSF are raised 
in serum and cerebrospinal fluid in children with 
COVID-19 and CNS manifestations.50 A proof-of-concept 
study using a neutralising anti-GM-CSF monoclonal 
antibody (lenzilumab) in a xenograft model prevented 
cytokine release syndrome and enhanced the efficacy of 
CAR T-cell therapy.51 Based on these findings, a phase 2 
trial com bin ing lenzilumab in the setting of CAR T-cell 
therapy is planned. Next-generation CAR T cells in which 
GM-CSF has been knocked out by CRISPR-Cas9 gene 
editing are being developed to minimise the risk of 
cytokine release syndrome.52

In view of the central role of GM-CSF in several chronic 
inflammatory disorders, considerable interest has been 
shown in targeting this cytokine in hyperinflammatory 
disease contexts. Inhibition of GM-CSF or its receptor is 
currently being investigated in randomised trials in 
rheumatoid arthritis,18 including a 24-week phase 3 head-
to-head comparison trial in patients with rheumatoid 
arthritis (NCT04134728) aimed at inhibiting GM-CSF 
(otilimab), IL-6 (sarilumab), and the JAK-STAT pathway 
(tofacitinib). To the best of our knowledge, no overt safety 
concerns have been identified and there have been no 
cases reported of pulmonary alveolar proteinosis in the 
clinical development programmes of any agent targeting 
GM-CSF or its receptor to date. In the setting of 
severe COVID-19-associated hyperinflammation, a short 
duration of treatment with an anti-GM-CSF monoclonal 
antibody might be sufficient to switch off hyper-
inflammation while mitigating potential on-target safety 
concerns that could be associated with long-term GM-CSF 
blockade. It is also worth highlighting that GM-CSF 
induces the production of IL-6 and signals via the JAK-
STAT pathway.53 Clinical trials of JAK inhibitors are 

ongoing in patients with COVID-19 (eg, NCT04362137), 
and the IL-6 pathway is currently the focus of several 
clinical trials in COVID-19 (eg, NCT04320615). Interest in 
the IL-6 axis was probably fuelled by purported similarities 
(eg, increased C-reactive protein) between COVID-19-
associated hyperinflammation and cytokine release 
syndrome associated with CAR T-cell therapy. Moreover, 
other agents used in secondary HLH (eg, IL-1 inhibition 
with anakinra)54 are also currently being investigated in 
patients with COVID-19. Targeting GM-CSF could offer 
advantages over selective IL-6 blockade, because inhibition 
of GM-CSF might affect both hyperinflammation and 
ARDS, and might be less myelosuppressive and hepato-
toxic than IL-6 blockade. JAK inhibitors are licensed for 
chronic inflammatory conditions (eg, rheumatoid arth-
ritis) and myeloprolifer ative neoplasms and are being 
actively investigated in hyperinflammation.55,56 However, 
the potential deleterious effects associated with inhibition 
of multiple cytokines simultaneously, compared with 
single-cytokine blockade, and potential increased risk 
of thrombosis requires careful consideration. This 
consideration is especially pertinent in the setting of 
COVID-19, in view of accumulating evidence of coagulo-
pathy and autopsy findings of pulmonary microthrombi.57

Challenges of immunomodulation in COVID-19
The potential benefits of targeting GM-CSF in the context 
of a virally driven disorder such as COVID-19 need to be 
carefully balanced with potential risk associated with 
blocking the role of this cytokine in tissue homoeostasis, 
including maintenance of alveolar capillary barrier 
integrity20 in host defence and epithelial repair. Rather 
than blocking GM-CSF, there is an opposing view that 
treatment with GM-CSF could have therapeutic potential 
in ARDS. In a proof-of-concept study, the beneficial effect 
of inhaled GM-CSF was shown in six patients with 
pneumonia-associated ARDS,58 and a clinical trial is 
underway of administration of inhaled and intravenous 
recombinant GM-CSF (sargramostim) in patients with 
COVID-19 (NCT04326920). Evidence suggests that 
increased concentrations of GM-CSF in bronchoalveolar 
lavage fluid from patients with ARDS positively 
correlated with survival;25 by contrast, a subsequent 
randomised trial of therapeutic admin istration of 
recombinant GM-CSF in ARDS (n=130) did not improve 
clinical outcomes.59 In that study, administration of 
intravenous GM-CSF daily for 14 days was not associated 
with adverse clinical outcomes or increased concen-
trations of systemically measured cytokines, including 
IL-6, IL-8, TNF, or GM-CSF in bronchoalveolar lavage 
fluid (measured in selected participants).59 These observa-
tions, together with studies showing that exogenous 
administration of GM-CSF does not exacer bate sepsis,60 
could provide a counter-argument for the approach of 
targeting GM-CSF in ARDS. First, as acknowledged by 
Paine and colleagues,59 their study included a smaller 
than anticipated number of patients treated (the study 
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was originally designed with an enrolment target of 200, 
but recruitment proved slower than anticipated and the 
trial was closed after 132 participants had been enrolled) 
and the timing of treatment initiation might not have 
been ideal (ie, during the recovery phase of ARDS). 
Moreover, interventional studies with a GM-CSF anti-
body in COVID-19 are aimed at attenuating the immune 
dysregulation of hyper inflammation before it leads to the 
development of ARDS; once ARDS is established, it 
could indeed be too late for this intervention to provide 
substantial clinical benefit.

GM-CSF also has a highly context-dependent immuno-
regulatory role and can modulate dendritic cell differen-
tiation to render them tolerogenic, which in turn leads 
to increased regulatory T-cell numbers and function.61 
Moreover, GM-CSF affects antiviral and antibacterial 
immunity and host defence,62 so GM-CSF blockade could 
potentially compromise T-cell and B-cell recovery. 
Lympho penia is an established risk factor for secondary 
bacterial infections and might predict fatality and worse 
outcomes in COVID-19.2 In a cohort study of 54 non-
survivors with confirmed COVID-19, approximately 50% 
had secondary bacterial infections.12 Acquired impair-
ment of neutrophil phagocytosis in critical illness 
predicts nosocomial infections and is reversed by 
GM-CSF ex vivo. However, administration of GM-CSF 
(sargramostim) in a randomised trial in this setting did 
not improve neutrophil phagocytosis.63 There is also a 
theoretical possibility that immunomodulation in 
COVID-19 could represent a temporary reprieve and 
enable viral resurg ence from a circulating reservoir of 
non-cleared virus. Strategies using antimicrobial prophy-
l axis (eg, with anti biotics or antiviral drugs) could be 
insufficient to mitigate the risk and could promote the 
development of resistant organisms. Additionally, it 
might be inappro priate to extrapo late experience (efficacy 
or safety profiles) of immuno modulation in hyper inflam-
mation secondary to a drug-related trigger (eg, cytokine 
release syndrome after CAR T-cell therapy) or immuno-
modulation in chronic inflammatory disorders (eg, 
rheumatoid arthritis) to a viral setting, because a resident 
pool of virus could serve as a continuous stimulus for 
cytokinaemia, and immunomodulation might potentially 
affect viral clearance mechanisms. A deeper under-
standing of early pathophysiological events in viral 
(including COVID-19) or bacterial ARDS, or ARDS of 
other causes, will be imperative in our quest to develop 
novel therapeutic approaches and the role of anti-GM-CSF 
agents in these settings.

The pharmacodynamic effects of blocking IL-6 
(antagonism directly with tocilizumab or indirectly 
with JAK inhibition and anti-GM-CSF monoclonal 
antibodies) could include rapid suppression of 
C-reactive protein and fever. These effects might not 
only make secondary infection or viral relapse difficult 
to detect, but also provide false reassurance of efficacy 
of the therapeutic agent, because these mechanistic 

effects might not always correlate with clinically 
meaningful outcomes.

Conclusions and future directions
Randomised trials are the gold standard to provide 
evidence for clinical decision making. However, since 
COVID-19 is a new disease entity, it presents several 
urgent challenges around clinical trial design, selection of 
patients, and stratification. Early intervention before the 
onset of respiratory failure will probably prevent poor 
outcomes.64 Once patients need ventilatory support, 
the purported window of opportunity for therapeutic 
intervention might already have been missed, and patients 
might tip into an accelerated state, during which time 
initiation of treatment could be less effective or even 
futile54 (figure 2). The ideal window of opportunity for 
immunomodulation might be before patients develop 
severe disease64,65 and need invasive mechanical ventilation 
(intubation). However, robust predictive biomarkers for 
poor outcomes and in-depth characterisation of the host 
immune response across disease stages, to minimise the 
effect of immunomodulatory agents on the antiviral 
response, are urgently needed. Moreover, non-intubated 
patients would present a lower risk in terms of 
opportunistic or nosocomial infections, compared with 
intubated patients, who could have several artificial 
indwelling catheters (eg, endotracheal tubes, vascular 
access lines, or urinary catheters) that could act as a nidus 
for infection.

Strategies targeted at specific endotypes in ARDS are 
regarded as essential for optimum clinical outcomes. 
The apparent failure of large clinical trials in critical care 
has been attributed to inclusion of heterogenous non-
stratified populations of patients. Reanalyses of clinical 
trials in both ARDS (statins)66 and sepsis (anakinra)67 
have shown potential benefits in specific subgroups. 

Figure 2: A window of opportunity in hyperinflammation for optimum 
treatment intervention
Hyperinflammation can be initiated by an inciting trigger (eg, SARS-CoV-2 
infection) and can progress from an early indolent state to a fulminant and fatal 
hypercytokinaemia. Withholding potentially lifesaving immunomodulatory 
treatment until a patient is intubated could result in a missed window of 
opportunity for optimum therapeutic intervention. SARS-CoV-2=severe acute 
respiratory syndrome coronavirus 2. 

End-
stage

(eg, respiratory
or multiorgan

failure in patients 
with COVID-19)

Fulminant
and fatal

Indolent

Established

tip over
Early

Disease onset

Window of
opportunity

Death

Trigger
(eg, SARS-CoV-2)

(eg, fever, cough, or hypoxia 
in patients with COVID-19)



828 www.thelancet.com/respiratory   Vol 8   August 2020

Viewpoint

Identification of patients with COVID-19 who have a 
poor prognosis, with a modifiable clinical outcome, and 
who are most likely to benefit from immunomodulation 
will minimise exposure of patients with COVID-19 who 
could recover on their own to potential risks associated 
with immunosuppression. Identification of patients with 
COVID-19 using stratification variables is, however, very 
challenging without robust predictive biomarkers to 
identify those with poor prognosis who are likely to 
progress. It is important to maintain a measured clinical 
and scientific equipoise in the face of a rapidly evolving 
global pandemic. The bioethical stance of non-
maleficence needs to be balanced against the risk of 
withholding potentially life-saving immunomodulatory 
treatment in a population with high mortality and few 
treatment options. Identification of new therapeutic 
approaches beyond existing licensed immunomodulatory 
agents would address potential issues about drug short-
ages for COVID-19 clinical trials, and for patients who 
are dependent on these drugs to control chronic 
conditions. Ongoing and future clinical trials will provide 
much needed evidence for safety and efficacy of immuno-
modulatory agents in this setting, and their results are 
eagerly awaited.

COVID-19 is a major global public health crisis with 
considerable mortality and morbidity, exerting inordinate 
pressure on health-care resources, including intensive 
care beds and ventilators. Cross-specialty collaboration 
and randomised trials will be essential to assess the effect 
of therapeutic blockade of GM-CSF on both hyper-
inflammation and ARDS, as well as host defence and 
potential risks in COVID-19. Early intervention with 
immunomodulation in patients identified by careful 
consideration of the benefit–risk profile might halt 
disease progression, obviate the need for mechanical 
ventilation, and reduce mortality in patients with 
COVID-19.
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